Publications |
Pre-prints
- Disentangling the Roles of Distinct Cell Classes with Cell-Type Dynamical Systems
Jha A, Gupta D, Brody CD, & Pillow JW (2024).
bioRxiv 2024.07.08.602520; doi: https://doi.org/10.1101/2024.07.08.602520
- Revisiting the high-dsimensional geometry of population
responses in visual cortex
Pospisil D & Pillow JW (2024).
bioRxiv 2024.02.16.580726; doi: https://doi.org/10.1101/2024.02.16.580726
- Olfactory learning alters navigation strategies and
behavioral variability in C. elegans
Chen KS, Pillow JW, & Leifer AM (2023).
arXiv:2311.07117 [q-bio.NC]
- Compact deep neural network models of visual cortex
Cowley BR, Stan PL, Pillow JW, & Smith MA (2023).
bioRxiv 2023.11.22.568315;
doi:
https://doi.org/10.1101/2023.11.22.568315
-
Bayesian efficient coding
Park, Il Memming & Pillow JW (2020).
bioRxiv 178418; doi: https://doi.org/10.1101/178418
-
Recurrent dynamics
of prefrontal cortex during context-dependent decision-making
Cohen Z, DePasquale B, Aoi MC, & JW Pillow (2020).
bioRxiv 2020.11.27.401539; doi: https://doi.org/10.1101/2020.11.27.401539
-
A comparison of deep learning and linear-nonlinear cascade approaches to neural encoding
Moskovitz TH, Roy NA, & Pillow JW (2018).
bioRxiv 463422; doi: https://doi.org/10.1101/463422
2024
- From connectome to effectome: learning the causal
interaction map of the fly brain
Pospisil D*, Aragon M*, Dorkenwald S, Matsliah A, Sterling AR,
Szi-chieh PS, McKellar CE, Costa M, Eichler K, Jefferis GSXE,
Murthy M, & Pillow JW (2024). Nature (accepted).
[ bioRdiv]
- Pre-existing visual responses in a projection-defined dopamine population explain individual learning trajectories
A Pan-Vazquez, Y Sanchez Araujo, B McMannon, M Louka, A Bandi, L
Haetzel, International Brain Laboratory, JW Pillow, ND Daw, IB Witten
(2024). Current Biology (accepted). [bioRxiv]
- Sparse-coding variational auto-encoders
Geadah V*, Barello G*, Greenidge D, Charles AS, & Pillow JW (2024).
Neural Computation (accepted). [bioRxiv]
- Neural population dynamics underlying evidence accumulation in
multiple rat brain regions
DePasquale B, Brody CD, & Pillow JW (2024).
eLife 13:e84955.
[abs
| link
| code
| bibtex]
- Mapping model units to visual neurons reveals
population code for social behaviour
Cowley, BR, Calhoun AJ, Rangarajan N, Ireland E, Turner MH,
Pillow JW, & Murthy M (2024).
Nature.
[abs | pdf | link |
bibtex]
- Cross Talk opposing view: Marr's three levels of analysis are
not useful as a framework for neuroscience
Pillow JW (2024). J Physiol, 602: 1915-1917.
[link
| pdf | bibtex]
Opposing view from Máté Lengyel: CrossTalk proposal
My rebuttal: [link | pdf]
- Parsing neural dynamics with infinite recurrent switching
linear dynamical systems
Geadah V, International Brain Lab, & Pillow JW (2024).
Intl. Conf. on Learning
Representations (ICLR). [abs | pdf | link |
bibtex]
- Modeling state-dependent communication between brain regions with switching nonlinear dynamical systems
Karniol-Tambour O, Zoltowski DM, Diamanti EM, Pinto L, Brody
CD, Tank DW, & Pillow JW (2024).
Intl. Conf. on Learning
Representations (ICLR)
[abs | pdf |
link |
bibtex]
- Bayesian Active
Learning for Discrete Latent Variable Models
Jha A, Ashwood ZC, & Pillow JW (2024). Neural
Computation 36 (3): 437-474.
[abs |
pdf |
link
| code
| bibtex
]
Efficient decoding of large-scale neural population responses
with Gaussian-process multiclass regression
Greenidge CD, Scholl B, Yates J, & Pillow JW (2024).
Neural Computation 36(2): 175-226. [abs | pdf | link | code | bibtex]
2023
- Spectral learning of Bernoulli linear dynamical systems
models for decision-making
Stone IR*, Sagiv Y*, Park IM, Pillow JW (2023).
Transactions on Machine Learning Research 2835-8856. [abs
| pdf
| link
| code
| bibtex]
- Temporal integration is a robust feature of perceptual decisions
Hyafil A, de la Rocha J, Pericas C, Katz LN, Huk AC, & Pillow JW (2023).
eLife 12:e84045. [abs
| link
| bibtex]
- A general framework for inferring Bayesian ideal observer models from psychophysical data
Manning TS, Naecker BN, McLean IR, Rokers B, Pillow JW, Cooper EQ (2023).
eNeuro 10(1):1-17. [abs | pdf | link
| bibtex]
- Scalable variational inference for low-rank spatio-temporal
receptive fields
Duncker L, Ruda KM, Field GD, & Pillow JW (2023).
Neural Computation 35(6): 995-1027. [abs
| pdf
| link
|code
| bibtex]
-
2022
-
Dynamic inverse reinforcement learning for characterizing
animal behavior
Ashwood Z*, Jha A*, & Pillow JW (2022).
Advances in Neural Information Processing Systems (NeurIPS)
35.
[abs
| pdf
| link
| bibtex]
- Extracting computational mechanisms from neural data using low-rank RNNs
Valente A, Pillow JW, & Ostojic S (2022).
Advances in Neural Information Processing Systems (NeurIPS)
35.
[abs
| pdf
| link
| bibtex]
-
Correcting motion induced fluorescence artifacts in two-channel neural
imaging
Creamer MS, Chen KS, Leifer AM, & Pillow JW (2022).
PloS Computational Biology 18(9):1-14. [abs
| pdf
| link
| code
| bibtex
]
- Probing the relationship between linear dynamical systems and
low-rank recurrent neural network models
Valente A, Ostojic S, & Pillow JW (2022).
Neural Computation 34(9): 1871–1892. [abs |
pdf |
link
| bibtex]
-
Running reduces firing
but improves coding in rodent higher-order visual
cortex
Christensen AJ & Pillow JW (2022).
Nature Communications 13(1):1676. [abs
| link
| pdf
| bibtex]
-
Detecting and Correcting False Transients in Calcium
Imaging
Gauthier JL, Koay SA, Nieh EH, Tank DW, Pillow JW, & Charles
AS. (2022).
Nature Methods 19(4):470–478
[link
| pdf
| code
| bibtex
]
- Opponent control of behavior by dorsomedipal striatal pathways depends on task demands and internal state
Bolkan SS*, Stone IR*, Pinto L, Ashwood ZC, Garcia JMI, Herman
AL, Singh P, Bandi A, Cox J, Zimmerman CA, Cho JR, Engelhard B, Pillow JW, & Witten IB (2022).
Nature Neuroscience 25(3): 345–357.
[abs
| link | pdf
| code:data-anls
| code:glm-hmm
| bibtex]
- Mice alternate between discrete strategies during perceptual
decision-making
Ashwood ZC, Roy NA, Stone, IR, The International Brain
Laboratory, Urai AE, Churchland, AK, Pouget A, & Pillow JW (2022).
Nature Neuroscience 25(2): 201–212.
[abs
| link | pdf
| code
| bibtex]
-
Loss-calibrated expectation propagation for approximate
Bayesian decision-making
Morais MJ & Pillow JW (2022).
arXiv:2201.03128 [stat.ML]
- Majority of choice-related variability in perceptual
decisions is present in early sensory cortex
Morais MJ, Michelson C, Chen Y, Pillow JW, & Seidmann E
(2022).
bioRxiv 207357;
doi: https://doi.org/10.1101/207357
2021
- Brain kernel: a new spatial covariance function for fMRI data
Wu A, Nastase SA, Baldassano CA, Turk-Brown NB, Norman KA,
Engelhardt BE, & Pillow JW. (2021).
NeuroImage 245 (118580)
[abs
| link
| pdf
| code
| bibtex]
- Factor-analytic Inverse Regression for High-dimension,
Small-sample Dimensionality Reduction
Jha* A, Morais* MJ, & Pillow JW. (2021).
Proceedings of the 38th International
Conference on Machine Learning (ICML), PMLR 139:4850-4859.
[abs
| link
| pdf
| code
| bibtex]
-
Inferring Latent
Dynamics Underlying Neural Population Activity via Neural
Differential Equations
Kim TD, Luo TZ, Pillow JW, and Brody CD. (2021).
Proceedings of the 38th International
Conference on Machine Learning (ICML), PMLR 139:5551-5561.
[abs
| link
| pdf
| bibtex]
-
Neural Anatomy and Optical Microscopy (NAOMi)
Simulation for evaluating calcium imaging methods
Song A, Gauthier JL, Pillow JW, Tank DW, & Charles AS. (2021).
J. Neurosci. Methods 358. 109173 [link
| pdf
| code
| bibtex]
-
Extracting the dynamics of behavior in sensory decision-making
experiments
Roy NA, Bak JH, The International Brain Laboratory, Akrami A,
Brody CD, & Pillow JW (2021).
Neuron 109:1-14. [abs
| link
| pdf
| code
| colab-notebook
| bibtex]
2020
- Modeling statistical dependencies in multi-region spike train
data
Keeley SL, Zoltowski DM, Aoi MC, & Pillow JW (2020).
Current Opinion in Neurobiology 65: 194-202.
[abs |
pdf |
link
| bibtex]
- Identifying signal and noise structure in neural population
activity with Gaussian process factor models
Keeley SL, Aoi MC, Yu Y, Smith SL, BR & Pillow JW (2020).
Advances in Neural Information Processing Systems (NeurIPS) 33:
13795-13805.
[abs
| pdf
| link
| bibtex]
- High-contrast “gaudy” images improve the training of deep neural network models of visual cortex
Cowley BR & Pillow JW (2020).
Advances in Neural Information Processing Systems (NeurIPS)
33: 21591-21603.
[abs
| pdf
| link
| bibtex]
- Inferring learning rules from animal
decision-making
Ashwood Z*, Roy NA*, Bak JH, The International Brain Laboratory, & Pillow JW (2020).
Advances in Neural Information Processing
Systems (NeurIPS) 33: 3442-3453.
[abs
| pdf
| link
| bibtex]
- Prefrontal cortex
exhibits multi-dimensional dynamic encoding during
decision-making
Aoi MC, Mante V, & Pillow JW. (2020).
Nat Neurosci 23, 1410–1420.
[abs
| pdf
| link
| code
| bibtex]
-
Poisson balanced spiking networks
Rullán Buxó CE & Pillow JW. (2020).
PLoS Computational Biology 16:1-27.
[
abs
| link
| code
| bibtex]
-
Efficient non-conjugate Gaussian process factor
models for spike count data using polynomial
approximations
Keeley SL, Zoltowski DM, Yu Y, Yates JL, Smith SL, & Pillow
JW. (2020).
Proceedings of the 37th International
Conference on Machine Learning (ICML) 119:5177-5186.
[abs
| pdf
| link
| bibtex]
- A general recurrent state space framework for modeling neural dynamics during decision-making
Zoltowski DM, Pillow JW, & Linderman SW. (2020).
Proceedings of the 37th International
Conference on Machine Learning (ICML) 119:11680-11691.
[abs |
pdf |
link |
code |
bibtex]
-
A
simple linear readout of MT supports motion
direction-discrimination performance
Yates JA, Katz LN, Levi AJ, Pillow JW, and Huk AC (2020).
J. Neurophysiol. 123(2):682–694. [link
| pdf | bibtex]
2019
-
Inferring
synaptic inputs from spikes with a conductance-based neural encoding
model
Latimer KW, Rieke F, & Pillow JW (2019).
eLife 8:e47012
[abs | link | pdf | code | bibtex]
-
Unsupervised
identification of the internal states that shape natural
behavior
Calhoun AJ, Pillow JW, & Murthy M. (2019).
Nature Neuroscience 22:2040-20149.
[abs
| link
| pdf
| code
| bibtex]
-
Error-correcting dynamics in visual working memory
Panichello MF, DePasquale B, Pillow JW, & Buschman TJ (2019).
Nature Communications 10 (1): 3366. [link | bibtex]
-
Dependent relevance
determination for smooth and structured sparse regression
Wu Anqi, Koyejo O, & Pillow JW (2019).
Journal of Machine learning Research 20 (89): 1-43. [abs | pdf
| bibtex | code]
-
Discrete stepping and nonlinear ramping dynamics underlie
spiking responses of LIP neurons during
decision-making
Zoltowski D, Latimer KW, Yates JL, Huk AC, & Pillow JW (2019).
Neuron 102(6):1249-1258.
[abs | pdf | link
| code
| bibtex]
-
Representational structure or task structure? Bias
in neural representational similarity analysis and a Bayesian
method for reducing bias
Cai MB, Schuck NW, Pillow JW, & Niv Y. (2019).
PLoS computational biology,
15 (5), e1006299 [link
| bibtex]
-
Editorial overview: Machine
learning, big data, and neuroscience
Pillow JW & Sahani M (2019).
Current Opinion in
Neurobiology 55:iii-iv. [link
| pdf
| bibtex]
2018
-
Adaptive stimulus
selection for multi-alternative psychometric functions with
lapses
Bak Ji Hyun & Pillow JW (2018).
Journal of Vision 18(12):4, 1-25
[abs |
pdf |
link
|
bibtex |
code]
- Knöll J, Pillow JW, & Huk AC (2018).
Lawful tracking of visual motion in humans, macaques, and
marmosets in a naturalistic, continuous, and untrained behavioral
context Proc. Nat. Acad. Sci. 201807192; doi:
10.1073/pnas.1807192115. [link
| bibtex]
-
Scaling the Poisson GLM to
massive neural datasets through polynomial approximations
Zoltowski D & Pillow JW (2018).
Advances in
Neural Information Processing Systems 31, 3521-3531.
[abs |
pdf
| link
| bibtex | code]
-
Power-law efficient neural
codes provide general link between perceptual bias and
discriminability
Morais MJ & Pillow JW (2018).
Advances in Neural Information Processing
Systems 31, 5071-5080.
[abs |
pdf |
link
| bibtex
]
-
Learning a latent manifold of odor representations from
neural responses in piriform cortex
Wu Anqi, Pashkovski S, Datta RS & Pillow JW (2018).
Advances in Neural
Information Processing Systems 31, 5379-5389.
[abs |
pdf |
link
| code
| bibtex
]
-
Efficient inference for time-varying behavior during
learning
Roy NA, Bak JH, Akrami A, Brody CD, & Pillow JW (2018).
Advances in Neural Information Processing Systems
31, 5696-5706.
[abs |
pdf |
link
| bibtex | code
]
-
Model-based targeted
dimensionality reduction for neuronal population
data
Aoi M & Pillow JW (2018).
Advances in Neural Information Processing Systems
31, 6689-6698.
[abs | pdf
| link
| bibtex]
- Dethroning the Fano Factor: a flexible, model-based
approach to partitioning neural variability
Charles AS, Park Mijung, Weller JP, Horwitz GD, & Pillow JW
(2018).
Neural Computation 30(4):1012-1045. [abs | pdf | link |
bibtex | code]
-
Systematic misperceptions of 3D motion explained by Bayesian
inference
Rokers B, Fulvio JM, Pillow JW, and Cooper EA (2018).
Journal of Vision 18(23):1-23. [link |
bibtex | code]
-
Shared representational geometry across neural networks
Lu Qihong, Chen Po-Hsuan, Pillow JW, Ramadge PJ, Norman KA, &
Hasson U (2018).
arXiv:1811.11684 [cs.LG]. [link]
2017
- Combined social and
spatial coding in a descending projection from the prefrontal
cortex
Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP,
Parker NF, Bhave V, Nectow AR, Pillow JW, & Witten IB (2017).
Cell. 171(7):1663-1677. [pdf | link
| bibtex]
-
Gaussian process based nonlinear latent structure discovery in
multivariate spike train data
Wu Anqi, Roy NA, Keeley S, & Pillow JW (2017).
Advances in Neural Information Processing Systems 30, 3496-3505 [abs |
pdf | link
| code
| bibtex]
-
Capturing the dynamical repertoire of single neurons with
generalized linear models
Weber AI & Pillow JW (2017).
Neural Computation 29(12): 3260-3289
[abs | pdf | link
| code | bibtex]
-
Is population activity more than the sum of its
parts?
Pillow JW & Aoi MC (2017).
Nat. Neurosci. 20, 1196-1198. (News &
Views on Elsayed & Cunningham 2017). [link
| pdf]
-
Functional dissection of signal and noise in MT and LIP during
decision-making
Yates JL, Park Il Memming, Katz LN, Pillow JW, & Huk AC
(2017).
Nat. Neurosci. 20, 1285-1292. [abs | pdf | link
|
bibtex ]
-
No cause for pause: new analyses of ramping and stepping dynamics in LIP (Rebuttal to
Response to Reply to Comment on Latimer et
al. 2015)
Latimer KW, Huk AC, & Pillow JW (2017).
bioRxiv.
[link
| pdf]
-
Discovering event structure in continuous narrative
perception and memory
Baldassano C, Chen J, Zadbood A, Pillow JW, Hasson U, & Norman KA
(2016).
Neuron 95(3): 709-721.
[pdf
| link
| bibtex]
- Volumetric Two-photon Imaging of Neurons
Using Stereoscopy (vTwINS)
Song A*, Charles AS*, Koay SA, Gauthier JL, Thiberge SY, Pillow JW,
& Tank DW (2017).
Nature Methods 14(4): 420-460. [abs
| pdf
| link
| bibtex]
-
Computational approaches to fMRI
analysis
Cohen JD, Daw N, Engelhardt B, Hasson U, Li K, Niv Y, Norman KA,
Pillow JW, Ramadge PJ, Turk-Brown NB, & Willke TL
(2017).
Nature Neuroscience 20: 304-313. [link]
-
Stochastic filtering of two-photon imaging using reweighted l1
Charles AS, Song A, Koay SA, Tank DW, & Pillow JW (2017). IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1038-1042. [link | pdf]
- An International Laboratory for Systems and Computational Neuroscience
LF Abbott, DE Angelaki, M Carandini, AK Churchland, Y Dan, P Dayan,
S Deneve, I Fiete, S Ganguli, KD Harris, M Häusser, S Hofer, PE
Latham, ZF Mainen, T Mrsic-Flogel, L Paninski, JW Pillow, A
Pouget, K Svoboda, IB Witten, & AM Zador (2017).
Neuron 96 (6), 1213-1218. [link]
- Exploiting gradients and
Hessians in Bayesian optimization and Bayesian quadrature
Wu A, Aoi MC, & Pillow JW (2017).
arXiv:1704.00060
-
Scalable Bayesian inference for
high-dimensional neural receptive fields
Aoi MC & Pillow JW (2017).
bioRxiv 212217; doi: https://doi.org/10.1101/212217
[code]
2016
-
Adaptive optimal training
of animal behavior
Bak JH, Choi JY, Akrami A, Witten IB, & Pillow JW (2016).
eds D. D. Lee and M. Sugiyama and
U. V. Luxburg and I. Guyon and R. Garnett.
Advances in
Neural Information Processing Systems 29, 1947-1955. [abs |
pdf | bibtex | code]
-
Bayesian latent
structure discovery from multi-neuron recordings
Linderman S, Adams R, & Pillow JW (2016).
eds D. D. Lee and M. Sugiyama and
U. V. Luxburg and I. Guyon and R. Garnett.
Advances in Neural Information Processing Systems
29, 2002-2010. [abs | pdf |
bibtex | code]
-
A Bayesian method for reducing bias in neural representational similarity analysis
Cai MB, Schuck N, Pillow JW, & Niv Y (2016).
eds D. D. Lee and M. Sugiyama and
U. V. Luxburg and I. Guyon and R. Garnett. Advances in
Neural Information Processing Systems 29, 4951-4959. [link
|
bibtex]
-
Dissociated functional significance of decision-related
activity in the primate dorsal stream.
Katz LN*, Yates JL*, Pillow JW, & Huk AC (2016).
Nature 535: 285–288. [abs | link
| pdf | bibtex]
- Response to Comment on "Single-trial spike trains in parietal
cortex reveal discrete steps during decision-making."
Latimer KW, Yates JL, Meister MLR, Huk AC, & Pillow JW (2016).
Science 351(6280): 1406.
[link]
Related: [Comment
from Shadlen et al.]
-
Adaptive Bayesian methods for closed-loop
neurophysiology
Pillow JW & Park Mijung (2016).
In Closed Loop Neuroscience, ed. A. El Hady,
Elsevier: 3-18. [abs | pdf | link
| bibtex
| code]
2015
-
Convolutional spike-triggered covariance analysis for neural
subunit models
Wu A , Park Il Memming, & Pillow JW (2015).
Advances in
Neural Information Processing Systems 28, 793-801.
[abs
| pdf
| bibtex
| code]
-
Explaining the especially pink elephant
Pillow JW (2015).
Nature
Neuroscience 18: 1435–1436. (News & Views on Wei & Stocker
2015). [link
| pdf]
-
Single-trial spike trains in parietal cortex reveal discrete
steps during decision-making
Latimer KW, Yates JL, Meister MLR, Huk AC, & Pillow JW (2015).
Science 349(6244): 184-187.
[abs | pdf
| link
| SI | code]
-
Bayesian inference for
latent stepping and ramping models of spike train
data
Latimer KW, Huk AC, & Pillow JW (2015).
Chapter in Advanced State Space Methods for Neural
and Clinical Data: 160-185. [link
]
-
The equivalence of information-theoretic and likelihood-based methods
for neural dimensionality reduction
Williamson RW, Sahani M & Pillow JW (2015).
PLoS Computational Biology,
11(4):1-31. [abs
| pdf |
link
| code ]
-
Continuous psychophysics: Target-tracking to measure visual
sensitivity
Bonnen K, Burge J, Yates J, Pillow JW, & Cormack LC (2015).
Journal of Vision 15(3):14, 1-16.
[abs |
pdf |
link |
code]
2014
-
Encoding and decoding in parietal cortex during sensorimotor
decision-making
Park Il Memming, Meister, MLR, Huk AC, & Pillow JW
(2014).
Nature Neuroscience 17, 1395-1403.
[abs
| pdf
| SI
| link
| code]
-
Bayesian Entropy
Estimation for Countable Discrete Distributions
Archer E, Park Il Memming, & Pillow JW (2014).
Journal of Machine Learning Research 15 (Oct): 2833-2868.
[abs
| pdf
| link
| code
]
-
Bayesian
active learning of neural firing rate maps with transformed
Gaussian process priors
Park Mijung, Weller JP, Horwitz GD, & Pillow JW (2014).
Neural Computation
26(8):1519-1541.
[abs
| pdf
| SI
| link
| code]
-
Low-dimensional
models of neural population activity in sensory cortical
circuits.
Archer, EW, Koster U, Pillow JW, & Macke JH (2014).
Advances in Neural Information Processing Systems 27,
343-351.
[abs
| pdf ]
- Optimal prior-dependent
neural population codes under shared input noise
Grabska-Barwinska A, & Pillow JW (2014).
Advances in
Neural Information Processing Systems 27, 1880-1888.
[abs
|
pdf
]
- Inferring sparse
representations of continuous signals with continuous orthogonal
matching pursuit
> Knudson KC, Yates JL, Huk AC, Pillow JW (2014).
Advances in
Neural Information Processing Systems 27, 1215-1223.
[abs
| pdf
]
-
Inferring
synaptic conductances from spike trains with a biophysically
inspired point process model
Latimer KW, Chichilnisky EJ, Rieke F, Pillow JW (2014).
Advances in Neural
Information Processings Systems 27, 954-962.
[abs
|
pdf
]
-
Sparse Bayesian structure
learning with dependent relevance determination priors
Wu A, Park Mijung, Koyejo OO, Pillow JW (2014).
Advances in
Neural Information Processing Systems 27, 1628-1636.
[abs
| pdf
| code]
2013
-
Bayesian entropy
estimation for binary spike train data using parametric prior
knowledge
Archer E, Park Il Memming, & Pillow JW (2013).
Advances in Neural Information Processing Systems
26, 1700-1708.
[abs |
pdf
| code
]
-
Spike train entropy-rate
estimation using hierarchical Dirichlet process priors
Knudson K & Pillow JW (2013).
Advances in Neural Information Processing Systems 26, 2076-2084.
[abs |
pdf
]
-
Spectral methods for
neural characterization using generalized quadratic models
Park Il Memming, Archer E, Priebe NJ, & Pillow JW (2013).
Advances in Neural Information Processing Systems 26, 2454-2462.
[abs |
pdf
]
-
Universal models
for binary spike patterns using centered Dirichlet
processes
Park Il Memming, Archer E, Latimer K, & Pillow JW (2013).
Advances in Neural Information Processing Systems 26, 2463-2471.
[abs |
pdf
]
-
Bayesian inference for low-rank
spatiotemporal neural receptive fields
Park Mijung & Pillow JW (2013).
Advances in Neural Information Processing Systems 26, 2688-2696.
[abs |
pdf
]
-
Bayesian and
quasi-Bayesian estimators for mutual information from discrete
data
Archer E, Park Il Memming, & Pillow JW (2013).
Entropy 15(5), 1738-1755. Special Issue:
Estimating Information-Theoretic Quantities from Data.
[abs |
pdf
| link]
- Bayesian structure learning for functional
neuroimaging
Park Mijung, Koyejo O, Ghosh J, Poldrack RA, & Pillow JW. (2013).
Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS), 1-9.
[abs | pdf]
- A model-based spike sorting algorithm for removing
correlation artifacts in multi-neuron recordings
Pillow JW, Shlens J, Chichilnisky EJ, Simoncelli EP. (2013).
PLOS ONE. 8(5). 1-14.
[abs |
pdf
| link
]
2012
-
Bayesian estimation of discrete entropy with mixtures of stick-breaking
priors
Archer E, Park Il Memming, & Pillow JW (2012).
Advances in
Neural Information Processing Systems 25, eds. P. Bartlett and
F.C.N. Pereira and C.J.C. Burges and L. Bottou and
K.Q. Weinberger, 2024-2032.
[abs |
pdf]
-
Bayesian active learning with localized priors for fast receptive field
characterization
Park Mijung & Pillow JW (2012).
Advances in
Neural Information Processing Systems 25, eds. P. Bartlett and
F.C.N. Pereira and C.J.C. Burges and L. Bottou and
K.Q. Weinberger, 2357-2365.
[abs |
pdf]
-
Fully Bayesian inference for neural
models with negative-binomial spiking
Pillow JW & Scott JG (2012)
Advances in Neural Information Processing Systems (NIPS)
25, eds. P. Bartlett and F.C.N. Pereira and C.J.C. Burges and
L. Bottou and K.Q. Weinberger, 1907-1915.
[abs |
pdf]
- Modeling the impact of common noise inputs on the network activity
of retinal ganglion cells
Vidne M, Ahmadian Y, Shlens J, Pillow JW, Kulkarni J, Litke
AM, Chichilnisky EJ, Simoncelli EP, & Paninski L (2012).
J Comput Neurosci, 33(1):
97-121 [abs |
pdf |
link]
2011
-
Bayesian spike-triggered covariance
Park Il Memming & Pillow JW (2009).
Advances in Neural Information Processing Systems (NIPS) 24,
eds. Shawe-Taylor, J.; Zemel, R.; Bartlett, P.; Pereira, F. &
Weinberger, K., 1692-1700
[abs
| pdf]
-
Active learning of neural response
functions with Gaussian processes.
Park Mijung, Horwitz GD, & Pillow JW (2011).
Advances in
Neural Information Processing Systems (NIPS) 24,
eds. Shawe-Taylor, J.; Zemel, R.; Bartlett, P.; Pereira, F. &
Weinberger, K., 2043-2051
[abs |
pdf]
- Receptive field inference with localized priors
Park Mijung & Pillow JW (2011).
PLoS Computational Biology 7(10), 1-16 [abs |
pdf |
SI
| link
| code]
- The 8th annual computational and
systems neuroscience (Cosyne) meeting
Histed MH & Pillow JW (2011).
Neural Systems & Circuits 1:8, 1-3 (Invited meeting review) [
link]
- Model-based decoding, information estimation, and
change-point detection techniques for multi-neuron spike
trains
Pillow JW, Ahmadian Y, & Paninski L (2011).
Neural Computation 23:1-45. [abs
| pdf]
- Efficient Markov
Chain Monte Carlo Methods for Decoding Neural Spike Trains
Ahmadian Y, Pillow JW, & Paninski L (2011).
Neural Computation 23:46-96 [abs | pdf]
2010
-
Heterogeneous response dynamics in retinal ganglion cells: the
interplay of predictive coding and adaptation
Nirenberg S, Bomash I, Pillow JW, & Victor JD (2010)
J Neurophysiol 103: 3184-3194. [abs |
pdf |
link]
2009
-
Time-rescaling methods for the estimation
and assessment of non-Poisson neural encoding models
Pillow JW. (2009).
Advances in
Neural Information Processing Systems (NIPS) 22 eds. Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. MIT
Press. 1473-1481.
[abs |
pdf]
- Characterizing
neural dependencies with copula models
Berkes P, Wood F, and Pillow JW (2009).
in Advances in Neural Information Processing Systems 21 eds. D. Koller, D. Schuurmans, Y. Bengio, L. Bottou. 129-136.
[abs |
pdf]
2008 and earlier
- Spatio-temporal correlations and
visual signaling in a complete neuronal population
Pillow JW, Shlens J, Paninski L, Sher A, Litke AM,
Chichilnisky EJ, Simoncelli EP (2008).
Nature 454: 995-999.
[abs |
pdf |
SI
| code
]
- Neural characterization in partially
observed populations of spiking neurons
Pillow JW and Latham P (2008)
Advances in Neural Information
Processing Systems 20. eds. J.C. Platt, D. Koller, Y. Singer, S. Roweis.
1161-1168.
[abs |
pdf]
- Likelihood-based approaches to modeling the neural
code. Pillow JW (2007).
In Bayesian Brain: Probabilistic Approaches to Neural Coding,
eds. K Doya, S Ishii, A Pouget & R Rao. MIT
press. 53-70.
[abs |
pdf]
-
Statistical models for
neural encoding, decoding, and optimal stimulus design
Paninski L, Pillow JW, and Lewi J (2007). In
Computational Neuroscience: Theoretical Insights Into Brain Function,
eds. P Cisek, T Drew, & J Kalaska.
[abs |
pdf]
-
Dimensionality reduction in neural
models: an information-theoretic generalization of spike-triggered average and
covariance analysis
Pillow JW and Simoncelli EP (2006).
Journal of Vision, 6(4):414-428.
[abs |
pdf |
code]
-
Spike-triggered neural characterization
Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006).
Journal of Vision,
6(4):484-507.
[abs |
pdf |
code]
-
Prediction and Decoding of Retinal Ganglion Cell Responses with a
Probabilistic Spiking Model
Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky
EJ. (2005).
Journal of Neuroscience 25:11003-11013.
[abs |
pdf |
code]
-
Comparing integrate-and-fire like models given intracellular and extracellular
data
Paninski L, Pillow JW, Simoncelli EP. (2005).
Neurocomputing 65:379-385. [abs | pdf]
- Characterization of neural responses with stochastic
stimuli
Simoncelli EP, Paninski L, Pillow JW, Schwartz O. (2004).
In M Gazzaniga (ed.) The Cognitive Neurosciences, 3rd edition. MIT Press. [abs
| pdf | code]
-
Maximum
likelihood estimation of a stochastic integrate-and-fire neural
encoding model
Paninski L, Pillow JW, Simoncelli EP. (2004).
Neural Computation, 16:2533-2561.
[abs |
code]
- Maximum Likelihood
Estimation of a Stochastic Integrate-and-Fire Neural Model
Pillow JW, Paninski L, Simoncelli EP. (2004)
Advances in
Neural Information Processing Systems, eds S. Thrun, L. Saul and
B. Schölkopf, vol 16, May 2004, MIT Press, Cambridge MA.
[abs |
pdf]
- Biases in white noise analysis due
to non-Poisson spike generation
Pillow JW & Simoncelli, EP. (2003).
Neurocomputing. 52-54:109-115.
[abs |
pdf]
- Perceptual Completion across the
Vertical Meridian and the Role of Early Visual Cortex
Pillow JW & Rubin N. (2002).
Neuron
33(5):805-13.
[abs |
pdf]
- A Probabilistic Network Model of
Population Responses
Zemel RS & Pillow JW (2002).
In R Rao, B Olshausen and M Lewicki (eds.) Probabilistic
Models of the Brain. MIT Press.
[abs |
pdf]
- Encoding multiple orientations in a
recurrent network
Zemel RS & Pillow JW. (2000).
Neurocomputing, 32-33:609-616.
[abs |
pdf]
|
|