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A B S T R A C T   

Background: The past decade has seen a multitude of new in vivo functional imaging methodologies. However, the 
lack of ground-truth comparisons or evaluation metrics makes the large-scale, systematic validation vital to the 
continued development and use of optical microscopy impossible. 
New-method: We provide a new framework for evaluating two-photon microscopy methods via in silico Neural 
Anatomy and Optical Microscopy (NAOMi) simulation. Our computationally efficient model generates large 
anatomical volumes of mouse cortex, simulates neural activity, and incorporates optical propagation and 
scanning to create realistic calcium imaging datasets. 
Results: We verify NAOMi simulations against in vivo two-photon recordings from mouse cortex. We leverage this 
in silico ground truth to directly compare different segmentation algorithms and optical designs. We find modern 
segmentation algorithms extract strong neural time-courses comparable to estimation using oracle spatial in
formation, but with an increase in the false positive rate. Comparison between optical setups demonstrate 
improved resilience to motion artifacts in sparsely labeled samples using Bessel beams, increased signal-to-noise 
ratio and cell-count using low numerical aperture Gaussian beams and nuclear GCaMP, and more uniform spatial 
sampling with temporal focusing versus multi-plane imaging. 
Comparison with existing methods: NAOMi is a first-of-its kind framework for assessing optical imaging modalities. 
Existing methods are either anatomical simulations or do not address functional imaging. Thus there is no 
competing method for simulating realistic functional optical microscopy data. 
Conclusions: By leveraging the rich accumulated knowledge of neural anatomy and optical physics, we provide a 
powerful new tool to assess and develop important methods in neural imaging.   

1. Introduction 

The endeavor to understand neural systems has spurred rapid 
development of technology that can record brain activity at ever larger 
scales (Ogawa et al., 1990; Jun et al., 2017; Macé et al., 2011) and 
higher precision (Kodandaramaiah et al., 2012; Briggman et al., 2011; 
Bock et al., 2011). One such class of technology, functional optical mi
croscopy, has empowered researchers to explore neural dynamics from 
synapse (Yuste and Denk, 1995; Lu et al., 2017) to large brain regions 
(Grinvald et al., 1986; Scott et al., 2018). Specifically, two-photon mi
croscopy (TPM) combined with in vivo calcium imaging (Grienberger 

and Konnerth, 2015; Denk et al., 1990; Botcherby et al., 2006; Tian 
et al., 2012; Helmchen and Denk, 2005; Stosiek et al., 2003) has enabled 
the simultaneous recording of unprecedented numbers of neurons (over 
9000) at cellular resolution (Weisenburger et al., 2019; Pachitariu et al., 
2017). 

Although TPM has found widespread use (Harvey et al., 2009; 
Rickgauer et al., 2014; Dombeck et al., 2007), many available experi
mental techniques and data processing algorithms lack appropriate, 
systematic assessment (Pnevmatikakis, 2019; Stringer and Pachitariu, 
2019). This deficit can result in inaccurate interpretation of neural data 
(Gauthier et al., 2018). A systematic comparison of techniques would 

Contents lists available at ScienceDirect 

Journal of Neuroscience Methods 

journal homepage: www.elsevier.com/locate/jneumeth 

https://doi.org/10.1016/j.jneumeth.2021.109173 
Received 27 November 2020; Received in revised form 21 March 2021; Accepted 24 March 2021   

www.sciencedirect.com/science/journal/01650270
https://www.elsevier.com/locate/jneumeth
https://doi.org/10.1016/j.jneumeth.2021.109173
https://doi.org/10.1016/j.jneumeth.2021.109173
https://doi.org/10.1016/j.jneumeth.2021.109173
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2021.109173&domain=pdf


Journal of Neuroscience Methods 358 (2021) 109173

2

allow researchers to make better informed decisions about equipment 
and data-processing. 

For instance, while imaging deeper into scattering tissue with TPM 
can benefit from decreasing the excitation numerical aperture (NA) 
(Helmchen and Denk, 2005), it is unknown how this benefit interacts 
with other optical or experimental design choices, such as adaptive 
optics (Rueckel et al., 2006; Ji et al., 2012) or dendritic imaging (Svo
boda et al., 1997; Murayama et al., 2009). Additionally, while many 
algorithms have been designed to extract the neural activity traces and 
spatial profiles from TPM data (Mukamel et al., 2009; Maruyama et al., 
2014; Pnevmatikakis et al., 2013, 2014; Vogelstein et al., 2009; Yaksi 
and Friedrich, 2006; Pachitariu et al., 2013; Apthorpe et al., 2016; Jon 
et al., 2013; Pnevmatikakis and Paninski, 2013; Petersen et al., 2017; 
Reynolds et al., 2017; Inan et al., 2017; Mishne et al., 2018; Mishne and 
Charles, 2019), few options exist to assess the fidelity of the inferred 
segmentation beyond comparisons to manually annotated data (Theis 
et al., 2015; Prada et al., 2018; Gauthier et al., 2018). 

In both cases assessment suffers from a lack of ground truth data, the 
gold standard of which requires simultaneous intracellular electro
physiological and TPM recordings (Chen et al., 2013; Theis et al., 2016). 
Such experiments are both difficult to perform and limited to only a few 
neurons and imaging conditions. The small number of neurons from 
such experiments limits the assessment scope by biasing towards cells 
that are in focus, fire often, and fluoresce brightly. This problem is 
further exacerbated as assessing multiple imaging parameters requires 
recordings under each imaging condition, greatly increasing the cost of 
collecting such data. 

Alternatively, subjective ground truth can be obtained from TPM 
recordings via manual annotation (Berens et al., 2017). Human labels, 
however, do not provide access to the underlying neural spiking, are 
limited by the same signal-to-noise ratio (SNR) that limit demixing al
gorithms, and may also bias analysis against dim or sparsely firing 
neurons. These same issues also affect comparisons using simultaneous 
conventional TPM recordings to test novel imaging conditions (Song 
et al., 2017; Nöbauer et al., 2017). 

In place of collecting ground truth data, simulations can provide rich, 
controlled testing data. Such approaches have benefited other imaging 
modalities, such as fMRI (Welvaert et al., 2011). Simulation-based ap
proaches, however, often suffer from being either too simple or too 
complex. While simple simulations are computationally efficient, they 
often only create realizations of the model being tested rather than the 
actual underlying phenomenon (Pnevmatikakis et al., 2016; Weisen
burger et al., 2017). In contrast, complex simulations are instead limited 
in computation or have a different scope. Some existing simulations 
capture too much detail and are severely limited computationally, 
requiring high-performance computing to simulate more than small 
volumes with a handful of neurons (Abdellah et al., 2017; Markram 
et al., 2015). Others aim to answer different scientific questions, for 
example understanding neural connectivity (Egger et al., 2012, 2014), 
and include some details that are not relevant to TPM, but not other 
important aspects that are relevant, such as vasculature. For these rea
sons, existing methods do not provide plausible and computationally 
efficient simulations useful for large-scale functional imaging. 

To assess TPM methods with realistic and computationally efficient 
simulations, we present the Neural Anatomy and Optical Microscopy 
(NAOMi) simulator. Our framework leverages simple, but flexible, 
models of neural tissue to efficiently create large volumes with thou
sands of neurons on standard workstations (Fig. 1). Arbitrary patterns of 
spiking activity can be generated for this population, which our frame
work then transforms into realistic fluorescence traces separately for 
somas as well as processes. A light model approximates laser propaga
tion and scattering throughout different locations of the simulated tis
sue. These components are combined in a simulated scanning procedure 

that incorporates important imaging effects, such as sample motion. We 
describe the simulation model, which has a publicly available software 
implementation,1 and provide parameters for simulating two-photon 
GCaMP (Chen et al., 2013) recordings in layer 2/3 of mouse visual 
cortex. We used these simulated datasets to evaluate several automated 
calcium imaging demixing algorithms. Finally, we generated several 
more datasets to compare the performance of standard and specialized 
TPM experimental setups under a variety of sample conditions. 

2. Results 

2.1. Simulation design 

Generating realistic imaging data useful for honest assessment of a 
spectrum of techniques hinges on accurate, efficient simulations of 
anatomical volumes at the scale of optical imaging (Fig. 1A). Our 
anatomical simulation starts by constructing a scaffolding of vasculature 
with three parts: surface vessels, diving vessels, and capillaries (Blinder 
et al., 2013) (Table 1, Sup. Fig. 1, 2, 3, See Methods). Next, neurons are 
placed throughout the volume. Somas are placed first, and then den
drites and axons (Xu and Mould, 2009) are grown from the cell bodies 
(Sup. Fig. 4, 5, 6, 7, See Methods). Statistical models of neurons and 
process paths ensure variation in cell shapes and were tuned using 
morphological data from electron microscopy (EM) data (Braitenberg 
and Schüz, 1998) and optical microscopy (Jiang et al., 2015; Allen, 
2015; Benavides-Piccione et al., 2004) (Table 1, See Methods). 

The next step in simulating TPM data is to augment each generated 
neuron with realistic fluorescence activity (Fig. 1B). Spiking activity for 
each neuron is either pre-defined or is generated using models that 
output correlated, bursting population activity based on models of 
neural connectivity (Watts and Strogatz, 1998; Downes et al., 2012; 
Guzman et al., 2016; Schroeter et al., 2015; Greenberg et al., 2018) (Sup. 
Fig. 8, see Methods). Next, the known non-linear calcium decay process 
simulates the dynamic concentration of calcium ions (Helmchen and 
Tank, 2015; Lutcke et al., 2013). This two compartment model describes 
separate dynamics for the cell bodies and the neurites, both driven by 
the same spike trains. As in related work, a protein-specific double 
exponential model modulates the calcium concentrations to create 
bound calcium concentrations with appropriate onset and offset 
time-constants (Lutcke et al., 2013; Deneux et al., 2016). Finally, the 
bound calcium concentrations are converted to fluorescence values 
using the Hill-equation fit to fluorescence measurements (Badura et al., 
2014; Sun et al., 2013) (Table 1, Sup. Fig. 9, 10 see Methods). 

The next step in the simulation is to estimate the optical properties of 
the specified microscope configuration within the generated tissue 
(Fig. 1C). The scattering nature of brain tissue substantially affects light 
propagation through it, resulting in an abberated point-spread function 
(PSF) and decreased optical performance. We approximate these com
plex effects by performing wavefront propagation of a specified beam 
shape (i.e. Gaussian or Bessel beams (Zipfel et al., 2003; Thériault et al., 
2014)) through a generated volume of refractive index shifts (Sup. 
Fig. 11, 12, See Methods), generating simulated PSFs across the volume 
(e.g., Sup. Fig. 13). Comparisons of axial spread in simulated and real 
vasculature imaging of mouse neocortex validate the PSF abberation 
spreads (Sup. Fig. 14, see Methods). We find the axial spread 330 μm 
deep into tissue of simulated capillaries (9.98 ± 3.8 μm) and real 
(11.19 ± 2.31 μm) capillaries with 830 nm excitation light to be com
parable and have similar distributions. These results are consistent with 
another estimate using capillary sources for estimating the axial spread 
of the PSF with 1280 nm excitation light (Kobat et al., 2011). 

The weight of the simulated PSF across different locations of the 
simulated volume forms an occlusion mask, representing inhomogeneity 
of optical performance across the sample. This occlusion mask is also 

1 Code available at https://bitbucket.org/adamshch/naomi_sim/src/master/. 
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modulated by an estimate of the absorption of emitted light through 
blood vessels and the neural volume as a function of position. 

The final scanning module combines the outputs of the anatomical, 
light, and activity modules to produce images on a frame-by-frame basis 
(Fig. 1D). The fluorescence activity and occlusion mask modulate the 
anatomical volume, which is convolved with the simulated PSF to pro
duce raw, noiseless, illumination images. Sub-pixel line-by-line offsets, 
representing brain motion, are applied prior to spatially resampling to 
the desired image resolution and applying the measurement noise 
model, modulated by the power level (Sup. Fig. 15). Measurement noise 
is simulated by per-pixel Poisson sampling of photons counts at the 
photo-multiplier tube (PMT) and converting these counts into electrical 
measurements (Rademacker, 2002; Hamamatsu, 2019) via PMT photon 
and electronics amplification distributions (Sup. Fig. 11, see Methods). 

This process includes bleed-through across pixels from the amplifier’s 
temporal response kernel (Sup. Fig. 16, see Methods). This procedure is 
performed independently for each frame, and captures the complex, 
non-Gaussian noise profile inherent in TPM data. 

2.2. Comparison of simulated data to real data 

To validate the simulator holistically, we evaluated the overall 
simulation output against recordings from mouse V1 (Fig. 2). We 
generated a 500 μm × 500 μm × 100 μm volume and scanned a single 
plane in the volume with a 0.6-NA Gaussian point-spread function over 
20,000 frames at 30 Hz sampling and 40 mW laser power, comparable to 
parameters in a recorded dataset obtained from mice expressing 
GCaMP6f being exposed to a set of visual stimuli (see Methods). 

Fig. 1. Block diagram of NAOMi simulator. A: 
Neural volume generation process. Vasculature 
is generated throughout the volume, followed 
by cell bodies and finally dendrites and axons 
are grown. B: Network activity generation. The 
spiking activity for each neuron is simulated 
and converted into calcium ([C]), bound cal
cium ([CB]), and fluorescence (F) for a chosen 
indicator. C: Light propagation model. An op
tical wavefront corresponding to particular 
microscope optics is propagated through a 
simulated scattering volume, generating a 
spatially changing scattered point-spread func
tion (top, See Sup. Fig. 13) for creating relative 
intensity masks (bottom). D: Scanning and 
image formation. The volume, modulated by 
the simulated activity, is scanned using the 
output of the light model with motion and noise 
sources from a model of the light collection, 
amplification, and digitization process.   
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The simulated videos and recorded videos visually share many of the 
same features (Sup. Video 1), including bright, sparse transients of 
fluorescence across the whole image. The overall mean images (average 
of frames across time; Fig. 2A) both show distinct cell bodies along with 
muted processes that have their intensity modulated by scattering from 
blood vessels and other tissue elements. Histograms of video pixel values 
(Fig. 2A,B) feature heavy right tails corresponding to neural activity and 
contain peaks at zero corresponding to zero-photon pixels. 

The neural activity distribution for individual pixels was explored by 
comparing the relative strength of firing activity across the field of view 
(FOV). The distribution of maximum activity (maximum ΔF/F over 
20,000 frames) for all pixels (Fig. 2C) for each of the two videos peaks at 
2 with a slight heavy right tail, which corresponds to neurons that fired 
large transients within the videos. Other statistics, such as the distri
bution of values in the mean image, the standard deviations over all 
pixels, and measures of activity such as the ratios of maximum to median 
fluorescence values also match well (Sup. Fig. 17, 18). 

The global frequency content of the two videos was estimated with 
the 2D discrete Fourier transforms of the mean images (Fig. 2D). The 
Fourier transforms of both videos depict very similar features, such as 
increased frequency content along the fast- and slow-scanning axes 
resulting from the sequential pixel bleed-through and residual line-by- 
line motion artifacts. Additionally, the frequency fall-off (Fig. 2E) for 
both the real and simulated data display the same decay. Finally, a plot 
of the effective dimensionality of both videos via Principal Component 
Analysis (PCA; Fig. 2F) shows both qualitative similarities between the 
spatial principal components (PCs) and quantitative similarities 

between the distribution of variance explained for the leading PCs on 
small patches of videos. 

All analyses were repeated for a second dataset from a transgenic 
Thy1-GCaMP6f GP5.3 mouse, which demonstrated similar fits across the 
same comparison metrics (Sup. Fig. 19). Another metric of interest is the 
spatial decay of temporal correlations to neural activity from individual 
fluorescing components (Pachitariu et al., 2017). Comparisons between 
visual cortical data and NAOMi simulations show similar decays and 
long-scale correlations (Sup. Fig. 20). We also tested the robustness of 
time-traces to dendritic spikes under these simulated conditions (Sup. 
Fig. 21). Finally, we analyzed the robustness of the simulation to the 
anatomical parameters. Specifically we perturbed two main anatomical 
parameters: the cell size and cell density. We found that in terms of mean 
image statistics and imaging pixel histograms, cell size had a more 
pronounced effect with cell density minimally affecting the overall 
simulation output (Sup. Fig. 22, 23). The primary reason for the 
increased effect of cell size as compared to cell density is due to the 
higher average fluorescence levels in larger cells with realistic PSFs. This 
effect greatly increases the maximum levels of fluorescence in a way that 
two smaller cells does not achieve. 

2.3. Evaluation of automated segmentation 

We evaluated TPM techniques using NAOMi by analyzing the per
formance of automated demixing algorithms and leveraging the ground 
truth information available. We applied three common algorithms — 
PCA/ICA (Mukamel et al., 2009), constrained non-negative matrix 

Table 1 
Parameters used for in-silico simulation of neural activity in layer II/III of mouse primary visual area V1. Values for each parameter were either directly found in the 
literature or estimated from published data (entries with a †). The third column indicates whether these parameters were set directly in NAOMi, or were fit indirectly by 
setting other simulation parameters. In the latter cases, the measured values from a simulated NAOMi volume are shown for comparison, indicating that the simulated 
anatomy matches measured anatomical statistics.  

Parameter Lit. Val. Fit type NAOMi 
Val. 

Unit Refs 

Anatomical parameters 
Neural density 9.20E+04 Direct – mm− 3  Braitenberg and Schüz (1998) 

Fraction vasculature 0.01–0.04 Indirect 0.032 – Braitenberg and Schüz (1998), Tsai et al. (2009), Pathak et al. (2011) 
Fraction cell bodies 0.12 Indirect 0.135 – Braitenberg and Schüz (1998) 
Fraction neuropil 0.84 Indirect 0.833 – Braitenberg and Schüz (1998) 
Fraction dendrites* 0.294 Indirect 0.223 – Braitenberg and Schüz (1998) 
Fraction other (fluorescing)* 0.401 Indirect 0.33 – Braitenberg and Schüz (1998) 
Fraction other (not 

fluorescing)* 
0.293 Indirect 0.28 – Braitenberg and Schüz (1998), Hrabětová and Nicholson (2007) 

Vessel radius (capillary) 2.00 Direct – μm  Blinder et al. (2013) 
Vessel radius (penetrating) 10 (9,11) Direct – μm  Blinder et al. (2013) 
Vascular density 1-3 Indirect 2 % Tsai et al. (2009), Braitenberg and Schüz (1998), Blinder et al. (2013), Pathak et al. (2011) 
Penetrating vessel density 30† Direct – mm− 2  Blinder et al. (2013) 

Somatic volume* 1.80E+03† Indirect 1.80E+03 μm3  Lee et al. (2016) 

Nuclear volume* 800† Indirect 800 μm3  Lee et al. (2016) 

Cytoplasm volume* 1000† Indirect 1000 μm3  Lee et al. (2016) 

Basal dendrite diameter 0.7 Direct – μm  Rall (1959), Stuart et al. (2016) 
Basal dendrite length 100–160† Indirect 105 μm  Jiang et al. (2015), Allen (2015), Benavides-Piccione et al. (2004) 

Apical dendrite diameter 1–2 Direct – μm  Louth et al. (2018) 
Axonal diameter 0.3 Direct – μm  Braitenberg and Schüz (1998) 
Fluorescence parameters 
GCaMP6f binding affinity Kd  290 Direct – nMol Badura et al. (2014) 

Baseline Ca2+ concentration  50.00 Direct – nMol Lutcke et al. (2013) 

Ca2+ binding ratio ks  100,110 Direct 110 AU Helmchen and Tank (2015), Koester and Sakmann (2000), Kaiser et al. (2001), Helmchen 
et al. (1996) 

Ca2+ diffusion constant γ  1800 Data fit 292.3 s− 1  Helmchen and Tank (2015), Koester and Sakmann (2000), Cox et al. (2000) 

Ca2+ axon diffusion constant γ  2800 Direct – s− 1  Helmchen and Tank (2015), Koester and Sakmann (2000), Kaiser et al. (2001) 

GCaMP6f Hill eqn. exponent 
nh  

2.7 Direct – AU Badura et al. (2014) 

GCaMP6f Hill eqn. amplitude 25.2 Direct – F Badura et al. (2014) 
Indicator concentration 10-200 Direct 10 μM  Lutcke et al. (2013), Zariwala et al. (2012), Huber et al. (2012) 
*Adjusted for shrinkage: 31% Korogod et al. (2015), †Value estimated from data in the literature   
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factorization (CNMF) (Pnevmatikakis et al., 2014), and Suite2p 
(Pachitariu et al., 2017) — to 20,000 frames simulated from a 500 μm ×
500 μm × 100 μm volume with 1 μm sampling at 30 Hz scanning using a 
0.6-NA Gaussian excitation numerical aperture (NA) at 40 mW average 
power. For both the CNMF and Suite2p algorithms there exist multiple 
versions. Here, we ran the 2017 releases of each code-base and all ref
erences to these algorithms indicate the 2017 versions. The ground truth 
consisted of the spatial profiles of each individual neuron and compo
nent within the volume and their individual fluorescence traces. 

Each algorithm returned a set of demixed time traces and corre
sponding spatial profiles (Tables 6- 8, Sup. Fig. 24- 27). Overall CNMF, 
Suite2p and PCA/ICA isolated 1091, 661, and 265 components, 
respectively, out of a total of 8,117 possible fluorescing components. 
Comparisons to the ground truth traces, based on a combined Pearson’s 
correlation cut-off of 0.1 on the time-traces and a 50% pixel overlap, 
reveal which components represented actual cells in the volume (Sup. 
Table 6). A pairing is considered to be a “strong pairing” if the corre
lation exceeded 0.5 (Fig. 3A,B, Sup. Fig. 28, 29). These correlation 
values account for all aspects of how well the estimated traces match the 
true time-courses, including missed transients and false transients from 
other components (e.g., neuropil; Fig. 3C). 

Of the paired profiles, some were doubled, i.e. multiple algorithmi
cally discovered profiles matched to different portions of the same 
simulated cell (Sup. Fig. 30, Sup. Table 6). Accounting for doubling, 
CNMF, Suite2p, and PCA/ICA found 303, 292, and 137 unique cells at 
the ≥ 0.5 correlation level. Interestingly, while CNMF found the most 
distinct components (i.e., before accounting for cells found with multi
plicity), it only found approximately the same number of unique cells as 
Suite2p, and both have a lower rate of found true cells than PCA/ICA 
(Fig. 3D). Furthermore, comparisons of individual cells found (Sup. 
Tables 7, 8) show that different methods found non-overlapping sets of 
cells (Sup. Fig. 31). For example, CNMF and Suite2p only agreed on 273 
of the ≈ 300 cells (Fig. 3A, Tab. 7). 

While these figures may seem small compared to the 8117 total 

sources, not all fluorescence sources are visible above the noise level. 
The vast majority of sources within the simulation do not have somas 
that intersect the imaging plane, and the signal is primarily dendritic or 
axonal. To explore this effect with NAOMi, we computed auxiliary time- 
traces from the raw, noisy video using the “ideal” ground-truth spatial 
profiles to obtain the profile-aware least-squares (PALS) time trace es
timates (see Methods). Due to the video signal-to-noise ratio (SNR), 
these estimates yielded only 415 timecourses accurately matched at the 
≥ 0.5 correlation level (Fig. 3D, Sup. Table 8) indicating that the gap 
induced by simultaneous estimation of spatial profiles is not overly 
large. In fact, the inherent denoising in some algorithms allows some 
cells’ time courses to be estimated with even higher fidelity than the 
traces derived from the ideal spatial profiles (e.g. CNMF identified 8 
cells at the r > 0.5 level that the ideal profiles produced lower correla
tion values for; Sup. Table 8). To further explore the abilities of algo
rithms to extract the stronger somatic traces, we restricted the above 
analysis to include only components with somas close to the imaging 
plane and found similar relative performances between the three algo
rithms (Sup. Table 12-17). 

One challenge in interpreting the results of automated demixing is 
that, sans ground-truth, it is difficult to determine if a source is a true cell 
or an artifact. Instead, sorting components based on metrics such as 
overall fluorescence levels can be used. Varying one such criterion — a 
threshold on the maximum fluorescence — to classify true and artifact 
sources results in receiver-operator characteristic (ROC) curves that 
compare the number of strongly paired components kept (true posi
tives), to the number of weakly paired or unpaired components kept 
(false positives). These curves show that while PCA/ICA obtained the 
fewest components overall, CNMF and Suite2p found bright artifacts at 
much higher rates (Fig. 3E, Sup. Fig. 32). Thus while we conclude that 
Suite2p and CNMF tend to perform comparably, both finding more 
correct profiles than PCA/ICA. Our study does indicate, however, that 
appropriate use of either depends on filtering out artifactual profiles 
from the results. 

Fig. 2. Comparison of simulated data to recordings of mouse V1 L2/3 using GCaMP6f. A: The mean image for mouse V1 recordings and simulated data. B: Pixel value 
distributions across the full videos display bimodal peaks and a right log-linear tail. C: Distribution of the maximum ΔF/F values across all pixels in the FOV match 
between the simulated and real V1 data. D: The spatial frequency content in the mean simulated image captures the qualities of the real data. Both the spread of 
frequencies and the tendency for high-frequency components in the fast- and slow- scan directions that result from line-by-line motion and pixel bleed-through are 
captured. E: The overall contributions at different spatial frequencies to the mean activity matches between the recording and simulation. F: Principal component 
decompositions for both the real and simulated data exhibit similar decays in the variance explained per component. The resulting spatial principal components are 
qualitatively similar. 
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One benefit of the NAOMi simulator is that we can easily explore 
how optical parameters effect algorithmic performance. We replicated 
the above analysis with a 2x increase in laser power (80 mW), keeping 
the volume and neural activity constant. Ideally this power boost would 
illuminate additional cells, as weaker and more sparsely firing cells 
would be more distinguishable. We found that all algorithms returned 
more unique components at the r ≥ 0.5 level, with 424 for CNMF, 358 
with Suite2p and 264 for PCA/ICA: a 39.93%, 22.6%, and 92.7% 
improvement (Sup. Table 9), respectively. Interestingly, despite the gain 
in absolute numbers of cells found, there was negligible improvement in 
rate of correctly found cells (true positive rate), and some ROC curves 
reduced in area, indicating that fluorescence magnitudes became less 
sufficient to differentiate true cells from artifacts (Sup. Fig. 32). 

We note that in addition to laser power, other factors such as the 
sampling resolution, numerical aperture and neuropil strength also in
fluence the ability to detect neural activity. NAOMi enables exploration 
of all these aspects. For example we find 1) a sharp cut-off in the ability 
to accurately detect components when sampling at intervals larger than 
3 μm (Sup. Fig. 33) 2) an improvement in the ability to detect smaller 
burst sizes in the ΔF/F values with neuropil correction as in Suite2P 
(Pachitariu et al., 2017) (Sup. Fig. 34), 3) a steady decay in signal 
strength per component as a function of NA, reaching a critical reduction 
of signal at NA ≈ 0.4 (Sup. Fig. 35), 4) a strongly limited ability to 

extracting activity traces at deep cortical layers (650 μm) with TPM with 
GCaMP (Sup. Fig. 36), and 5) evidence of increased contamination from 
dendrites and other cells at a lower imaging NA for a densely labeled 
sample (Sup. Fig. 37). While we focused on demixing alogrithms here, 
we note that NAOMi can be used to assess other algorithmic methods, 
such as baseline estimation (Sup. Fig. 38, See Methods). 

2.4. Evaluation of TPM optical configurations 

The ability to modify optical parameters and sample expression 
patterns allowed for direct assessment of the trade-offs between mi
croscope configurations across sample conditions. We applied this new 
mode of assessment to perform three head-to-head comparisons: 1) 
imaging of sparsely labeled tissue using Bessel (Lu et al., 2017) vs. 
high-NA Gaussian beams (Fig. 4A-C), 2) imaging of nuclear labeled 
tissue using high-NA vs. low-NA (axially extended) Gaussian beams 
(Fig. 4D-F), and 3) volumetric imaging of densely labeled tissue using 
multiplane Gaussian (Grewe et al., 2011) vs. temporally-focused beams 
(Prevedel et al., 2016) (Fig. 4G-I). In all experiments power levels were 
tuned to equalize total signal integrated over a neuronal volume. 

In our first comparison we simulated TPM recordings of a sparsely 
labeled (10% neurons expressing GCaMP6f) 500 μm × 500 μm FOV of 
mouse cortex using both conventional high-resolution TPM with a 

Fig. 3. Comparison of popular calcium imaging segmentation algorithms using synthetic data generated using NAOMI. A: Left: Overlapped spatial profiles from 
CNMF (yellow), Suite2p (blue), and PCA/ICA (green) with a high (r ≥ 0.5) Pearson’s correlation. White profiles correspond to profiles found by all three algorithms. 
Right: Simulation-derived profiles with highly correlated PALS time traces (r ≥ 0.5, orange) are compared to profiles found by any automated algorithm (cyan). 
Spatial profiles found by both any algorithm and with highly correlated PALS time traces are depicted in gray. B: Strongly paired (r ≥ 0.5) spatial profiles from each 
algorithm displayed separately. C: Example timecourses estimated by each of the segmentation algorithms as compared to the ideal profile assisted least-squares 
(PALS) estimated timecourse and the ground truth timecourse. D: Histogram of correlation values of estimated timecourses to the ground truth timecourses for 
each match spatial profile. E: Spatial profiles from CNMF separated into strongly paired (r ≥ 0.5), weakly paired (r < 0.5) or unpaired. F: ROC curves for strongly 
paired (r ≥ 0.5) spatial profiles sorted by their peak fluorescence and profile weight. 
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Gaussian PSF (0.6 NA) and extended depth-of-field TPM using a Bessel 
beam (0.4 NA, 60 μm long) (Lu et al., 2017). As shown previously, Bessel 
beam imaging resulted in excitation throughout the whole volume, 
resulting in more uniform excitation of neurons (Fig. 4C) and more 
neurons recorded with high signal fidelity. Another consequence of the 
uniform excitation observed using Bessel beams is an increased robust
ness to axial motion. To verify that NAOMi captures this aspect, we 
clustered the extracted time-traces from Bessel and Gaussian imaging 
into three groups (Fig. 4B). The sorted correlation matrices show a 
strong motion-induced artifact only for Gaussian imaging, suggesting a 
reduced influence of motion artifacts on time-trace estimation using 
Bessel beams. 

Our second comparison tested the performance of nuclear labeled 
TPM, which has been extensively used for larval zebrafish and C. elegans 
TPM (Nguyen et al., 2016; Akerboom et al., 2012) but not in mouse 
brain imaging, in a 500 μm × 500 μm FOV of mouse cortex. We imaged 
this simulated tissue using Gaussian beams of two excitation NAs: 0.2 
and 0.6 (Fig. 4D) and assumed equal brightness for nuclear indicators. 
Similar to the extended depth-of-field Bessel beam, the 0.2 NA excitation 
resulted in sampling more neurons from the volume and improved 
overall imaging performance (Fig. 4E,F). As the imaging volume is 
mostly non-fluorescing with nuclear-labeling, distinguishing individual 
cells is straightforward even with an extended depth-of-field. Because 
nuclei are several times larger than the lateral resolution of the 0.2 NA 
excitation beam, there are fewer advantages to switching to a Bessel 
beam setup and low NA imaging is more power efficient. A recently 
developed technique for soma-targeting of GCaMP (Chen et al., 2020) 

provides an alternative means to nuclear-labeling for improving labeling 
in an animal for somatic imaging. We generated a somatically labeled 
volume and simulated datasets at two excitation NAs similarly to the 
nuclear labeled case (Sup. Fig. 39) and found similar advantages to using 
a low excitation NA for TPM. 

In addition to comparing NA values across nuclearly labeled samples, 
we also compared signal levels across a variety imaging NA values for 
cytosolically labeled TPM in L2/3 mouse cortex (Sup. Fig. 35). This 
analysis shows constant total overall integrated value (i.e., signal level) 
across a number of NA, which suggests little loss of power efficiency by 
reducing the excitation NA. While higher NA beams are more strongly 
affected by scattering in tissue, lower NA beams suffer from longer 
excitation tails, resulting in a decreased signal-background ratio. Sur
prisingly, these two effects roughly cancel out for the scattering and 
sample brightness levels found in two-photon GCaMP6f imaging. 

Last, we compared multiplane TPM (Grewe et al., 2011) to scanned 
temporal focused (s-TeFo) TPM (Prevedel et al., 2016) in a 500 μm ×
500 μm × 200 μm volume of the mouse cortex layers 2-4 (Fig. 4G). 
Comparing these two fast axial scanning TPM techniques that image 
large volumes with very different spatial sampling conditions permits us 
to understand optimal sampling strategies for the expanding area of 
high-throughput volumetric TPM. For multiplane Gaussian TPM, we 
scanned four planes, separated by 50 μm at 1 μm lateral sampling, at 10 
Hz and for s-TeFo TPM, we scanned 16 planes, separated by 10 μm at 4 
μm lateral sampling, at 10 Hz. Given a similar amount of excitation 
within the volume, both techniques performed comparably in extracting 
fluorescence traces with high fidelity. The axial distribution of highly 

Fig. 4. Comparison of specialized imaging modalities to standard high NA Gaussian TPM for a sparsely labeled volume (A-C), nuclear labeled volume (D-F), and 
volumetric imaging (G-I). A: Mean image (left) and example time traces (right) of a sparsely labeled volume with Bessel beam (top) and high NA Gaussian (bottom) 
illumination. B: Correlation matrices of extracted time traces for each method sorted by clustering into 3 groups using k-means. C: Histograms of spatial profile 
weights of cells in the volume using Gaussian and Bessel PSFs. D: Mean image (left) and example time traces (right) of a nuclear labeled volume with low NA Gaussian 
(top) and high NA Gaussian (bottom) illumination. E: Scatterplot of correlation values for low and high NA extracted timecourses against the true timecourse. F: 
Estimated ΔF/F resolution of cells based on their spatial profile and the mean image. G: Mean image (left) and example time traces (right) of volumetric TPM with 4 
high NA Gaussian planes (top) and 16 temporally focused planes (bottom) illumination. H: Histogram of axial positions of highly correlated (r > 0.5) cells using a 
scanned high NA Gaussian or temporally focused illumination. I: Histograms of profile weights using high NA Gaussian or temporally focused illumination. 
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correlated (r≥0.5) cells in the multiplane TPM is multimodal, set at the 
focal positions of the four planes, while the s-TeFo distribution is much 
more uniform (Fig. 4H), as is reflected in the profile weight histograms 
(Fig. 4I). These simulations suggest that while s-TeFo as a technique may 
not drastically increase the number of recorded neurons, the more 
consistent spatio-temporal sampling of neurons may decrease sampling 
bias and provide robustness to motion-induced artifacts and signal 
crosstalk. 

3. Discussion 

We presented here the NAOMi simulation framework that generates 
detailed TPM data. This framework captures a variety of existing im
aging principles using only anatomical and optical simulation blocks. 
NAOMi thus has the potential to 1) yield new insights into TPM tech
nology and enables the testing and 2) validate existing and novel TPM 
methods, allowing for assessment and methodological optimization not 
currently possible. Toward this end, we have developed the ability to 
generate realistic synthetic neural volumes, transient calcium activity, 
and two-photon calcium imaging videos. We further increase the 
simulation efficiency by simplifying statistical models of the processes 
involved, reducing the computational burden and making this tool more 
broadly applicable. 

We have demonstrated two important use cases of NAOMi: assess
ment of calcium imaging demixing methods and comparing optical 
configurations across imaging conditions. In both cases, useful large- 
scale ground truth is difficult to obtain experimentally. NAOMi lever
ages the accumulated knowledge of neuroanatomy, optical physics, and 
neuroscience to bypass these difficulties through simulation. The 
simulation software, along with the data from this paper, is made freely 
available to promote the assessment and development of TPM methods. 
Moreover, we have created a suite of publicly available datasets simu
lating additional experimental conditions, including various power 
levels, indicators, imaging depths, anatomical parameters, and optical 
configurations as an extended community resource. 

Several groups have already begun to use NAOMi to test new algo
rithmic methodologies, including new denoising algorithms (Lecoq 
et al., 2020) and testing the effect of negative transients on algorithmic 
demising (Vanwalleghem et al., 2020). Other uses for algorithm devel
opment include testing motion correction algorithms, field-of-view 
alignment and registration, biophysical parameter learning, and 
filtering out artifactual profiles in the found components. 

Beyond algorithms, NAOMi can also help optimize experimental 
designs, for example by testing which combination of indicators, NA, 
excitation power, and other microscope/experimental techniques best 
combine with the ensuing analysis to accurately reflect the underlying 
activity, i.e., via accuracy metrics based on the traces used to generate 
the simulated video. Thus NAOMi can help adapt experimental designs 
towards the scientific questions of interest. For example, fast indicators 
might be critical when analyzing short-time responses to environmental 
stimuli, however global activity manifolds guiding longer-term behavior 
might be better fit using data collected with slower, brighter indicators. 
This choice of indicator then influences the choice of microscopy tech
nique and imaging rate: a slower, brighter indicator may be better suited 
for volumetric imaging at low frame rates, a trade-off frequently 
acceptable for manifold inference. This represents a potential shift in 
experimental design that enables experimentalists to think globally 
about the apparatus, data processing and analysis in a testable way. 

To assess demixing algorithms, we generated a calcium imaging 
dataset typical of TPM in mouse neocortex and analyzed the perfor
mance of several popular methods: CNMF (Pnevmatikakis et al., 2016), 
Suite2p (Pachitariu et al., 2013), and PCA/ICA (Mukamel et al., 2009). 
The available input cell shapes and timecourses enabled direct com
parisons of the algorithm decompositions to ground truth, which 
revealed that methods with the highest number of found neurons also 
had much higher instances of artifactual components. This indicates the 

potential for many false positives in automated demixing (Sup. Fig. 28, 
Sup. Table 6). Using NAOMi data as a testing ground, more advanced 
detection metrics can be developed, to find better ways to filter out true 
cells from the full set of returned components. 

Using NAOMi, we explored particular combinations of optics and 
samples in silico and illustrated the advantages three specialized tech
niques under specific sample conditions. We rapidly assessed how 
appropriate a particular technique is for the sample and optimized im
aging parameters to maximize the quantity and quality of the data. Of 
particular note is the ability to make side-by-side comparisons of 
different techniques on identical sample conditions, which is only 
possible in simulation. Additionally, we explored the interaction of 
different components of in vivo calcium imaging and their effects on 
performance. For instance, we quantified how axial brain motion can 
effect estimated cell activity correlations as a function of sample type 
and optical configuration. The ability to directly compare and test out 
techniques allows experimenters to evaluate in silico the utility of a given 
technique for their experimental conditions. 

Despite these results, there are several aspects of the simulation that 
were simplified for speed or simplicity. More realistic anatomically- 
constrained synaptic connectivity between simulated neurons (Egger 
et al., 2014) can be used to generate improved spatial distribution to 
neural activity. Additionally, while we provide a spike-train simulation 
to drive the fluorescence models, future iterations of NAOMi can 
leverage a number of other complex packages that specialize in realistic 
simulations of such activity for neural populations (e.g. Institute, 2017). 
In these cases, rather than replicate these methods, we encourage their 
use and integration into the NAOMi framework. 

In the development of NAOMi we aimed to create a tool accessible to 
the community at large that is easily expandable in its scope and abili
ties. To this end, our software was designed to be modular so that as 
better anatomical models, optical descriptions of tissue, and TPM sta
tistics become available, they can be easily incorporated into the exist
ing framework. Additionally, single modules can be modified in order to 
simulate different setups. For example, changing the anatomical struc
ture (e.g., blood-vessel size and cell body statistics) can allow for bench- 
marking imaging techniques in rats, rather than mice. These changes 
and extensions will allow NAOMi to be a useful tool for a wide variety of 
applications for experimentalists and methods developers. 

The modular nature of the simulation also creates an opportunity to 
create new simulations for other brain areas. While in this work we 
focused on the well-studied visual cortex in mice, new EM data, for 
example in hippocampus (Harris et al., 2015) and medial entorhinal 
cortex (Schmidt et al., 2017) provide an opportunity to data mine the 
required anatomical parameters needed to adjust cell distribution 
functions, neural cell shape parameters, vasculature creation parame
ters, and dendritic and axonal properties. We expect that as EM data 
becomes cheaper to obtain and thus more widely available, such data
sets will become available for many brain areas across species. 

Work in other fields has shown the great utility of developing strong 
simulation-based models of experimental data (see Greenwald, 2004 
and references therein). NAOMi is a tool that fills part of this gap for 
neuroscience data. As neuroscience continues maturing, better models 
of data must be developed, especially for data that is as diverse and 
complex as two-photon calcium imaging. This and other work will allow 
researchers to not only more quantitatively judge the quality of their 
data, but also make better predictions on the data they will need for their 
experiments. 

4. Materials and methods 

Our TPM simulator is designed to permit testing of many different 
aspects of the calcium imaging process. To achieve this flexibility, our 
simulator is divided into five distinct modules, each focused on a portion 
of either the tissue or scanning simulation (Fig. 1). The five modules are: 
1) the neuron module responsible for generating single neurons, 2) the 
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volume module responsible for assembling the neurons into a tissue 
volume that includes neuropil and vasculature, 3) the activity module 
that generates the temporal calcium traces for each neuron and the 
neuropil, 4) the optics module that simulates the point-spread function 
and occlusion due to the optical mask, and 5) the imaging module that 
simulates the TPM noise model and object motion. 

4.1. Neuron model 

The first module creates simple, yet plausible models of neurons that 
can be placed throughout a volume and scanned in simulation. We 
model the neural shape via a probability distribution over smooth 
deformation of a sphere, followed by a nonlinearity. This model allows 
for fast sampling of unique neurons, meaning that each simulated vol
ume will contain a completely new set of neurons. Additionally, we 
provide for each neuron a nucleus modeled as a shrunken and smoothed 
version of the soma shape. This model captures the relationship 
observed in detailed field emission scanning electron microscopes 
(FESEM) (Kasthuri et al., 2015). Finally, we simulate for each neuron a 
number of dendrites, one of which is created thicker and at a downward 
orientation, as to model the apical dendrites. 

The model of the smoothly deformed cell body is an isotropic 
Gaussian process (Rasmussen and Williams, 2005) defined over a 
sphere. To sample from this distribution and create the cell body, we 
sample uniformly over a sphere (Carlson, 2011), sample i.i.d. a Gaussian 
random variable for each point, and smooth the points according to the 
process covariance. Denoting the sample points pi ∈ ℝ3, the height 
(distance from center of the sphere) can be sampled from 

ri ∼ 𝒩(0,K), Ki,j = e− d(pi ,pj)/l,

where l is the length-scale that controls the smoothness of the cell body, 
and d(⋅, ⋅) is the geodesic distance between any two points. For the unit 
sphere (radius one), this distance is the arc length along the great circle 
connecting the two points 

d(pi, pj) = 2sin− 1
(‖ pi − pj‖2

2

)

When unconstrained, the radial height of this function can, at times, 
exceed the maximum and minimum realistic deformations rmax = maxi|

ri| and rmin = mini|ri|. We thus rescale the radii values as 

ri = (rmax − rmin)
|ri| − miniri

maxiri − miniri
+ rmin  

The resulting points ripi form the points for a mesh that define the 
interior of the cell body. To account for the non-spherical shape found in 
pyramidal neurons, we can modify the radii values by making the base 
radius at each point dependent on a function of its location on the 
sphere. Specifically, we use the equation for a tear-drop that is defined 
parametrically by the azimuth and elevation angles ϕ, and θ as 
[
cos(ϕ)sin(θ)sinm

(θ
2

)
, sin(ϕ)sin(θ)sinm

(θ
2

)
, cos(θ)

]
(1) 

The final step in creating the cell body is to create the nucleus, which 
is accomplished by shrinking and smoothing the cell wall shape as 
defined by ripi as 

r∗i = (r50%)
|ri| − miniri

r5% + ri
+ rmin − (Δr)min 

Dendrites are added to each neuron via a stochastic growing process 
(Xu and Mould, 2009). The process generates start and end points for 
each dendrite, and iteratively grows the dendrite through the volume 
while avoiding any obstacles (i.e. other cell’s somas, dendrites, or blood 
vessels). Apical and basal dendrite endpoints are separately set within 
the volume and the grown dendrites are dilated to widths consistent 

with measured anatomy (Table 1, Sup. Fig. 7). 

4.2. Volume generation 

To create the tissue volume, we initialize an empty volume and begin 
by placing blood vessels throughout the volume. For computational 
feasibility, the volume is modeled as a 3-D grid of points with sub- 
micron sampling (we typically use 0.5 μm distances). The blood ves
sels are grown in three parts: surface vasculature, diving arterioles, and 
capillaries. Surface vasculature is grown by connecting nodes randomly 
placed upon the surface of the volume. The connected paths are 
smoothly varied and dilated. Diving arterioles are set at endpoints of 
surface vasculature and connected to the bottom of the simulated vol
ume. Capillaries are connected to the diving arterioles and pseudo- 
randomly placed within the volume in a space-filling fashion. Vessel 
diameters, concentration, branching frequency, and orientation were 
compared and fit to two-photon microscopy data of mouse vasculature 
(Schaffer-Nishimura lab, unpublished data). 

Once initialized, the volume is then filled with the neuron somas. We 
sequentially place the neurons randomly throughout the empty space in 
the volume, with a minimum distance that allows cell bodies, but not 
nuclei, to overlap. The random placement can be modified to encourage 
neurons to be more spread out, or more cluttered. When an overlap 
occurs, the overlapping region is given to the latest cell to be placed. 
This allows our volume to contain touching cell bodies. Once all the cell 
somas are placed, dendrites are grown for each neuron sequentially, 
such as to avoid location conflicts with other cells. Apical dendrites are 
grown in the same fashion, only thicker, axially oriented, and having 
fewer transversal deviations. Separate apical dendrites corresponding to 
neurons in deeper cell layers are grown in a similar fashion from the 
bottom of the volume to the top. 

As a final step, axons fill up the remaining empty space, up to the 
typical 0.7 fill fraction of layer 2/3 in mouse V1. The same dendrite 
growing algorithm (Xu and Mould, 2009) is used to create millions of 
short axon segments throughout the entire volume. To obtain the global 
correlated background components, axon segments are locally grouped 
together. The axon groups are assigned to individual cells by minimizing 
their centroid distance to cell bodies, and then all remaining axons 
groups are randomly assigned. 

4.3. Time-trace generation 

To simulate temporal activity, we provide a number of options to 
generate time-traces for each neuron. We provide both statistical models 
that generate stereotypical activity as well as more detailed [Ca2+] dy
namics model. The statistical model provides a simple way to input basic 
behaviors of various fluorescent proteins (i.e. rise-time and decay). The 
[Ca2+] dynamics model simulates the molecular kinetics over time, and 
provides a way to test the time-trace assumptions made in calcium im
aging analysis algorithms. 

4.3.1. Spike-time generation 
We provide two methods to generate spike trains to drive the fluo

rescence activity simulation. The first method creates independent ac
tivity for each neuron, including bursting behavior. The second model 
simulates a Hawkes process which accounts both for self-excitation, 
driving busting behavior, as well as inter-neuron spiking correlations 
(Hawkes, 1971). 

To generate independent spike trains, we model each neuron as a 
bursting neuron, where bursts occur at independent, exponential in
tervals 

P(Δtburst) = λburste− (Δtburst)/λburst (2)  

for Δtburst > 0. The rate of bursting λburst is chosen differently for each 
neuron. The rates can be given to the simulator, or the simulator can 

A. Song et al.                                                                                                                                                                                                                                    



Journal of Neuroscience Methods 358 (2021) 109173

10

automatically draw burst rates from a Gamma distribution with a pro
vided mean rate and parameter α = 1. For each burst, the number of 
spikes are chosen as 

Nburst = 1 + Poisson(λN) (3)  

where the parameter λN controls the length of the bursting. The inter- 
spike times between spikes in a burst were modeled as uniformly 
random between 5 ms and 7 ms. Alternative distributions of spiking 
activities can easily be implemented by passing different λburst, α, or λN 
values to the simulator, or by direct modification to the code to imple
ment different distributions that better reflect activity in other cortical 
areas. 

For the Hawkes model simulation, we first generate a connectivity 
matrix that encodes how each neuron’s firing excites other neurons. We 
model this connectivity with a Watts-Strogatz small-world network 
model (Watts and Strogatz, 1998). To correlate the processes to the 
network activity, we allow for all neurons to influence the background 
processes, while not allowing many return connections. To stabilize the 
point-process, we normalize the resulting connectivity matrix to have 
maximum eigenvalue magnitude of 0.98. We then run the Hawkes 
process using Lewis’ method (Ogata, 1981), with an exponential dis
tribution over the neuron’s base firing rates and a higher base firing rate 
for the background components. Finally, we bin the resulting 
continuous-time spike events into 1 ms bins to create the discretized 
spikes that are then fed into the calcium dynamics simulation. 

4.3.2. AR-p dynamics 
For each cell, we generate a baseline fluorescence, βi = |1 + z| where 

z ∼ 𝒩(0, σ2) is a Gaussian random variable. The variance σ2 controls the 
distribution of baselines, and we set a default value to σ2 = 0.04. The 
next step is to simulate the spike or “event” times for each neuron. As 
most neurons are sparsely active, we draw the firing rate of each neuron 
as λi ∼ Gamma(a, θ). The parameter θ gives the average inter-spike dis
tance in time and should be set according to the temporal sampling rate 
set in the simulation. The parameter a is the shape parameter and 
modulates the distribution of the firing rates. We find that a = 1 (where 
the Gamma distribution collapses to an exponential distribution) yields 
realistic distributions of neuron activity levels. The actual event times 
are then sampled for each neuron according to a Poisson process with 
rate λi. To model the different calcium levels at each event (e.g. due to 
multiple spikes or to adaptation (Roxin et al., 2011)), we sample the 
overall concentration as coming from a unit log-normal distribution (i.e. 
an exponentiated Normal distribution 𝒩(0,1)). 

Once the spike times are obtained, an auto-regressive model with p 
degrees of freedom (AR-p) is used to simulate the calcium and fluores
cence impulse response. As a difference equation, AR-p models can be 
written as 

y[n] =
∑p

i=1
aiy[n − i] + bx[n],

where the ai’s are the AR coefficients and b is a scalar multiple of the 
input. The impulse response can be obtained by solving the inverse 
Laplace transform 

y[n] = h[n] ∗ x[n], h[n] = ℒ− 1
{

bzp

zp −
∑p

i=1aizp− i

}

Standard linear systems theory shows that h[n] will be composed of the 
exponentiated roots of the characteristic polynomial zp −

∑p
i=1aizp− i, 

and therefore will be an exponentially decaying function. Higher order 
polynomials can result in a rise time as well. For this work we find that 
an AR-2 model (p = 2) sufficiently models the rise and fall of observed 
GCAMP responses. The filter h is convolved with the spike-time vector to 
create the temporal activity per neuron. 

4.3.3. [Ca2+] dynamics 
The fluorescence of a cell is dependent on the number of calcium ions 

bound to the indicator. if we denote [Ca2+] as the amount of free calcium 
in the cell and [B] as the number of proteins in the cell, we can use the 
binding/unbinding dynamics, coupled with the entry/exit dynamics of 
[Ca2+] in the cell to determine the fluorescence level at any given time. 
Specifically, we use the nonlinear diffusion of [Ca2+]

d[Ca2+]

dt
= − γ

(

1 + κs +
[B]Kd

([Ca2+] + Kd)
2

)− 1

([Ca2+] − [Ca2+]rest),

where [Ca2+]rest represents the baseline free [Ca2+], γ is the [Ca2+] diffu
sion constant, κs is the endogenous [Ca2+] binding ratio, and Kd is the 
protein binding affinity constant (Helmchen and Tank, 2015; Lutcke 
et al., 2013). As γ is a function of the volume-to-surface area, we use a 
different γ value for dendrite dynamics as for dynamics in the soma 
(Holthoff et al., 2002). While this model permits simulation of the [Ca2+]

concentration over time, the model does not include the on/off time 
constants τon and τoff that describe how long it takes for the bound 
proteins to become active. We can model this effect, as in Lutcke et al. 
(2013), by convolving with a double-exponential function 

h(t) = A
(
1 − e− t/τon

)
e− t/τoff (4)  

where the amplitude A and the time constants τon and τoff can be fit to the 
particular protein kinetics. The final step in simulating the fluorescence 
time-traces is to convert the calcium concentrations to fluorescence 
levels. For this task, we use the Hill equation 

ΔF

/

F =
1

1 +
(
KD
/
[Ca2+]

)nH (5)  

where the parameters KD and nH have been measured in the literature 
(specifically Badura et al., 2014, Table 1), and the absolute florescence is 

F = F0(ΔF/F) + F0 (6)  

where the baseline fluorescence F0 can be tuned to the protein statistics. 

4.4. Optics simulation 

The optics module consists of modeling the shape and intensity of the 
point-spread function (PSF) within the scanned tissue. For computa
tional purposes, we assume the shape of the PSF is constant across the 
scanned volume and only the amplitude is modulated. We estimate the 
PSF within the scanned tissue by propagating a specified field through 
the simulated tissue across the field of view. 

We describe the scalar field at the front aperture of the objective lens 
as a Gaussian with a circular aperture and spherical phase: 

U0(ρ) =

⎧
⎪⎨

⎪⎩

exp(−
ρ2

ρ2
e
−

ikρ2

2f
) ρ ≤ ρ0

0 ρ > ρ0

(7)  

where U0 is the scalar field, ρ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
is the polar position, k is the 

wavenumber, ρ0 is the radius of the objective lens, ρe is the radius of the 
excitation beam, and f is the focal length of the objective lens. The 
wavefront is multiplied by any additional specified aberrations due to 
the microscope or the sample: 

U(ρ, θ) = U0(ρ)exp(ik
∑∞

i=1
aiZi(ρ, θ)) (8)  

where θ is the polar angle, ai are the Zernike coefficients, and Zi are the 
Zernike polynomials. By default, only spherical aberration approxi
mating the contribution of the refractive index mismatch of the sample 
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and astigmatism approximating the contribution of offset scanning 
galvanometers are included. 

The field U(ρ, θ) is propagated through the sample to the focal plane 
along a 2D grid of positions within a simulated refractive index volume 
δn. The volume δn is generated from the simulated vasculature and a 3D 
Gaussian process with a weight distribution approximating the refrac
tive index distribution of mouse cortical tissue (see Supp Fig. 11) (Jac
ques, 2013; Sun et al., 2012): 

δn(x, y, z) = ndiff(V(x, y, z) + GP(x, y, z)) (9)  

where V is the vasculature and GP is the smooth Gaussian Process rep
resenting the optical properties in the non-vasculature areas. The 
vasculature provides the bulk of the long range refractive index shifts in 
the simulation, while the Gaussian process approximates the local shifts. 

The Fresnel diffraction integral is used to estimate the field 
throughout the volume, and the split-step beam propagation method 
(Schmidt, 2010) is used to apply the effects of inhomogeneity within the 
volume. The simulated phase-difference volume is summed into optical 
phase masks corresponding to each propagation step: 

ϕ(xi, yi, zi) = k
∫ zi+1

zi

δn(x, y, z)dz. (10)  

This quantity is multiplied after each optical propgation step as 

Ui+1 =
eikz

iλ(zi+1 − zi)

∫ ∞

∞

∫ ∞

− ∞
e− iϕi Uie

ik
2(zi+1 − zi )

[(xi+1 − xi)
2
+(yi+1 − yi)

2
]dxidyi, (11)  

where ϕi = ϕ(xi, yi, zi) is the optical phase mask and Ui = U(xi, yi, zi) is 
the scalar field at each position. The resultant 3D field generated by the 
propagation is then used to calculate the two-photon PSF: 

PSF(x, y, z) = U(x, y, z)4
. (12)  

The aberrations caused by the phase differences approximate the effects 
of wavefront distortions caused by refractive index inhomogeneity 
within the imaged sample (Chaigneau et al., 2011; Wang and Ji, 2012). 
The two-photon PSFs at each location across the field of view are 
averaged to obtain the PSF to be scanned through the simulation, and 
the summed intensity of the PSFs across the field are used to generate an 
intensity scaling mask for scanning. For runtime considerations, the PSF 
near the focal plane is sampled at the resolution of the volume while the 
out of focus PSF and scaling mask is sampled at a reduced resolution. 

For alternative optical setups, we adjust the input field U0 accord
ingly. For a low numerical aperture excitation beam, ρe is reduced, and 
for a Bessel beam excitation U0 is replaced with an excitation ring. See 
supplementary information for more details. 

An additional optical mask is also calculated by estimating the 
reduction in signal from absorption of the collected light by the vascu
lature. The collected light at each scanned position is reduced by a 
collection cone corresponding to the simulated collection objective nu
merical aperture (Coherent, 2013; Watanabe, 2005): 

r(z) = tan(sin− 1(NA
/

n))z (13)  

where r(z) is the collected cone radius as a function of depth, and: 

C(x, y) = 10A
∫ d

0
(r(z)∗V(x,y,z))dz (14)  

where C is fraction of light collected, d is the tissue depth, and A is the 
adjusted light absorbance of light emitted from GFP normalized by the 
arterial blood absorbance factor. This absorbance mask is multiplied to 
the optical excitation mask to give the combined spatial signal scaling 
mask. 

4.5. Scanning in silico 

The final module takes the generated volume, the generated PSF and 
time-traces, and generates the TPM output frames. The first step here is 
to use the time-traces and fluorescence distribution for each neuron to 
“color in” the corresponding volume with the current fluorescence level 
for that neuron. Similarly, the background level is set by repeating this 
process with the neuropil. The PSF is then convolved with the current 
volume, and the result is masked with the optical path mask to create an 
initial image. 

To simulate motion in the movie, we select a portion of this initial 
frame to treat as the entire image. The starting position (upper left 
corner) for the with-motion frame is moved according to a small ±0.5 
μm jitter with occasional larger jumps (up to 2–3 μm). Options to include 
per-line motion and shearing are also implemented by choosing 
different sub-sections of each row as the with-motion frame is extracted 
from the larger motionless frame. This frame represents the fluorescence 
level at each point in the sampled image. To obtain the actual electrical 
signals sampled by the TPM device, we apply a noise model that simu
lates the number of photons incident on the array (modeled as Poisson) 
followed by an electrical noise model that is Gaussian, with increasing 
mean and variance with larger numbers of incident photons. If λ is the 
true florescence for a pixel, x is the number of incident photons, and y is 
the measured electrical signal, the noise model can be expressed as 

x ∼ Poisson(λ)
y ∼ log𝒩(μ0 + μx, σ2

0 + σ2x)

where μ0 and σ3
0 are the baseline noise mean and variance (with no 

photons), and μ and σ2 are the parameters controlling how the mea
surement mean and variance grow with increased incident photons. 

As a final step, we simulate the analog-to-digital accumulators’ 
property where photons arriving in one pixel’s accumulation time can 
cause an analog shape that bleeds through to the accumulation for the 
next pixel (Fig. 16). We simulate this effect by noting that if a photon 
arrives early in the sample period, then the analog PMT response g(t) is 
completely inside of the sample period and no bleed-through occurs. On 
the other hand, if the photon arrives within Δ of the end of the sampling 
period, where Δ is the temporal extent of g(t) (Fig. 16), then the tail end 
of g(t) that continues beyond the end of the period is integrated into the 
next sample. The probability of a given bleed-through level for one 
photon can thus be quantified as 

p(b) =

⎧
⎪⎨

⎪⎩

1 −
Δ
T

for b = 0

Δ
T

1
g(T − τ(b)) for 0 < b ≤

∫ Δ

0
g(t)dt

, (15)  

where τ(b) represents the delay τ that is needed to result in a given bleed- 
through b. Since the relationship between b and τ, 

b =

∫ Δ

T − τ
g(t)dt,

is monotonically increasing when g(t) ≥ 0 for all t, τ(b) is a well defined 
function. Since photon arrivals are approximately independent, the 
bleed-through probability distribution for multiple photons is the 
convolution of the distribution for a single photon. The resulting sta
tistical model then takes a random fraction (uniformly chosen between 
zero and 50%) of each pixel with probability 0.2, and adds that amount 
to the next pixel, 

p(b) =

⎧
⎨

⎩

1 − pbleed for b = 0
pbleed

bmax
for 0 < b ≤ bmax

(16)  
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4.6. Vasculature scanning 

To compare the axial spread of the PSF in deep volumes, we simu
lated datasets comparable to deep z-stacks of blood vessels (Haft-Java
herian et al., 2019). The real z-stacks were taken in mouse neocortex at 
830 nm excitation wavelength and a numerical aperture of 1.0 with 1 
μm spatial sampling at depths up to 450 μm. For our analyses we 
generated local vasculature z-stacks (60 μm) at a depth of 330 μm by 
using the scanning module to iteratively scan a uniformly labeled 
simulated blood vessel volume. To adjust for the scattering at the new 
imaging wavelength, we used the equation provided in Jacques (2013) 
along with a quadratic relationship between scattering length and 
refractive index. These values reasonably approximated values provided 
in Johansson (2010) for nearby wavelengths. Additionally, we gener
ated simulated datasets with randomly placed point sources (0.5 μm in 
size) that were scanned in a local z-stack. 

We considered the axial and lateral spread of point sources (point 
source volumes) and line sources (capillaries in blood vessel volume) 
around 330 μm in depth for this analysis. For point sources we isolated a 
7 × 7 pixel subregion centered around a point source, background 
subtracted the isolated values and estimated the axial full-width half- 
max (FWHM) of each source. For line sources capillaries were isolated 
into 30 × 30 pixel subregions, rotated, and a 5 μm central region of the 
brightest slice was used to estimate the lateral spread (FWHM). The 
central 5 μm subvolume was background subtracted and used to esti
mate the axial spread (FWHM). The axial PSF was estimated as the 
difference between the axial spread and half the lateral spread, an es
timate which assumes the width of the lateral PSF and the line sources 
are roughly comparable. 

4.7. Hemoglobin absorption 

To calculate the absorption due to hemoglobin, we assumed default 
concentrations of 150 mg/ml Hemoglobin (Hb), 64500 g/mol Hb, and 
2.9 (abs/μm)/(mol/l) in units of abs/μm. The absorbance was then 
calculated using Scott Prahl’s Hb curve (Prahl, 1999) and eGFP emission 
spectrum (Mütze et al., 2012; Spectrum of egfp, 2019). 

4.8. Estimation of per-trace noise variance 

To estimate the noise variance for each time-trace, we begin with the 
basic per-pixel noise model 

y = Φf + d + ε, (17)  

where the noise is heteroskedastic in that the variance is proportional to 
the mean 

ε ∼ 𝒩(0, diag(Φf + d)) (18) 

The least-squares estimate of the activations under the imperfect 
spatial profiles Φ̂ is 

f̂ = argminf‖y − Φ̂f‖2
2 (19)  

= (Φ̂
T

Φ̂)
− 1 Φ̂

T
y (20)  

= (Φ̂
T

Φ̂)
− 1 Φ̂

T
(Φf + d + ε) (21) 

The covariance of this estimate is then 

Cov( f̂ ) = Cov[(Φ̂
T

Φ̂)
− 1 Φ̂

T
(Φf + d + ε)] (22)  

= Cov[(Φ̂
T

Φ̂)
− 1 Φ̂

T
ε]. (23)  

= E[(Φ̂
T

Φ̂)
− 1 Φ̂

T
εεT Φ̂(Φ̂

T
Φ̂)

− 1
]. (24)  

= (Φ̂
T

Φ̂)
− 1 Φ̂

T
E[εεT ]Φ̂(Φ̂

T
Φ̂)

− 1
. (25)  

= (Φ̂
T

Φ̂)
− 1 Φ̂

T
diag(Φf + d)Φ̂(Φ̂

T
Φ̂)

− 1
. (26)  

4.9. Calcium analysis algorithms 

All analyses were computed with the 2017 versions of CNMF 
(Pnevmatikakis et al., 2016) and Suite2p (Pachitariu et al., 2017). Pa
rameters were adjusted manually for each algorithm to optimize the 
output. For CNMF we used fr = 30, tsub = 5, patch_size = [40, 

40], overlap = [8,8], K = 7, tau = 6, p = 0, and num_bg = 1. For 
Suite2P we used diameter = 12, DeleteBin = 1, sig = 0.5, 
nSVDforROI = 1000, NavgFramesSVD = 5000, signal

Extraction = ’surround’, innerNeuropil = 1, outerNeuropil 
= Inf, minNeuropilPixels = 400, ratioNeuropil = 5, image
Rate = 30, sensorTau = 0.5, maxNeurop = 1, sensorTau = 0.5, 
and redmax = 1. For PCA/ICA we used fr = 30, ssub = 2, tsub = 10, 
nPCs = 1000, smwidth = 3, thresh = 2, arealims = 10, mu = 0.5, 
dt = tsub/fr, deconvtau = 0, spike_th = 2, norm = 1. While 
figures displayed typical outputs (i.e., denoised traces from CNMF), all 
quantitative comparisons were computed using the raw DF/F traces 
returned by each algorithm. 

4.10. Local correlation calculation 

To calculate the local correlations, V1 two-photon recordings and 
simulations were motion corrected using correlation-based rigid motion 
correction (Giovannucci et al., 2018). A 1500-frame subsection of each 
dataset over a 250 × 250 pixel area was extracted. For each pixel, the 
Pearson correlation between its fluorescence activity and that of each of 
the neighboring pixels in a 51 × 51 pixel square neighborhood (up to 25 
pixels away in each direction) were calculated. The results were aver
aged over all pixels (to create the mean images) and histograms were 
created to depict the spread for correlations along the fast-scan 
direction. 

4.11. Computation of the ideal spatial profiles 

The ground-truth template for each cell was obtained from NAOMi 
by lighting up that individual cell and zeroing out all other cells, and 
then scanning the volume at the simulated imaging depth plane. We 
further refined this profile to the ‘visible’ pixels by removing any pixel 
whose estimated noise variance was larger than the signal. Such a ‘bi
nary mask’ is common, for example, in increasing intelligibility for 
speech data by applying the binary mask in the time-frequency domain. 

4.12. Calculation of auxiliary time-traces 

To calculate the auxiliary, noisy “ground truth” time traces, we used 
Profile assisted least squares (PALS), which uses the ground truth ideal 
profiles in a least-squares estimation. We considered the movie frames yt 
for t = 1...T and the calculated ground-truth spatial profiles X = [x1, ...,

xN]. The noisy time trace estimates were then calculated via the least- 
squares estimation procedure at each time-step t 

ŝt = argminS‖yt − Xs‖2
2. (27)  

4.13. Fitting GCaMP parameters 

Fitting GCaMP6f and GCaMP6s parameters was accomplished by 
using either constrained optimization (interior-point implementation in 
MATALB) or BayesOpt (Martinez-Cantin, 2014). Data used to fit these 
models were downloaded from Chen et al. (2013) and are available on 
the Collaborative Research in Computational Neurosciences (CRCNS) 
web portal at https://crcns.org/data-sets/methods/cai-1/?searchte 
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rm=chen%20gcamp. 

4.14. Baseline estimation 

Baseline fluorescence estimation is critical for assessing how much of 
the total acquired signal originates from each individual cell, which in 
turn permits more accurate ΔF/F estimates. More accurate estimates 
both reduce both reduce the expected noise level, and also produce time 
traces that are more meaningful in that they directly relate to the actual 
intracellular calcium levels and spike rates. This is especially true in 
preparations with variable expression levels. Accurate baseline estima
tion is challenging with no clear present solution. Analyzing current 
methods for baseline estimation, however, can provide an approximate 
error range of this measure, which is vital for establishing error bars in 
the scaling of spike rate estimates and other factors for determining data 
quality for ensuing analyses. 

We analyzed ΔF/F distributions and estimates per pixel (pixelwise 
estimation) to obtain a range for the values that this ratio can take (Sup. 
Fig. 38). To estimate the baseline fluorescence level for each neuron we 
first calculated its spatial profile S(k) and the modal image M(k) for each 
pixel k. We assumed M(k) = c ∗ S(k)+ B(k), where B(k) is the contri
bution to the fluorescence from all other sources and the baseline fluo
rescence level is given by c ∗ S(k). When the neuron was active, the pixel 
values were approximated as F(k) = (dF/F) ∗ c ∗ S(k)+ B(k), in the 
absence of background activity, which we assumed for this estimate. 

We estimated c ∗ S(k) by plotting a scatter-plot of S(k) against M(k)
and noting that for a given S value, there exist a range of possible M 
values with a minimum value that increases as S increases. These min
imum values correspond to the case where the contribution by B is 
minimal and approximately uniform, corresponding to fluorescence 
from the tails of the PSF. By fitting the line of these minimum values, we 
used this slope to approximate the value of c. Care may be taken to es
timate this minimum B contribution by examining the values of pixels 
immediately outside the spatial profile. We used PCA to locally estimate 
S(k), which better approximates these values immediately outside of the 
neuron, improving estimation accuracy. 

For each pixel k, we note that B(k) must be positive. Therefore, for 
each pixel k, c <= M(k)/S(k), which set a upper bound for c. Second, we 
required that the maximum dF/F value for the indicator is not exceeded. 
By using the maximum fluorescence image, we set a lower bound for c. 
These give a physically allowable range of c for each neuron. 

4.15. Robustness to dendritic arbor stimulation 

The NAOMi simulation software allowed us to estimate the effect of 
dendritic specific signals on the estimation of overall activity traces. We 
explored this by generating a 100 μm × 100 μm × 100 μm volume and 
scanned it with a 40 mW diffraction-limited Gaussian beam. We then 
perturbed only the dendritic spike trains to include additional spikes, 
recomputed the time traces, and simulated a second video from the same 
volume. The ground-truth spatial components were used in conjunction 
with the movies to estimate the activity traces for each neuron from both 
videos (Sup. Fig. 21). To remove the confounding effect of noise, a post- 
processing wavelet denoising step was run on all time-traces. We found 
minimal differences in the time-traces due to this additional source of 
potential time-trace contamination. 

4.16. Neuropil estimation and comparison 

Neuropil is a vital characteristic of calcium imaging data. Moreover, 
the correlation between the activity present in the surrounding axons 
and dendrites may impact signal estimation. We compared correlations 
across the field-of-view for a simulated dataset with a 50 μm × 50 μm 
field-of-view from the V1 dataset used in Fig. 2. In particular we 
calculated the correlation of individual pixels at increasing distances 
from the center pixel of a given component (as found via CNMF 

Pnevmatikakis et al., 2016), and then plotted the average correlations as 
a function of distance (Sup. Fig/ 20). While this analysis is similar to the 
analysis in Pachitariu et al. (2017), the imaging conditions of these 
datasets (both real and simulated) are different. We find NAOMi pro
duces a qualitatively similar drop-off with a similar steady-state corre
lation (Sup. Fig. 20). 

4.17. Impact of anatomical values on NAOMi 

NAOMi leverages a large literature of measured anatomical proper
ties. These properties impact the simulated videos and can change the 
quality of the simulation. We tested the robustness of NAOMi to two 
important properties here: cell size and cell density. We varied both 
values by ±20% and observed changes in the mean images (Sup. Fig. 22) 
and pixel value histograms (Sup. Fig. 23). For consistent comparisons of 
other statistics, we retained all other parameters, including the exact 
same vasculature, across all simulated volumes and videos. We found 
that while changes in density resulted in minimal qualitative changes to 
the mean images and histograms, changes in cell sizes had a more sig
nificant impact. 

4.18. Real two-photon datasets used for comparison 

All experimental procedures were approved by the Princeton Uni
versity Institutional Animal Care and Use Committee. Two datasets were 
used for the comparisons: one recorded from a transgenic Ai93-Emx1 
mouse (Emx1-IRES-Cre;Camk2a-tTA;Ai93(TITL-GCaMP6f) Madisen 
et al., 2015) in Fig. 2 and a second from a Thy1 GP5.3 mouse 
(C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J Dana et al., 2014) in Sup. 
Fig. 19. Animals were prepared and recorded in a manner similar to 
described in Song et al. (2017) and Koay et al. (2019) from primary 
visual cortex. 
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Data Availability 

A number of datasets were used to validate the NAOMi simulation. 
These data are available from different sources with different 
restrictions:  

• Two-photon images from mouse V1 (Fig. 2): This data was taken at 
the Princeton Neuroscience Institute by the laboratory of David 
Tank, and is available upon request to the authors.  

• Simulated videos (Fig. 2–4, Sup. Fig. 1–35): All simulated videos are 
available on an Open Science Framework repository https://osf. 
io/863j9/. A handful of volume files are too large to deposit at 
OSF and can be made available upon request from the authors.  

• Vasculature data (Sup. Fig. 1–3): Vasculature data was generously 
provided by the laboratory of Chris Schaffer (Haft-Javaherian et al., 
2019).  

• Electron microscopy (EM) data (Sup. Fig. 4–6): The EM data is 
available from the Open Connectome project at https://neurodata. 
io/. Manual annotation used for somatic comparisons were per
formed by the authors and are available on the above Open Science 
Framework repository. 
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• Dendrite morphology data (Sup. Fig. 7): The data used to compare 
dendritic morphology is freely available from the Allen Institute via 
the Cell Types database: https://celltypes.brain-map.org/.  

• Simultaneous spiking and fluorescence activity (Sup. Fig. 9): The 
data used to fit and compare the fluorescence model was collected by 
Chen et al. (2013) and are available online at https://crcns.org/d 
ata-sets/methods/cai-1/about-cai-1. 

Code Availability 

The NAOMi simulation was coded in MATLAB and will be available 
via the following GIT repository: https://bitbucket.org/adamshch/n 
aomi_sim/ 

Included are example scripts to demonstrate to users how to generate 
and explore simulated two-photon imaging movies. The code is is also 
available on CodeOcean at https://codeocean.com/capsule/703115 
3/tree/v1 for additional accessibility. 
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