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Active learning seeks to reduce the amount of data required to fit the pa-
rameters of a model, thus forming an important class of techniques in
modern machine learning. However, past work on active learning has
largely overlooked latent variable models, which play a vital role in neu-
roscience, psychology, and a variety of other engineering and scientific
disciplines. Here we address this gap by proposing a novel framework for
maximum-mutual-information input selection for discrete latent variable
regression models. We first apply our method to a class of models known
as mixtures of linear regressions (MLR). While it is well known that ac-
tive learning confers no advantage for linear-gaussian regression models,
we use Fisher information to show analytically that active learning can
nevertheless achieve large gains for mixtures of such models, and we val-
idate this improvement using both simulations and real-world data. We
then consider a powerful class of temporally structured latent variable
models given by a hidden Markov model (HMM) with generalized linear
model (GLM) observations, which has recently been used to identify dis-
crete states from animal decision-making data. We show that our method
substantially reduces the amount of data needed to fit GLM-HMMs
and outperforms a variety of approximate methods based on variational
and amortized inference. Infomax learning for latent variable models
thus offers a powerful approach for characterizing temporally structured
latent states, with a wide variety of applications in neuroscience and
beyond.

Neural Computation 36, 437-474 (2024) © 2024 Massachusetts Institute of Technology
https://doi.org/10.1162/neco_a_01646

d-ajo11B/098U/NPa W I08IIP//:d1Y WOy papeojumog

0 & 009U/E009EET/LEVIEIIENP!

20z Aeniga4 gz uo Jasn Aseiqi Ajisiaalun uoyeould Aq jpd op9lL


mailto:
mailto:
mailto:
https://doi.org/10.1162/neco_a_01646

438 A.Jha, Z. Ashwood, and J. Pillow

1 Introduction

Obtaining labeled data is a key challenge in many scientific and machine
learning applications. Active learning provides a solution to this prob-
lem, allowing researchers to identify the most informative data points and
thereby minimize the number of examples needed to fit a model. Bayesian
active learning, also known as optimal or adaptive experimental design
(Verdinelli & Kadane, 1992; Chaloner & Verdinelli, 1995; Cohn et al., 1996;
Ryan et al., 2016), has had a major impact on a variety of disciplines, includ-
ing neuroscience (Lewi etal., 2007; Lewi et al., 2009; Lewi et al., 2011; DiMat-
tina & Zhang, 2011; Gollisch & Herz, 2012; Shababo et al., 2013; DiMattina
& Zhang, 2013; Kim et al., 2014; Park et al., 2014; Pillow & Park, 2016), psy-
chology (Watson & Pelli, 1983; Myung et al., 2013; DiMattina, 2015; Watson,
2017; Bak & Pillow, 2018), genomics (Steinke et al., 2007), and compressed
sensing (Seeger, 2008; Seeger & Nickisch, 2008; Vasisht et al., 2014).

The general setting for Bayesian active learning involves a probabilistic
model P(y | x, 0), in which a parameter vector 6 governs the probabilistic
relationship between inputs x and labels or outputs y. To improve learning
of §, we wish to select inputs {x;} that will allow us to best estimate 6 from
the resulting data set {x;, y;}!_;. In standard fixed-design experiments, the
inputs are selected in advance or drawn randomly from a predetermined
distribution. In adaptive or closed-loop experiments, by contrast, the inputs
are selected adaptively during the experiment based on the measurements
obtained so far. Bayesian active learning methods provide a framework for
optimally selecting these inputs, where optimality is defined by a utility
function that characterizes the specific learning objective (MacKay, 1992;
Cohn et al., 1996; Roy & McCallum, 2001; Pillow & Park, 2016).

Despite a burgeoning literature, the active learning field has devoted rel-
atively little attention to latent variable models (but see Cohn et al., 1996;
Hefang et al., 2000; and Anderson & Moore, 2005). Latent variable models
(LVMs) represent a class of highly expressive models with a vast range of
applications. In neuroscience, they have provided powerful descriptions of
both neural population activity (Rainer & Miller, 2000; Kemere et al., 2008;
Miller & Katz, 2010; Yu et al., 2009; Chen et al., 2009; Escola et al., 2011; Lin-
derman et al., 2016; Glaser et al., 2020; Zoltowski et al., 2020; Jha et al., 2021)
and animal behavior (Wiltschko et al., 2015; Calhoun et al., 2019; Ashwood
et al,, 2022; Bolkan et al., 2022; Weilnhammer et al., 2021; Zucchini et al.,
2008).

A particular class of LVMs, namely hidden Markov models with gen-
eralized linear model observations (GLM-HMMs), has recently been used
to identify internal states from animal behavior during decision making
(Ashwood et al., 2022; Bolkan et al., 2022; Yin et al., 2023). The latent states
in GLM-HMMs allow them to capture multiple behavioral strategies that
an animal uses while performing a decision-making task. However, these
models require large amounts of data to obtain accurate fits. In past work,
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Active Learning for Discrete Latent Variable Models 439

GLM-HMMs have only been applied to data sets containing many sessions
collected across multiple days, weeks, or months. This heavy data require-
ment motivated us to develop an active learning method for GLM-HMMs
as well as more general classes of discrete LVMs. Active learning, in such
a setting, can allow us to adaptively select the stimulus that will reveal the
most information about the animal’s full set of decision-making strategies
and thus reduce the number of trials needed to characterize the internal
states underlying its behavior.

The key feature of latent-variable-based regression models is the rela-
tionship between input x and output y, mediated by an unobserved or
hidden state variable z. This provides such models with the flexibility to
describe internal states of the system that cannot be observed directly. How-
ever, this flexibility comes with a cost: the likelihood (and, by extension, the
posterior) in LVMs is usually not available in closed form. This complicates
posterior inference and the calculation of expected utility, both required for
Bayesian active learning algorithms.

To address this gap in the literature, we introduce a Bayesian active learn-
ing framework for discrete latent variable models.! We develop methods
based on both Markov chain Monte Carlo (MCMC) sampling and vari-
ational inference to efficiently compute information gain and select in-
formative inputs in adaptive experiments. We illustrate our framework
with applications to two specific families of latent variable models: (1)
a mixture of linear regressions (MLR) model and (2) input-output hid-
den Markov models with generalized linear model (GLM) observations
(GLM-HMM). We compare the efficiency of different methods, includ-
ing a recent method based on amortized inference using deep networks
(Foster et al., 2021), and show that in both model families, our approach
provides dramatic speedups in learning model parameters over previous
methods.

2 Related Work

Bayesian active learning methods have been developed for a wide range of
different models, from generalized linear models (Chaloner, 1984; Paninski,
2005; Khuri et al., 2006; Lewi et al., 2007, 2009, 2011; Bak et al., 2016; Bak &
Pillow, 2018) to neural networks (Cohn et al., 1996; DiMattina & Zhang,
2011, 2013; Cowley et al., 2017; Gal et al., 2017; Kirsch et al., 2019; Wu et al.,
2021).

One body of work has focused on Bayesian active learning for mod-
els with implicit likelihoods (Kleinegesse & Gutmann, 2020; Ivanova
et al., 2021). Another recent line of work has focused on general-purpose

1Cocle available at https://github.com/97aditi/active_learning_latent_variable
_models.
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real-time active learning using amortized inference in deep neural net-
works, an approach known as deep adaptive design (DAD; Foster et al.,
2021). However, the literature on active learning for latent variable mod-
els is sparse, limited to a few specific model classes and tasks such as den-
sity modeling (Cohn et al., 1996; Hefang et al., 2000) and state estimation
for standard HMMSs (Anderson & Moore, 2005). The approach we develop
here grows out of previous work on Bayesian active learning methods for
generalized linear models (Lewi et al., 2007, 2009; Houlsby et al., 2011; Bak
& Pillow, 2018). Our primary contribution is to extend these methods to
discrete latent variable models, especially those used in neuroscience.

3 Discrete Latent Variable Models (LVMs)

Before turning to the problem of active learning, we provide a brief descrip-
tion of discrete latent variable regression models. The model has two basic
components: a prior over the latent variable and a conditional distribution
of the response given the stimulus and latent. Formally, this model archi-
tecture can be expressed by a pair of equations,

z~ P(z]6), (3.1)
yIxz~Pylxz0), (3.2)
wherez € {1, ..., K} is a discrete latent variable governing the internal state

of the system, x € R is the input or stimulus, y € ) is the response (which
may be continuous or discrete), and 6 € Q denotes a set of model parame-
ters governing both prior and conditional response distributions. Figure 1A
shows an illustration of an example discrete latent variable model, where
the conditional distribution of the response given the stimulus and latent is
given by a generalized linear model. The discrete latent variable z governs
which of the three generalized linear models determines the response for a
given trial.

They key difficulty in working with latent variable models is that
the conditional probability of the response given the stimulus requires
marginalizing over the latent variable. This conditional distribution is given
by

K
P(y|x.0)=)Y Ply|x.z=k0)Pz=k|0), (3.3)
k=1

which involves a numerical sum over all possible values of the latent state.
In models where the latent variable exhibits additional structure, such as
hidden Markov models (HMMs), computing this sum relies on specialized
algorithms, which we discuss in more detail below.
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B infomax learning for closed-loop experiments

discrete latent variable regression model
1. present input & measure output
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Figure 1. Discrete latent variable regression models and infomax learning.
(A) Schematic of a discrete latent variable model for regression settings. The
response y of the model given a stimulus x and a latent z is produced by gen-
eralized linear models. Here the discrete latent variable z determines which of
the three generalized linear models at the bottom determines the input-output
mapping on any trial. (B) Infomax learning for discrete latent variable models.
On trial t, present an input x; to the system of interest (e.g., a mouse perform-
ing a decision-making task) and record its response y;. We assume this response
depends on the stimulus (input), as well as an internal or latent state z;, as speci-
fied by the model P(y; | x;, z, 0). Second, update the posterior distribution over
model parameters 6 given the data collected so far in the experiment, D; = {x1,
Y1}, using either MCMC sampling or variational inference. Third, select the in-
put for the next trial that maximizes information gain or the mutual information
between the next response y;,; and the model parameters 6.

input

information
gain

4 Infomax Learning

The general goal of active learning is to select inputs that will allow us to
infer the model parameters 6 using as few samples as possible. Bayesian
active learning formalizes this in terms of a utility function that specifies
the goal of learning, for example, to maximize mutual information (Lewi
et al., 2009), minimize mean-squared error (Kuck et al., 2006), or minimize
prediction error (Cohn et al., 1996; Roy & McCallum, 2001).

Here we select mutual information as our utility function, specifically the
mutual information between response y and the model parameters 6, con-
ditioned on the input x. Intuitively, this rule corresponds to selecting the
stimulus for which the resulting response will provide the greatest reduc-
tion in uncertainty about the model parameters, quantified in bits. Active
learning with mutual information as utility is commonly known as infomax
learning, and it has been widely applied in both machine learning and neu-
roscience settings (MacKay, 1992; Lewi et al., 2007; Lewi et al., 2009; Park
et al., 2014; Houlsby et al., 2011; Pillow & Park, 2016; Bak & Pillow, 2018;
DiMattina & Zhang, 2011).
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Typical frameworks for infomax learning involve a “greedy” approach,
where inputs are selected one at a time to maximize information provided
by y about 6 on each trial. In this setting, the experimenter selects the stim-
ulus x; on trial t according to

x¢ = argmaxI(0,y | x, D;_1), (4.1)
X

where I represents mutual information, y is the (as yet unobserved) re-
sponse on trial t, while also conditioning on D;_; = {(X;, yr) tr;ll, the
stimulus-response data collected previously in the experiment. This selec-
tion rule is equivalent to saying that we maximize the expected informa-
tion gain about # or minimize the expected entropy of the posterior over 6
(MacKay, 1992).

The mutual information (also known as Shannon information) between
yand 6 given x and D;_; can be written in several equivalent forms (Cover

& Thomas, 1991), one of which is
10;y1%x,Di1)=Hy; x,Dr1) —Hy 10 ; x,D;1), (4.2)

where the second term denotes the conditional entropy of y given 6, given
by

Hyl0; x,Dyq) = —/ / Py, 6 | x,D;—1)logP(y | 0, x, Dy_1)dydo, (4.3)
QJy

and the first term is the marginal entropy of y:
HW: x D) = = [ P Ix Di)logPy | x. Dea)dy, (4.4)
Y

where both terms are conditioned on the stimulus x and previously col-
lected data D;_;. In the above expressions, the integrals over y can be re-
placed by sums when y is discrete.

Note that for the entropy terms defined above, we use a semicolon to
denote a quantity that is conditioned on a particular value of a random
variable, and a vertical line to denote a conditional entropy, which by defi-
nition requires marginalizing over the random variable in question. Hence,
H(y |0 ; x,D;_1) denotes the conditional entropy of y given 6 (which in-
volves an integral over #) while conditioning on the specific input x and
data from all previous trials D;_;.
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5 Infomax Learning for Discrete LVMs

The challenge in applying infomax learning to latent variable models is that
the posterior over the model parameters, P(0 | D;_1), as well as the con-
ditional response distribution, P(y | 6, x, D;_1), are not available in closed
form due to the fact that they require marginalization over the latent vari-
able. In fact, for discrete latent variable models, these distributions are not
even guaranteed to be unimodal (unlike in generalized linear models, for
example). Furthermore, the marginal response distribution P(y | x, D;—1) (in
equation 4.4), requires marginalizing the conditional response distribution
over the parameters,

Py 1% Dr2) = [ P10, D) PO | Da) o, (5.1)

which exacerbates the problem of rapidly computing and optimizing the
mutual information between trials.

To overcome this challenge, we develop two different approaches for
infomax active learning in discrete latent variable models: one based on
sampling (Houlsby et al., 2011; Bak & Pillow, 2018) and another based on
variational inference (VI) (Blei et al., 2017), which we describe in the next
two sections.

Figure 1B shows an illustration of infomax active learning for discrete
LVMs in the context of a neuroscience experiment. On trial ¢, the animal
receives an input x; and generates a response ;. We then update the pos-
terior distribution over 6 given all previous data using either an MCMC-
sampling-based method (see section 5.1) or a variational inference method
(see section 5.2). We use samples from these posteriors to evaluate the ex-
pectations required for computing mutual information and select the stim-
ulus x for trial t 4 1 that maximizes I(y;+1. 6 | x, D), the conditional mutual
information between the response and model parameters.

5.1 MCMC Sampling-Based Method. First, we propose a method for
infomax learning of discrete latent variable models that relies on Markov
chain Monte Carlo (MCMC) sampling. Specifically, we use Gibbs sampling
to draw samples of 6 from P(6 | D;_1), the posterior distribution over pa-
rameters given the data collected so far in the experiment. These samples
are then used to evaluate the conditional mutual information gain, as de-
scribed below.

Gibbs sampling allows us to obtain an alternating chain of samples of
the latents zy;—1 and the model parameter 6 from their joint conditional
distribution P(0, z1:4—1 | D¢—1). We then discard the latent samples and keep
only the samples of 6, {6/ }I}i 1 ~ P(6 | D;_1), for some number of samples M,
thus marginalizing over the latents. This, however, is not trivial for models
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where the conditional P(6 | z1;_1, D;_1) is not available in closed form (such
as GLM-HMMs). We developed a modified version of Gibbs sampling for
such cases, which we discuss in detail in section 7.

Each sample 6/ parameterizes a model with conditional probability
of the response y given by P(y | 07, x, D;_1), which can be evaluated by
marginalizing over the discrete latents (using equation 3.3). This allows us
to compute the marginal probability of the response y conditioned on the
stimulus and past data:

1< ,
Py 1% D) % 22> Py | 67,%, Dpa). (5.2)
j=1

Using these conditional and marginal response probabilities, we can next
compute sample-based versions of the entropy terms (see equations 4.3 and
4.4) as follows:

1 M , ,
Hy|0; x,Di_1) =~ i Z/;}P(y | 67,x,Dy_1)log P(y | 6/, x, Dy_1)dy (5.3)
j=1

and
H: x D) = [ PO/1x D) log Py | . Deoi)y (5.4)
w/ <1§:P(y|01,x,Dt1)>
y\M =
1 U .
x log (M ;P(y |67, x, Dt—l)) dy. (5.5)

Substituting equations 5.3 and 5.5 into the expression for mutual informa-
tion (see equation 4.2), we obtain a convenient form for the mutual infor-
mation that we use in our experiments:

1< .
105 y 1% D)~ 123 Dia (P 107, % D) [Py | X, D)), (5:6)
j=1

where Dy; is the Kullback-Leibler (KL) divergence, a measure of how dif-
ferent one probability distribution is from another. Here,

Dk (P(y | 67, x, Di—1) || P(y | X, Di—1))

P(y 1 6/,x, Dy—1)

P 1% D) 67

= / P(y | 6/, x, Di_1)log
y
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In our experiments for which y € R, we discretize y, allowing us to replace
the integrals over y in the above expressions with sums.

Equation 5.6 makes clear that information-based active learning can
be equivalently seen as comparing the prediction of the models given by
each of the M samples, P(y | 07, x, Dy_1), with the average model predic-
tion P(y | x, D;_1), and choosing the input that maximizes the average dif-
ference between predictions of individual models and the consensus model.
This shows that infomax learning can also be seen as a form of query-by-
committee (Settles, 2009). This sample-based formulation of infomax learn-
ing has also been referred to as Bayesian active learning by disagreement
(BALD) (Houlsby et al., 2011; Gal et al., 2017).

5.2 Variational Inference (VI) Method. While Gibbs sampling allows
us to accurately draw samples of the model parameter 6 from its posterior
P(0 | D;—1), it is often slow and computationally inefficient. As an alterna-
tive, we therefore explored the use of variational inference (VI) (Blei et al.,
2017) to compute a computationally efficient approximation to the poste-
rior distribution over the model parameters P(6 | D;_;). Vlis typically faster
than Gibbs sampling, but may be less accurate as it requires use of a sim-
plified approximation to the posterior distribution over model parameters.

Here we use mean-field variational inference, which assumes that the
model parameters and the latents are independent of each other,

q(0, z14-1) = 91(0)q2(z14 1), (5.8)

where g1 and g, represent the approximate variational posteriors over § and
z14-1, respectively. We first assume simple tractable distributions to be the
prior distributions over 6 (such as a multivariate gaussian) and over the
latents (such as an independent categorical distribution for z at every trial).
We then use coordinate ascent to optimize the parameters of these assumed
distributions in order to minimize the Kullback-Leibler divergence between
the approximate and true posteriors:

7:1(0)q5(z14—1) = argmin Dgy (97(0)95(z16-1) || P(0, z14—1 | Di—1)). (5.9)
q;(0)q3(z1:4-1)

We describe the coordinate ascent update steps in detail for the model
classes that we consider in the appendix (see sections A.2 and A.6).
However, having an approximate posterior over 6 is insufficient to com-
pute mutual information in closed form in the setting of discrete LVMs. The
conditional response distribution p(y; | x, D;—1), which is required to com-
pute the conditional entropy of y given 6, as well as the marginal entropy
of y, is still not available in closed form. Hence, we instead draw samples
of the model parameter {6/ }]]Vi , from the variational posterior 4;(0) (i.e., as
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opposed to the true posterior, which we use in case of Gibbs sampling)
and then use these samples to compute mutual information as described
in equation 5.6. Overall, this approach is much faster than the MCMC
sampling—based method because it does not require Gibbs sampling to ob-
tain samples from the posterior over model parameters 6.

6 Mixture of Linear Regressions (MLR)

We now illustrate the power of our proposed infomax learning methods
with applications to specific latent variable models, the first of which is a
mixture of linear regressions (MLR) model. This simple model has a surpris-
ingly rich history in machine learning (Li & Liang, 2018; Gaffney & Smyth,
1999; Bengio & Frasconi, 1995). It consists of an independent mixture of K
distinct linear-gaussian regression models (see Figure 2A). Given an input,
x € RP, the corresponding output observation y € R arises from one of the
K components as determined by the latent state z € {1, ..K}. Formally, the
model can be described as

z¢ ~ Cat(r), (6.1)
Y | (e, ze = k) ~ N(XtTWk» 02), (6.2)

where 7 € AX~1 denotes a discrete or categorical distribution over the set
of K mixing components, w; € RP denotes the weights of the linear regres-
sion model in state k, and o2 denotes the observation noise variance. For
simplicity, we assume here that % is known, so the model parameters to be
learned are given by 6 = {wy.x, 7}.

6.1 Fisher Information Analysis. Before applying our algorithm to the
MLR model, itis worth asking whether there is any hope that infomax learn-
ing will be helpful in this setting. In the standard linear-gaussian regres-
sion model with gaussian prior, it is straightforward to show that posterior
covariance of the model weights w is given by (C;' + S xx )
where Cy is the prior covariance. This expression is independent of the out-
puts {y;}, which means that our uncertainty about the model parameters
does not depend on the data we observe during the experiment. This im-
plies that information gain is also independent of {y;}, which means that
an optimal design can be planned out prior to the experiment and there is
no benefit to taking into account the output y; on each trial when selecting
the next input x;1 (Chaloner, 1984; MacKay, 1992). Adaptive experimental
design thus provides no benefit for the standard linear-gaussian regression
model.

Intriguingly, however, we show that this does not hold for the MLR
model; adaptive design can give large improvements over fixed designs
for a mixture of linear models! We can analyze the potential benefits of
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Figure 2. Infomax learning for mixture of linear regressions (MLR) models.
(A) Model schematic. At time step ¢, the system is in state z; = k with proba-
bility 7. The system generates output y; using state-dependent weights wy and
independent additive gaussian noise (see equation 6.2). (B) Example two-state
model with two-dimensional weights w; = (1, 0) and w, = (-1, 0). We con-
sider possible inputs on the unit circle, which are the information-maximizing
inputs for a linear gaussian model under an L, norm constraint. (C) Fisher in-
formation as a function of the angle between w; and the input presented to the
system for different noise variances o2. (D) Comparison between infomax active
learning (using MCMC sampling and VI methods), DAD and random sampling
for the 2D MLR model shown above with mixing probabilities 7 = [0.6, 0.4]
and noise variance o2 = 0.1. Error bars reflect 95% confidence interval (stan-
dard error) of the mean across 20 experiments. (E) Performance comparison
for the same two-state model but with 10-dimensional weight vectors and in-
puts. The possible inputs to the system were uniform samples from the 10D unit
hypersphere.

active learning by considering the Fisher information, which quantifies the
asymptotic performance of an infomax learning algorithm (Paninski, 2005).
The Fisher information matrix for a model with parameters 6 is a matrix

with i, j’th element J;; = E [(ﬁ log P(y | x, 6)) (ﬁ log P(y | x, 9))], where
expectation is taken with respect to P(y | x, #). For an MLR model in D di-
mensions with K components, the Fisher information matrix for the weights

given an input vector xis a KD x KD matrix whose i, j’th block is given by

1
Jiin(x) = QE[(‘V —x'wi)(y—x'W)Pz=1i|y.x,0)P(z=j |y, x,0)]xx",
6.3)
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where expectation is taken with respect to P(y | x, 0), the marginal re-
sponse distribution conditioned on the stimulus (see section A.4 for de-
tails). Although this expectation cannot generally be computed analytically
(Behboodian, 1972), we can compute it for two extremal cases of interest:
(1) perfect identifiability, when the response y gives perfect information
about the latent variable z, and (2) perfect nonidentifiability, when the re-
sponse provides no information about the latent variable.

To illustrate these two cases, Figure 2B shows an example MLR model
with two 2D weight vectors pointing in opposite directions along the x:-
axis. If observation noise variance o2 is small, an input input x = [1, 0], cor-
responding to a unit vector with a 0 degree orientation, yields a response
that makes the latent state perfectly identifiable, since the response will be
large and positive if z = 1 and large and negative if z = 2. On the other hand,
an input at 90 or 270 degrees gives rise to perfect nonidentifiability; these
inputs are orthogonal to both wy and wy, so observing the output y will
provide no information about which model component (weights w; or wy)
produced it.

In the case of perfect identifiability, the Fisher information matrix sim-
plifies to a block diagonal matrix with mxx" in its ith diagonal block
(see section A.4). The trace of the Fisher information matrix, which quanti-
fies the total Fisher information provided by this input, is % [1x]|?, which—
remarkably—is the same Fisher information as in the standard (nonmix-
ture) linear regression model. In the case of nonidentifiability, the Fisher
information is a rank 1 matrix with block i, j given by Lmjxx". In the
case where all class prior probabilities are equal (7; = 1/K Vi), the trace is
only 23 |x|[?, revealing that nonidentifiable inputs can provide as little as
1/K as much Fisher information as inputs with perfect identifiability. The
dependence on the number of components, K, is worth noting as it sug-
gests that active learning yields larger improvements for models with more
components.

Figure 2C shows the (numerically computed) Fisher information as a
function of input angle for the MLR model shown in panel B, for differ-
ent noise levels o2. This confirms the analytic result that Fisher information
for this two-state MLR model is half its maximal value for inputs in the non
identifiable region, and shows that this suboptimal region grows wider as
noise variance increases. This analysis confirms that active learning can im-
prove MLR model fitting and shows that the most informative inputs are
those that provide information about the discrete latent variable.

6.2 Infomax Learning Algorithm for MLR. To quantify the potential
usefulness of active learning for MLR models, we implemented both the
MCMC-sampling and VI-based methods for infomax learning of the MLR
model parameters § = {w.x, 7}. For the MCMC-sampling-based method,
we used Gibbs sampling (Bishop, 2006) to obtain samples from the poste-
rior over model parameters For the VI method, we updated the variational
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parameters of the approximate posterior distribution after each trial, then
drew samples of the model parameters from the variational posterior. (See
sections A.1 and A.2 for details.) Thus, for both methods, we began by gen-
erating M = 500 samples of the model parameters, {w]_ ., 7/ }I}i 1

Then, to evaluate mutual information and select a stimulus, we com-
puted the mutual information between the output y and the parame-
ters 0 for a grid of candidate inputs by substituting the likelihood term,
P(y|6/,x, D) =YK, 7/ N(y | w| - x, 0?), into equation 5.6. Finally, we se-
lected the input x that maximized equation 5.6 and presented it to the sys-
tem on the next trial.

6.3 Numerical Experiments for MLRs. We performed two different nu-
merical experiments to evaluate our active learning framework for MLRs.
In the first experiment, illustrated in Figure 2B, we considered a grid of
possible inputs on the unit circle, spaced 10° apart. (This was motivated
by the fact that the optimal stimuli for the linear regression model have
maximal L, norm and thus lie on the surface of a hypersphere centered at
zero.) On every trial, we selected an input from this set and sampled the
output from one of K = 2 regression models. We fixed the state probabil-
ities as w = [0.6, 0.4]. The regression models had the form y; = Wi Xt + €,
where we fixed the generative parameters as wi; = [—1, 0], w, = [1, 0], and
e ~N(0,0.1).

Our second experiment followed the same setup, but we selected inputs
from a set of 1000 candidate points sampled uniformly on the 10D hyper-
sphere. The output again arose from one of the two regression models, now
with weights oriented along the first two major axes, w; = [1, 0, ..., 0] and
wy = [0,1,0...0], again with mixing weights = = [0.6, 0.4].

The task at hand is to learn the generative parameters of the model:
{w1, wp, 7}. We compared several input-selection strategies including our
two (MCMC and VI-based) infomax learning methods, and the deep adap-
tive design (DAD) method proposed by Foster et al. (2021), as well as a
random sampling method that selected inputs uniformly from the set of
all possible inputs. For the DAD method, we adapted the publicly avail-
able code to use it for input selection in MLRs (details in section A.3). In all
cases, after each trial, we used MCMC sampling-based inference to quan-
tify performance of the various methods.

A natural quantity to track during infomax learning is the entropy of
the posterior distribution over the model parameters 6 (Bak & Pillow,
2018), which we approximate as log(|cov(6)|) (we drop the additional term
%(1 +2m) as it is constant for our experiments). We computed the sam-
ple estimate of this posterior entropy using the M = 500 samples obtained
from MCMC sampling after every trial. We found that posterior entropy de-
creased fastest for our infomax algorithm with MCMC sampling (MCMC-
infomax, top panel of Figure 2D). In 10D, this difference was even more
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prominent (top panel of Figure 2E). We also tracked the root mean squared
error (RMSE) between the true and estimated parameters. The bottom panel
of Figure 2D shows that for the 2D simulation, RMSE decreased fastest for
MCMC-infomax stimulus selection.

Finally, Figure 2E shows that in a model with 10D inputs, RMSE de-
creased fastest for MCMC-infomax, followed by infomax with variational
inference (VI-infomax). This shows that evaluating information gain using
samples from the true posterior produced substantially better learning than
with samples from the variational posterior. Furthermore, while DAD was
comparable to VI-infomax when learning two dimensions, it did not per-
form well for high-dimensional inputs. While DAD is a powerful general-
purpose active learning method, these results emphasize the need for an
active learning method tailored for discrete latent variable models. We feel
these results were particularly impressive given that RMSE was not the
objective function we optimized, as infomax-learning is distinct from learn-
ing algorithms with an MSE loss function. Overall, our proposed MCMC-
infomax algorithm produced highly sample-efficient learning of MLRs in
comparison to other methods.

In the case of 2D inputs, this improvement can be attributed to the fact
that Fisher information drops dramatically when the angle between the
weight vectors and the input is close to 90° or 270° (as discussed above).
Hence, our infomax learning outperformed random sampling by avoiding
the uninformative inputs orthogonal to the model weights. Figure 3 shows
that our method did indeed avoid these inputs. As the Fisher information
analysis given above makes clear, higher dimensionality leads to increased
probability that randomly selected inputs will fall in the region of noniden-
tifiability (i.e., be orthogonal to all of the model weight vectors wy), given
that random vectors in high dimensions have high probability of being or-
thogonal (Gorban & Tyukin, 2018). This aligns with our finding that the
benefits of active learning are more pronounced in higher dimensions.

6.4 Application: California Housing Data Set. To examine perfor-
mance in a real-world setting, we applied infomax learning to the Califor-
nia housing data set of Kelley Pace and Barry (1997). This data set contains
median 1990 house prices for 20,640 census block groups along with eight
predictors, and is accessible via scikit-learn (Pedregosa et al., 2011). We fit
MLRs with different numbers of states to a reduced data set of 5000 sam-
ples and found that a three-state MLR described the California housing data
set well (see Figure 4C) and offered a dramatic improvement in predictive
power relative to standard linear regression (a one-state MLR). Figures 4A
and 4B show the best-fitting mixing weights and state weights for this three
state MLR.

Next, we wanted to understand if infomax learning would allow us
to learn the best-fitting three state MLR parameters with fewer sam-
ples. Figures 4D and 4E show that MCMC-infomax learning did indeed
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Figure 3. Left: Histogram showing the inputs selected by our MCMC-infomax
active learning method for 200 trials using a mixture of linear regressions (MLR)
model with inputs on a 2D circle (mutual information for MLRs is symmetric
along the vertical axis in Figure 2; hence, we show only inputs in the range of 0 to
180°) This shows a drop in probability at 90°, which is predicted by our analysis
of Fisher information (see Figure 2C). Right: Equivalent histogram for the DAD
method, which did not show the same tendency to avoid inputs at 90°. Instead,
the inputs selected covered the unit circle with modes appearing at multiples of
approximately 30°. We are unsure why this is the case. (Note that DAD requires
a continuous range of inputs; hence, it selected inputs on the entire unit circle
as opposed to a discrete set.)

substantially reduce the number of samples required to learn the model
parameters.

In Figure 4B, it is clear that the three discrete states differed most accord-
ing to the weights placed on the AveOccup (average occupancy), Latitude,
and Longitude covariates. Intriguingly, in Figure 4F, we see that the inputs
selected by infomax learning had greater variance for the Latitude and Lon-
gitude covariates compared to those selected with random sampling (the
red crosses are always above the blue dots). This is a useful external valida-
tion that infomax selects inputs in a manner that accords with intuition.

7 Hidden Markov Models

Hidden Markov models (HMMs) represent a class of structured discrete
latent variable models that are richer and more powerful than the simple
mixture models we have already considered. In a mixture model, the latent
state is independent and identically distributed on each trial, meaning that
the posterior distribution results from a product of conditionally indepen-
dent likelihood terms. Reordering the data points would have no effect on
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Figure 4. Application of infomax learning to California housing data set (Kel-
ley Pace & Barry, 1997). (A) Best-fitting mixing weights for three-state MLR to
5000 samples of the data set. (B) Best-fitting state weights for three state MLR
to 5000 samples of the California housing data set. Orange, green, and blue rep-
resent states 1, 2, and 3, respectively. Black represents the linear regression fit.
(C) BIC as number of MLR states is varied from 1 (standard linear regression) to
5. We select the three-state model as BIC begins to level off beyond three states.
(D) Posterior entropy between the three state MLR parameters obtained using
5000 samples (parameters shown in panels A and B) and recovered parame-
ters as a function of the number of samples for random sampling (blue) and
MCMC-infomax sampling (red). Error bars reflect 95% confidence interval of
the mean across 10 experiments. (E) The same as in panel D but for the RMSE
(root mean squared error). (F) Visualization of standard deviation of 500 inputs
selected by both infomax (red) and random sampling (blue). Each dot corre-
sponds to a different experiment. An examination of panel B makes it clear that
the three states differ most according to the weights placed on the AveOccup,
Latitude, and Longitude covariates. All 10 infomax experiments select inputs
with greater variance for the latitude and longitude covariates than are selected
by the random sampling experiments.

the posterior distribution over the model parameters. In an HMM, by con-
trast, the latent state depends on the state in the previous trial, which intro-
duces sequential dependencies between the observations. HMMs therefore
provide a natural modeling framework for systems whose states evolve in
time (e.g., neurons, ecosystems, artificial and biological organisms). Learn-
ing the parameters of an HMM, however, requires large amounts of data,
which makes them a natural candidate for active learning.

Here we consider HMMs designed for input-output data, in which the
mapping between inputs and outputs depends on a latent state governed
by an HMM. This general model family is commonly known as the input-
output hidden Markov model (I0-HMM) (Bengio & Frasconi, 1995). In an
IO-HMM with K discrete states, the observed output y; depends on the cur-
rent state, z; € {1, ..K}, as well as an input vector x; € RD.

Recent work in neuroscience has focused on a class of IO-HMMSs in
which the input-output mapping is parameterized by a generalized linear
model (GLM), resulting in a model known as the GLM-HMM (Escola et al.,
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2011; Calhoun et al., 2019; Ashwood et al., 2022; Bolkan et al., 2022). Here,
we consider the Bernoulli GLM-HMM, which assumes that the outputs
are binary, y; € {0, 1}, and are produced according to state-specific GLM
weights, wy € RP:

1

P(yt=1|xt,zt=k)=m~

(7.1)

We assume that as in the standard HMM, state transitions are governed by
a stationary, input-independent transition matrix, A € REXK where

Ajp =Pz =11]z-1=1) (7.2)

is the probability of transitioning from state 7 to state [ on any trial. The first
state z; has prior distribution 7 € AK~!. The GLM-HMM model parameters
are thus 0 = {wy.x, A, 7).

To perform infomax learning for GLM-HMMs, after each trial, we use
Gibbs sampling to first iteratively sample the latent states {z, ..., z]} for
all trials observed so far given the model parameters 6, and then sample
the model parameters 6 conditioned on these sampled latents (step 2 in
Figure 1). Gibbs sampling-based inference for HMMs is well-known
(Ghahramani, 2001). However, when we use Bernoulli-GLM observations,
the conditional distribution over {wy.x} is no longer available in closed
form since there is no conjugate prior distribution for the weights of a
Bernoulli GLM. Thus, we developed a method for sampling {w.x} using
Laplace approximation (see section A.5 for details). An alternative strategy
for sampling from logistic models involves using Polya-Gamma augmen-
tation (Polson et al., 2013; Pillow & Scott, 2012). We compared these two
approaches and found that our Laplace-based approach performed equally
well to Polya-Gamma augmentation (see section A.7), thus empirically val-
idating our method.

For comparison, we also developed an approximate infomax learning al-
gorithm using variational inference (VI). We used mean-field VI to obtain
posterior distributions over the model parameters 6. Because there is no
conjugate prior for the GLM weights {w1.x}, we used the Laplace approx-
imation to approximate their posteriors (see section A.6). After updating
the variational posterior distribution on each time step, we drew samples
of model parameters from their variational posteriors in order to evaluate
the information gain associated with each candidate stimulus.

During infomax learning with GLM-HMMs (step 3 of Figure 1), we used

Z]Vi 1, to compute the

mutual information between the output and the model parameters accord-
ing to equation 5.6. Here, the likelihood for the GLM-HMM is

M = 500 samples of the model parameters, {w{:K, Al ly
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K
P(y|0/,x, D)= Plz=k| D, 60/)P(y | x,z=k), (7.3)
k=1

where P(z = k | D, 67) can readily be obtained using the forward-backward
algorithm and P(y | x, z = k) is the Bernoulli-GLM likelihood function (see
equation 7.1). We computed the mutual information over a discrete set of
candidate inputs and then selected the most informative input to present
on the subsequent trial.

7.1 Numerical Experiments with GLM-HMM. To test our active learn-
ing methods, we sampled data from the three-state GLM-HMM, shown in
Figure 5B. We set the model parameters to closely approximate those from
mice performing a binary sensory decision-making task in previous work
(Ashwood et al., 2022). Each GLM has a weight (wy) associated with the ex-
ternal stimulus as well as a bias parameter (by), such that the GLM weight
vector is wi = {wy, bx}, and the input stimuli (x;) are one-dimensional. In
our experiment, we selected inputs from a grid of stimuli over the range
[-5. 5], spaced 0.01 units apart. Similar to the MLR setting, the task here
is to recover the true parameters of the GLM-HMM used to simulate data.
We compared the performance of our infomax learning methods (based on
either MCMC sampling or variational inference) as well as a random sam-
pling approach in which inputs were sampled uniformly at random. Deep
adaptive design (DAD; Foster et al., 2021) is not applicable in this setting as
it assumes trials to be independent and identically distributed (i.i.d.) and
thus we did not consider it.

We examined the performance of these three methods and found that
the posterior entropy over the model parameters decreased fastest under
MCMC-infomax, followed by VI-infomax and was slowest with random
sampling (see Figure 5C, left). We also observed that the RMSE between
the true and inferred parameters decreased much faster for our active learn-
ing methods (with best performance under MCMC-infomax) as compared
to random sampling for both the transition matrix A (middle panel of Fig-
ure 5C) and the GLM weights (right panel of Figure 5C). This suggests that
our infomax learning method can be used to fit GLM-HMMs using fewer
samples. It also reinforces our previous result that sampling from the exact
posterior substantially benefits infomax learning as compared to using the
variational posterior.

To understand why our framework outperforms random sampling for
the GLM-HMM, we plotted histograms of the inputs selected by random
sampling and by MCMC-infomax (see Figure 5D). While random sampling
selected inputs from the entire input domain, infomax learning rarely se-
lected inputs with a magnitude greater than 3. For more than three posi-
tive inputs, the sigmoid nonlinearity (see equation 7.1) is saturated for all
three models, so that sampled y; are 1 with high probability and are thus
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Figure 5. Infomax for GLM-HMMs. (A) Data generation process for the GLM-
HMM. At time step ¢, the system generates output y; based on its input x; and
the latent state z;. The system then either remains in the same state or tran-
sitions into a new state at trial f + 1, with the probabilities given by the en-
tries in the transition matrix A. (B) Example settings for the transition matrix
and state GLMs for a three-state GLM-HMM. These are the settings we use
to generate output data for the analyses shown in panels C and D. (C) Left:
Posterior entropy over the course of 1000 trials for random sampling (blue),
infomax with a single GLM (gray), infomax for the full GLM-HMM using vari-
ational inference (VI) and MCMC sampling (magenta and red, respectively).
Middle: Root mean squared error for the recovered transition matrix for each
of the three input-selection schemes (random/infomax with GLM/infomax
with GLM-HMM (MCMC)/infomax with GLM-HMM (VI)). Right: Root mean
squared error for the weight vectors of the GLM-HMM for each of the input-
selection schemes. (D) Selected inputs for random sampling (blue), active learn-
ing when there is model mismatch and the model used for infomax is a single
GLM (gray), active learning with infomax (using MCMC sampling) and the full
GLM-HMM (red). Selected inputs over the course of 1000 trials are plotted and
are shown on top of the generative GLM curves.

uninformative about the latent state. Similarly, for large-magnitude nega-
tive inputs, the y; samples are 0 with high probability for all three states.
As such, the outputs generated by these provide virtually no information
about the latents (necessary for updating the transition matrix) or the GLM
weights. Overall, infomax learning substantially reduced the number of
samples required to learn the parameters of the GLM-HMM.

To make our method practical for closed-loop experiments, it is critical
for it to compute new inputs quickly. For example, in the case of mouse
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decision-making experiments, consecutive trials occur within 1 to 10 sec-
onds (Pinto et al., 2018; International Brain Laboratory et al., 2020). Our cur-
rent implementation of infomax learning with Gibbs sampling (with a sin-
gle chain of 500 samples) requires up to 6 seconds per trial (on an 8-core M2
chip laptop, or equivalently on a 32-core Intel Skylake node), while that of
infomax learning with variational inference requires 3 to 4 seconds per trial.
However, we show in section A.7 that running infomax with five parallel
Gibbs chains of 100 samples each performs similar to a single 500-sample
chain, and provides a 5 times speed-up requiring 1 to 2 seconds per trial.
Additionally, we justify our choice of the length of the chain during Gibbs
sampling (500 samples) in section A.7. These results provide further evi-
dence that our infomax learning method is applicable across model settings.

7.2 Consequences of Ignoring Latent States. To assess the impor-
tance of latent structure on active learning methods, we benchmarked our
method against an additional input-selection scheme: infomax under con-
ditions of model mismatch. Specifically, we compared it to a strategy where
inputs were selected by infomax under the (mismatched) assumption that
responses arose from a single Bernoulli-GLM, with no latent states. This al-
lowed us to explore the effect of ignoring the presence of latent variables
when selecting inputs.

Figure 5D shows that the inputs selected by Bernoulli-GLM infomax
learning differed substantially from those selected by the full GLM-HMM
infomax algorithm. In particular, the Bernoulli-GLM method avoided se-
lecting inputs in both the center and the outer edges of the input domain. By
virtue of neglecting the outer edges, it outperformed random input selec-
tion (compare the gray and blue lines in all panels of Figure 5C). However,
the full GLM-HMM infomax method still performed best for learning the
weights and transition matrix of the true model (red lines in Figure 5C). The
significant drop in the performance when ignoring the presence of latent
states thus highlights the importance of developing active learning meth-
ods tailored specifically for latent variable models.

7.3 Downstream Application: Latent State Inference. GLM-HMMs are
often used to infer the underlying latent states during the course of an ex-
periment. To demonstrate the utility of our active learning approach for
downstream tasks, we compared infomax learning and random sampling
for predicting latent states across trials. We used the same generative GLM-
HMM as shown in Figure 5B, and trained two new distinct GLM-HMMs
using 400 input-output samples from the generative model. We trained
one GLM-HMM using inputs selected by infomax learning (MCMC-based
method) and another GLM-HMM using randomly selected inputs. Next,
we generated a set of 100 trials from the generative model and used the
two trained models to compute the posterior probability over the latents
given the observed data. Figure 6 shows that the GLM-HMM trained using
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Figure 6. Inferring latent states. (Top) The true latent states of the data-
generating GLM-HMM for 100 trials. (Middle) The posterior probabilities of
states using a GLM-HMM trained using infomax learning on 400 trials from
the data-generating GLM-HMM. (Bottom) The same for a GLM-HMM trained
using random sampling on 400 trials from the data-generating GLM-HMM.

infomax learning was able to infer the true states far better than the model
trained using random selection using the same number of trials.

7.4 Special Case: Mixture of GLMs. Finally, we evaluated infomax
learning for a special case of GLM-HMMs: a simple mixture of Bernoulli-
GLMs (MGLMs). Compared to standard GLM-HMMs, this model class
assumes that the probability that the system transitions to state k at trial
t +1is independent of the system’s state at trial £. MGLMs arise in a num-
ber of settings, including in medicine, transport modeling, and market-
ing (Farewell & Sprott, 1988; Follmann & Lambert, 1989, 1991; Wedel &
DeSarbo, 1995; Li, 2018). Formally, MGLMs contain K distinct GLM obser-
vation models where the state of the model, z € {1, ...K}, is independently
sampled at each time step from a distribution 7 € AK~!. Similar to the GLM-
HMM setup, observations are generated according to a Bernoulli GLM as
in equation 7.1. Infomax learning using Gibbs sampling for MGLMs in-
volves steps similar to those required for GLM-HMMs and is described in
section A.8.

We performed an experiment to assess the effectiveness of infomax
learning in this setting. Data were generated from a two-state MGLM
model (shown in Figure 7A) with 7 =[0.6,0.4] and the GLM weights
wy = [3, —6], wp = [3, 6]. We found that once again, our method outper-
formed random sampling-based learning and recovered the model param-
eters more accurately with fewer data points (see Figures 7B and 7C).
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A generative model B C
-4 —— infomax
— —— random 9
2}
© -6 8
£
7
2 s L
o D
= =
g-10 o,
B 12 4
a
3
14
500 1000 1500 2000 500 1000 1500 2000
input trial # trial #

Figure?7. Infomax learning for mixture of GLMs (MGLMs). (A) Data generation
model. Example settings for a two-state MGLM along with the mixing weights
for the two states. (B) Posterior entropy of model parameters over the course of
2000 trials for random sampling (blue) and infomax learning (MCMC-sampling
based) for MGLM (blue). (C) Root mean squared error for the recovered GLM
weights and mixing weights for each of the two input-selection schemes.

8 Discussion

We have developed novel methods for Bayesian active learning in discrete
latent variable models (LVMs). We applied these methods to two classes of
models: mixture of linear regressions and input-output HMMs. We showed
thatinfomax learning consistently achieved lower error and lower posterior
entropy than random input selection. Our method also outperformed active
learning methods that ignored the presence of latent variables and, for the
case of MLRs, the DAD method of Foster et al. (2021).

MLRs represent a powerful class of models despite having a relatively
simple mathematical formulation. This simplicity allowed us to theoreti-
cally validate our active learning method using Fisher information analysis
and, furthermore, interpret the inputs selected by our method. While MLRs
have not to our knowledge been previously applied in neuroscience, we feel
they may have useful applications to data with real-valued observations,
such as calcium imaging, EEG, MEG, fMRI, or behavioral pose modeling.
For example, we expect our method to be applicable to modeling calcium
imaging data in settings where those responses reflect a mixture of under-
lying causes or sources.

The success of our method in reducing the number of trials needed to
fit a GLM-HMM suggests that it could be used to adaptively select stimuli
during animal decision-making tasks. In traditional decision-making exper-
iments, the experimenter selects a stimulus independently at random on
each trial and then records the animal’s decision in response to that stim-
ulus. Fitting multistate GLM-HMMs (Ashwood et al., 2022; Bolkan et al.,
2022) requires multiple sessions and days to accurately capture decision-
making behavior. Using our framework, it may be possible to learn these
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parameters using data from a single session. Our method can allow exper-
imenters to adaptively select the most informative stimulus at every trial.
This could reduce the time and cost of experiments and thereby speed up
scientific discovery. Given the importance of LVMs in neuroscience (Escola
etal.,2011; Calhoun et al., 2019; Ashwood et al., 2022; Bolkan et al., 2022; Yin
et al., 2023) and other scientific domains, we envisage broad applicability
of our method.

Finally, we briefly discuss several limitations of our work. First, we have
only considered scalar as opposed to vector outputs. Extending to higher-
dimensional outputs may require alternate methods for computing infor-
mation, since the numerical integrals required for computing information-
theoretic quantities are computationally intractable in high dimensions.
Second, we selected maximally informative inputs from a discrete set of
candidate inputs on each trial. Future work may instead use optimization
to find optimal inputs in a continuous input space. A final direction for fu-
ture work is to consider GLM-HMMs in which state transitions also depend
on the input. Despite these limitations, our method substantially speeds up
the learning of systems characterized by latent variable models and will be
highly beneficial in neuroscience and other fields with time-consuming or
expensive experiments.

Appendix

A.1 Gibbs Sampling for MLRs. Here we describe the Gibbs sampling
algorithm for mixture of linear regressions models. Given T trials, for each
input-output pair, x; € RP and y: € R, we sample class belongings, z; €
{1, ..K}, from

N wi™x,, 027
Pz =k |y, x, wix, w,0) = 5 /(\%(yt. :vthxt a)z)km' (A1)

Next, we sample new estimates of the mixing parameters from
7 | zi.r ~ Dir(ng + 1), (A.2)

where 1y = 25:1 1(zy = k).
Finally, we assume a gaussian prior, N (wy, o2I), over the weights associ-
ated with each latent class and sample a new estimate for them as follows:

w}, = wo + (0FT + X X ") Xk " (Vi — Xiwo), (A4)

T=1-X" (021 + XX ") Xi. (A.5)
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Here, the rows of X € Ty x D and Y} € Ty x 1 contain inputs and outputs
at time points where z = k, respectively. We fix wg = 0 and o = 10 in our
experiments. We perform this procedure M times in order to obtain M sam-
ples of the model parameters, {w{:K, 7/ }Z}i 1» where M = 500 (excluding 100
burn-in samples) in our experiments.

A.2 Variational Inference for MLRs. Here, we describe mean-field
variational inference for MLRs, which we use to derive posterior distribu-
tions over the model’s parameters. Following mean-field approximation,
we assume independence between all the model parameters and the latent
variables.

Given T trials, for each input-output pair, x; € R and y; € R, we assume
that its mixture assignment z; € {1, ...K} is governed by an independent cat-
egorical distribution q(z; ¢;) where ¢; € AK=1. We further assume that the
weight wy € RP of the kth linear regression model has a normal posterior
distribution q(wy; ux, k), with mean p; € RP and covariance ¥ € RP*D.
Hence:

T K
q(wix, zur) = [ [ 9 o) [ | a(wis e Za)- (A.6)

t=1 k=1

Let us vertically stack ¢; fort € 1 : T and denote this by a matrix ¢ of size

T x K. Similarly, let X € RT*P represent the design matrix with all inputs

stacked and Y € RT*! contain all observations. Also, we know that each of

the linear regressions in the MLR model has gaussian noise with variance
2
o°.

We update the variational parameters ¢;, i1.x, and 1. iteratively using

the update rules described below. For each t € {1..T},
P o explyex: Elwe] — E[(x " e)1/2}. (A7)

Next, for each k € {1...K}, we assume a gaussian prior distribution over the
weights: N'(wo, o2I), we update the variational parameters governing the
weights as follows:

2k

-1
(UOZI 2 (6 xfx) , (A8)
= 35X (@40, (A9)

We fix wy = 0 and 02 = 10 in our experiments. We repeat these updates un-
til either the log-likelihood of the data arising from the model has converged
or a limit of 500 iterations has been reached.
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Once the variational posteriors have been learned, we draw M samples
each for the weights wy.x and the mixture assignments z;.r. Finally, using
the mixture assignments, we obtain M samples for the mixing probability =
by computing the proportion of trials assigned to each state. We set M = 500
in our experiments, thus obtaining {wy ., 7/}7%.

A.3 Training Details for Deep Adaptive Design (DAD). We down-
loaded the code for DAD and adapted it to perform input selection for
MLRs. The parameters of the MLR model were set to the same values as
described in section 6.3. Since the DAD model requires continuous inputs
rather than a discrete list of inputs, we allow it to choose inputs from the
unit circle in 2D and the unit hypersphere in 10D, rather than restricting it
to the discrete set of stimuli in section 6.3.

The DAD model has two components: the encoder network, which takes
in input-observation pairs {x, y} and outputs an encoding for this. This is a
feedforward neural network. We set this network to have three layers: the
input layer, which has three nodes for the first MLR experiment (2D inputs
and 1D observations) and 11 nodes for the second experiment (10D inputs
and 1D observations), a hidden layer with 256 nodes and ReLU activation
function, and a linear output layer with 16 nodes.

Following this, the encoded history is taken as input by an emitter net-
work. This network outputs the input for the next trial, x;. The input layer
of this feedforward network has the same dimensionality as the output of
the embedding layer: 16 nodes. It has one hidden layer with ReLU activa-
tion and 256 nodes, followed by a linear output layer with as many nodes
as the dimensionality of the input to the MLR model. We normalize the out-
put of this network to ensure that the selected x; lies on the unit circle /unit
hypersphere.

We do a hyperparameter optimization to select the number of hidden
layers and nodes from the range of values used in the experiments (num-
ber of hidden layers: 1-3; number of nodes per layer: 16/128/256) in the
original DAD (Foster et al., 2021) paper.

To compute the sPCE loss that DAD uses to optimize the two neural
networks, we use 500 samples each to compute the inner and outer ex-
pectations in the loss function. Since our experiments involve large num-
ber of trials (T = 200), we use a score gradient estimator to compute the
gradients that are backpropagated while training. Finally, we train the
model using Adam (with betas set to 0.8, 0.998) and use exponential learn-
ing rate annealing (where the initial learning rate is set to le-4 post a
search over the range le-5-1e-3, and y = 0.96) for a total of 50,000 gradient
steps.

A.4 Fisher Information for MLRs. Here we derive the Fisher informa-
tion for the weights of the MLR model (shown in Figure 2B).
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We consider a model consisting of a mixture of K linear regression mod-
els in a D-dimensional input space, defined by weights {wy, wo, ..., wg}.
The full model weights take the form of a length-KD vector formed by stack-
ing the weights for each component:

w1
W= : . (A.10)

Wi

The Fisher information | is a KD x KD matrix carrying the expectation for
the product of partial derivatives of the log-likelihood with respect to each
element of w. We will derive the D x D blocks of the Fisher information
matrix for each pair of components in {1, ..., K}.

The block of partial derivatives for component j is given by

—5(y = x"w))?)
Py [ x.6)

ow o

0 1 T ex
flogp(y | x,0) = 2(y—xTw]-)x< / p(
j

1 o (Plylxz=j6)Pz=j|n)

_az(y X WJ)X< Pl [x.0) )
1

= S —x"w)x (Pe=jly.x.0)). (A11)

Plugging this into the formula for Fisher information, we obtain the follow-
ing expression for the i, jth block of the Fisher information matrix:

1
Jiin(x) = QE[(y —x' W)y —x'W)P(z=1i|y.x,0)P(z=j |y x,0)]xx",
(A12)

where expectation is taken with respect to the marginal distribution P(y |
x, 0). This expectation cannot in general be computed in closed form (see
Behboodian, 1972). However, we considered two special cases in the text
where an analytic expression is available.

A.4.1 Perfect Identifiability. First, the case of perfect identifiabilty arises
when the conditional distributions P(y | x, z = j, 0) are well separated for
the different classes of latent variable z or, equivalently, the posterior class
probabilities P(z = j | y, x, 0) are effectively 0 or 1 for virtually all output
values y. In practice, this arises for inputs x such that the conditional means
{x"wi,x Wy, ..., x"wg} are well separated relative to the noise standard
deviation o (e.g., more than 20 apart). In this case, the off-diagonal blocks
of the Fisher information matrix are zero, since P(z=1i|y,x,0)P(z=j |
¥,x,0) ~ 0 for i # j. The diagonal blocks, by contrast, can be computed in
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closed form:

1 .
Jiip0) = —E[(y = x"w))*P(z = j | y, x, 0) o<
= i4 (/ (y — XTWj)zﬂjN(y | x"w, oz)dy> xx"
o —00
1 T
= XX (A.13)

We can write the Fisher information matrix efficiently as
1 T
J(x) = —diag(mr) @ xx, (A.14)
o

where ® denotes the Kronecker product. The trace of the Fisher information
is

Tr[]] = %Tr[diag(ﬂ)]Tr[xxT] = %XTX, (A.15)

which is the trace of the Fisher information matrix in the standard linear-
gaussian regression model. This confirms—as one might expect—that in the
case of perfect identifiability, we have the same amount of Fisher informa-
tion as in a model without latent variables.

A.4.2 Nonidentifiability. Second, the case of non identifiability arises
when the conditional distributions P(y | x, z = j, #) are identical for the dif-
ferent classes of latent variable z, meaning the output y carries no infor-
mation about the mixing component that generated it. This arises when
the linear projection of x onto all of the weight vectors is identical, x"w; =
X'W, = - - - = X' wg. This arises, for example, when the stimulus is orthogo-
nal to all of the weight vectors, which occurs with high probability in high-
dimensional settings.

In this case, we can also compute the Fisher information in closed form.
We obtain, for block i, j of the Fisher information matrix,

1
][i,]'] (X) = ;E[(y — XTW,')ZT[,'H’]']XXT

1
= —ZninjxxT, (A.16)
o

where we have used the fact that x"w; = x"w; and that the product of pos-
terior probabilities P(z=1|y,x,0)P(z = j | y,x, 0) is equal to the product
of prior probabilities 7z;77; in the setting where the output y carries no infor-
mation about the latent z.
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Algorithm 1: GLM-HMM Gibbs Sampling.

1: Input: Observations yi.7, Inputs x;.7, Prior hyperparameters: «, wy, o
2: Qutput: Samples { (2.7, Wi.x, A, m)D}

3: Initialize z1.7, Wi.g, A, 7

4: for j+ 1,..M do

5: for k< 1,..K do

w) ¢+ GLMSAMPLEPOSTERIOR({y;, % | 2 = k} 1.0, Wo, 00, W), ')

A{;‘: + sample Dir(oy,, +ny.) — where nyy = >, I(z =k, 2141 = 1)

2] < TOHMMSAMPLESTATE(m, A, L) — s.t. Ly = Py | x1, W)
77+ sample Dir(ap, + L.,)

The Fisher information matrix can be written in Kronecker form,
1 T T
J=—=n )®@xx, (A17)
o
which has trace

Tr[J] = — (7 "7)x"x. (A.18)

1
o2

This expression is minimal when the prior probabilities are all equal to 1/K,

in which case 7 "7 = 1/K, giving Tr[]] = ﬁxTx.

A.5 Gibbs Sampling for GLM-HMMs. We provide a complete de-
scription of Gibbs sampling for GLM-HMMs in algorithm 1. It uses out-
puts y1.r and inputs x;.7, along with the prior over model parameters to
provide M samples of the latent states {z1.7}) as well as of the model pa-
rameters {wy.x, A, 7}). We assume the model has K distinct latent states.
Sampling the latent states (see algorithm 3) requires using backward mes-
sages, Bix = P(Yi+17 | x1.7, 2zt = k), which can be obtained using a stan-
dard forward-backward algorithm (Bishop, 2006). To sample the weights
of the GLMs per state, we use the Laplace approximation followed by an
acceptance-rejection step detailed in algorithm 2. We fix the Dirichlet prior
a € RKHIXK gyer the rows of the transition matrix, A, and the initial state
distribution, r, to be a matrix of ones. The GLM weights have an identi-
cal prior: (0, 10). Further, we run Gibbs sampling for 500 iterations and
discard the first 100.

A.6 Variational Inference for GLM-HMMs. For a GLM-HMM with K
distinct states and Bernoulli-GLM observations, we want to learn varia-
tional posteriors for the initial state distribution 7y € AKX=1 the transition
matrix A € RXK and the weights of the GLMs, wy.x € RP. To do so, we
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Algorithm 2 : GLM Sample Weight from Posterior.
1: Input: Observations y;.7v, Inputs x1.7v, Prior: wy, 0¢, Previous estimate of
W Wold
2: Output: {w}
3: function GLMSAMPLEPOSTERIOR( (y1.77, Z1.77, Wo, 09, Wwo4))

4 Lw) =30 log Py = i | @, w)

5 wMAP «argmax, (L(w) + log N (w; Wy, 021))
6 O _ (P _ ap)
’ < ( dw? %0 > ’WMAP
7. w* + sample N(wMAF ()
8 a(w*, w) < min (1, ggol"{“yi;ni’ﬁk‘z’zdxiiig;) — p: unnormalized
posterior o
0: if a(w*,wo4) > U(0,1) then
10: W~ W
11: else
12: w « wold

Algorithm 3: GLM-HMM State Sequence Sampling.
Input: Initial state dist. 7, Transition matrix A, Likelihood matrix L € RT*¥
Output: z.r
function IOHMMSAMPLESTATE((7, A, L) )
B <+ HMM-Backwardmessages(A, L) — By = P(Yisrr | 2102 = k)
(Bishop, 2006)
z < sample m, By Ly over k€ {1,..K}

for t + 2,...T do
2 < sample A, | . BixLiy over ke {l,..K}

use inputs to the model x;.7 and their corresponding observations y;.r. The
unknown latent states corresponding to these trials are represented by zi.t.
We first define prior distributions over the model parameters:

79 ~ Dir(etp), (A.19)
A]"; =T~ Dir(otj) jZl...K, (AZO)
wi ~ N(wo,03) k=1...K, (A.21)

where oy € R¥ and « j € RX and contain positive real numbers only, wy €
RP| 5y € R. Now we define a variational posterior over the parameters and
latent states of the GLM-HMM as follows:

T K
qzir. Ao, ) = q) [ [ | 2-0)q(A)q(o) [ [ater).  (A22)
t=2 k=1
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Here, we assume that the latents are independent of the model parameters,
which reflects the mean-field assumption. Next, we develop a coordinate
ascent algorithm to iteratively learn the variational posteriors.

We initialize q(7r0), q(A), g(wy) to their prior distributions. Then, in the
first step, we compute the following quantities:

ﬁ'() = exp{Eq(NO)[ln 71'0]}, (A23)

Aj. = exp{Equ[InA; ]}, (A.24)

3 1Y ,
Ly = exp{Eq(wk)[lnP(yt | Wi, x¢)]} = exp N Zln Py, | wi, x,)}. (A.25)

i=1

The Dirichlet distributions over mp and A provide closed-form updates for
7 and A j.. (in particular, for a D-dimensional vector x ~ Dir(y), E[lnx;] =
¥ (vi) — ¥ (X, vi), where ¢ is the digamma function). To compute L; , which
is not available in closed form in the case of GLM observations, we obtain
a sample estimate of the expectations using 10 samples.

Next, using the quantities computed above, we run a forward-backward
algorithm for GLM-HMMs (Bishop, 2006) and obtain the forward and back-
ward messages F, B € RT*K, This leads to the following distributions over
the latent states:

q(ze =k) = FxBrx/ (Z BT,k’) , (A.26)
k/

q(zi-1 = joze = k) = F_1 jAj«Li kByx/ (Z BT,k’) : (A.27)
k/

Now we are ready to update the variational distributions over the model
parameters:

K
q(mo) o [ [ mgocte=h—1, (A.28)
k=1
K
ap+ Y Qo =jz=k)—1
gA) o [ [ = i . (A.29)
k=1

And finally, the variational approximation over the GLM weights is

T
q(wWyg) o< exp { Zq(zt =k)InP(y; | Wi, x¢) + lnP(wk)}. (A.30)

t=1
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Unlike typical gaussian HMMs, this is not available in closed form be-
cause the likelihood of a Bernoulli-GLM does not have a conjugate prior.
To deal with this, we approximate q(wy) by a gaussian distribution using

Laplace approximation. Let L(wy) = exp[ZtT:1 q(ze = k)InP(y; | Wi, x¢) +
In P(wy)},

(A.31)

/
Wi

aZL(wk)>1

qwi) ~N(wy, 5p): Wy =argmaxw,L(wy), Z,’C=< p—
k

We repeat the update equations from equation A.23 to equation A.31 iter-
atively until the log-likelihood of the data from the model converges or a
maximum of 500 iterations is reached.

Once we have obtained a variational distribution for all the model pa-

rameters, we can draw M samples of {yté VA, w{: K}Z}i ; from their variational
posteriors. We set M = 500 for our experiments.

A.7 Additional Analyses for GLM-HMMs. Here, we compare our in-
fomax learning method using variants of Gibbs sampling. In all our exper-
iments in section 7.1, we run a single chain to obtain 500 samples of the
model’s parameters, discarding the initial 200 burn-in samples. If we in-
stead run five parallel chains, each of length 140, and discard the first 40
samples as burn-in, we would still be able to obtain 500 samples of the
model parameters to perform infomax learning, but this provides a 5 times
improvement in speed, leading to 1 to 2 seconds per trial for input selec-
tion. We verify in Figure 8 that the perform of infomax while using parallel
chains of Gibbs is comparable to that using a single long chain (compare
the red and violet traces).

Finally, in all our experiments, we use our Laplace-based Gibbs sampling
approach for GLM-HMMs (detailed in section A.5). We compared this to
Polya-Gamma augmented Gibbs sampling (Polson et al., 2013; Pillow &
Scott, 2012), an established technique in the literature to sample from lo-
gistic models. In this case, weights of the GLM are sampled using Polya-
Gamma augmentation, while the strategy for sampling the latents and the
state transitions remains the same as in algorithm 1. We show in Figure 8
that our approach is comparable to Polya-Gamma augmentation in terms of
both posterior entropy and error in recovering the model parameters (com-
pare the peach and red curves). This empirically verifies the utility of our
Laplace-based Gibbs sampling approach for GLM-HMMs.

We also varied the length of the chain used during our Laplace-based
Gibbs sampling approach to find the optimal number of samples needed
for accurately fitting the model and selecting the next input at every trial.
We varied the length of a single Gibbs chain between 125 and 1000 samples.
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Figure 8. Infomax learning for GLM-HMMs. (Left) The posterior entropy of
model parameters over the course of 1000 trials when performing infomax
learning using our Laplace-based Gibbs sampling approach with a single long
chain (red), using parallel chains of our Laplace-based Gibbs sampler (violet),
using Polya-Gamma augmented Gibbs sampling (peach), and using random
sampling (blue). (Middle, right) Shows error in recovering the transition matrix
and the weights of the GLMs using the same set of methods.
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Figure 9. Gibbs sampling-based infomax learning for GLM-HMMs, with vary-
ing lengths of a single Gibbs chain. Left panel shows the posterior entropy of
model parameters over the course of 1000 trial using Gibbs sampling with a
single long chain. Each trace shows posterior entropy when using a different
number of samples obtained from Gibbs sampling, the same samples are used
to select the next input. Error bars correspond to 95% confidence interval of the
mean over 5 experiments. Right panel shows error in recovering model param-
eters, while varying the number of samples in the Gibbs chain.

In each case, we discarded the first 100 samples as burn-in and used the rest
to select the best input for the next trial. We find that chains of length 500 are
optimal in terms of the root mean squared error between true and predicted
model parameters, as well as posterior covariance (see Figure 9).
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Algorithm 4: MGLMs Gibbs Sampling.

1: Input: Observations yi.7, Inputs x;.7, Priors: «g, wg, g
2: Output: Samples {(z1.7, Wi.x, 7))}
3: Initialize 217, Wig, A, 7
4: for j «1,..M do

for £k« 1,..K do

wi ¢+ GLMSAMPLEPOSTERIOR({y;,%; | 2 = k}1.7, Wo, 00, W), ')

7/ < sample Dir(ap +n) — where ny, = Yo lz=k)

2] < sample P(z, | y,x)V t = {1 : T} = st. Plz =Fk|y,x) =
>k P(y=ye|xe,wi)

@ >

A.8 Gibbs Sampling for MGLMS. Gibbs sampling for MGLMs is sim-
ilar to that for GLM-HMMs except that now the states can be sampled inde-
pendently of each other. Algorithm 4 provides full details. We set a Dirichlet
prior over the initial state distribution, withag =1 € RK, and that over the
weights to be A'(0, 10). Here, we run Gibbs sampling for 700 iterations and
discard the first 200 as burn-in (MGLMs require a longer burn-in period).
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