SVD applications
Lecture 4
Warmup Problem

Someone hands you the SVD of a matrix A:

$$A = U S V^\top$$

1. What is the SVD of A times its transpose?

$$AA^\top = ?$$

2. What is the SVD of A-transpose times A?

$$A^\top A = ?$$
Warmup Problem

Recall: \((AB)^\top = B^\top A^\top\)

Someone hands you the SVD of a matrix \(A\):

\[A = U S V^\top \]
\[A^\top = V S U^\top \]

1. What is the SVD of \(A\) times its transpose?

\[AA^\top = \ ? \]

2. What is the SVD of \(A\)-transpose times \(A\)?

\[A^\top A = \ ? \]
Answer:

Recall: \((AB)^\top = B^\top A^\top\)

Someone hands you the SVD of a matrix A:

\[A = USV^\top \]
\[A^\top = VSU^\top \]

1. What is the SVD of A times its transpose?

\[AA^\top = (USV^\top)(VSU^\top) \]
\[= US^2U^\top \]

2. What is the SVD of A-transpose times A?

\[A^\top A = \ ? \]
Answer:

Recall: \((AB)^\top = B^\top A^\top\)

Someone hands you the SVD of a matrix \(A\):

\[A = USV^\top \]

\[A^\top = VSU^\top \]

1. What is the SVD of \(A\) times its transpose?

\[AA^\top = (USV^\top)(VSU^\top) \]
\[= US^2U^\top \]

2. What is the SVD of \(A^{-}\)transpose times \(A\)?

\[A^\top A = (VSU^\top)(USV^\top) \]
\[= VS^2V^\top \]
SVD review

\[A = U S V^T \]

left singular vectors
(or orthogonal/unitary)

\[U^T U = U U^T = I \]
SVD review

\[A = U S V^T \]

\[\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ u_1 & u_2 & \cdots & u_n \end{bmatrix} \]

left singular vectors
(or orthogonal/unitary)

\[U^T U = U U^T = I \]

\[\begin{bmatrix} s_1 & & & \\ & s_2 & & \\ & & \ddots & \\ & & & s_n \end{bmatrix} \]

singular values
(all \(\geq 0 \))

\[s_1 \geq s_2 \geq \cdots \geq s_n \]
(by convention)
SVD review

$$A = USV^T$$

left singular vectors (orthogonal/unitary)

$$\tilde{U}^T U = UU^T = I$$

right singular vectors (orthogonal/unitary)

$$V^T V = VV^T = I$$

singular values

$$s_1 \geq s_2 \geq \ldots \geq s_n$$

(by convention)
SVD review

\[A = USV^\top \]

inverse: \[A^{-1} = V S^{-1} U^\top \]
SVD review

\[A = U S V^\top \]

inverse:
\[A^{-1} = V S^{-1} U^\top \]

pseudo-inverse:
\[A^\dagger = V S^\dagger U^\top \]
Questions (group discussion)

How could you use SVD to:

1. determine whether a matrix is invertible?
2. find the rank of a matrix?
3. find an orthonormal basis for the row space?
4. find an orthonormal basis for the column space?
5. find an orthonormal basis for the *null space*?
Answers:

1. determine whether a matrix is invertible?
 Invertible if all singular values are > 0.

2. find the rank of a matrix?
 rank = # of non-zero singular values
3. Find an orthonormal basis for the row space?
4. Find an orthonormal basis for the column space?
5. Find an orthonormal basis for the null space?

- Note that any linear combination of \((v_{k+1}, ..., v_n) \) has zero dot product with \(v_1...v_k \), hence gives zero when multiplied by \(A \) (and is thus in null space!)
The degree to which ill-conditioning prevents a matrix from being inverted accurately depends on the ratio of its largest to smallest singular value, a quantity known as the condition number:

\[\text{condition number} = \frac{s_1}{s_n} \]

The larger the condition number, the more practically non-invertible it is. When using double floating point precision, matrices with condition numbers greater than \(\pi \times 10^{14} \) cannot be stably inverted.

You can compute the condition number yourself from the SVD, or using the built-in Matlab command `cond`, or the numpy command `numpy.linalg.cond`.

If \(A_{m \times n} \) is a non-square matrix, then \(U \) is \(m \times m \) and \(V \) is \(n \times n \), and \(S \) is non-square (and therefore has only \(\min(m, n) \) non-zero singular values. Such matrices are (obviously) non-invertible, though we can compute their pseudo-inverses using the formula above.

Figure 3: SVD of non-square matrices. The gray regions of the matrices are not needed, since they consist of all zeros in the \(S \) matrix, and are only hit by zeros in those portions of the \(U \) or \(V \) matrices. Dropping them results in the more compact "reduced" SVD for tall, skinny (above) or short, fat (below) matrices.
true vs. practical non-invertibility
true vs. practical non-invertibility

condition number: \(\frac{s_1}{s_n} \)

- matrix is not *practically* invertible if condition # too big (>10^{12})
- such a matrix called “ill-conditioned” or “singular”
- compute with: `numpy.linalg.cond`
eigenvectors

what is an eigenvector?

Q: when is an eigenvector equal to a singular vector?
eigenvectors

- for a (square) matrix A, a vector \vec{x} such that

$$A\vec{x} = \lambda \vec{x}$$

that is, Ax is a scaled version of x.

\[\begin{align*}
\text{eigenvalue} & \quad \text{eigenvector}
\end{align*} \]
positive semi-definite matrix

- matrix for which all eigenvalues are ≥ 0

- equivalently definition:

 $$\bar{x}^\top A\bar{x} \geq 0 \text{ for any vector } \bar{x}$$
Spectral theorem

If a matrix A is
• symmetric
• positive semi-definite

the singular value decomposition is also an eigen-decomposition:

$$A = U S U^\top$$

- matrix of (orthogonal) eigenvectors
- eigenvalues along diagonal
- singular vectors = eigenvectors
- singular values = eigenvalues
- Note that left and right singular vectors are the same!
spectral theorem

If a matrix A is
• symmetric
• positive semi-definite

Then:

$$AA^\top = (VSU^\top)(USV^\top) = VS^2V^\top$$

• V is matrix of orthogonal eigenvectors
• s_i^2 are eigenvalues
determinants

\[\det |A| \]

- measure of the “change in volume” of a hypercube in \(\mathbb{R}^n \) upon multiplying by \(A \)

\[A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \]
determinants

\[\det |A| \]
- measure of the “change in volume” of a hypercube in \(\mathbb{R}^n \) upon multiplying by \(A \)

\[A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \]

\[\det |A| = 3 \times 2 = 6 \]
determinants

\[\det |A| \] - measure of the “change in volume” of a hypercube in \(\mathbb{R}^n \) upon multiplying by \(A \)

\[
\det |A| = \det |USU^\top| = \det |S| = \prod_{i=1}^{n} s_i
\]

product of singular values
SVD as a sum of outer-products

\[A = U S V^\top \]
SVD as a sum of outer-products

$$A = USV^T$$

$$= S_1 u_1 v_1^T + S_2 u_2 v_2^T + \cdots + S_n u_n v_n^T$$
SVD as a sum of outer-products

\[A = U S V^T \]

\[= S_1 u_1 v_1^T + S_2 U_2 V_2^T + \ldots + S_n U_n V_n^T \]

(rank 1 matrix)
matrix approximation

- the best rank-K approximation to A (in terms of squared error) is given by truncating the SVD after K terms.

$$= s_1 u_1 v_1^T + \ldots + s_K u_K v_K^T$$
matrix approximation

- the best rank-K approximation to A (in terms of squared error) is given by truncating the SVD after K terms.

\[
\begin{align*}
A & = S_i u_i v_i^T + \ldots + S_K u_K v_K^T \\
\text{Fraction of variance accounted for is given by:} \\
\frac{\sum_{i=1}^{K} S_i^2}{\sum_{j=1}^{N} S_j^2}
\end{align*}
\]
Frobenius norm
(the Euclidean norm for matrices)

\[\| A \|_F = \sqrt{\sum_{ij} a_{ij}^2} \]

A

\begin{align*}
 a_{11} & \cdots & a_{1m} \\
 a_{21} & \cdots & a_{2m} \\
 \vdots & & \vdots \\
 a_{n1} & \cdots & a_{nm}
\end{align*}

sum of squared elements of A
Frobenius norm

(the Euclidean norm for matrices)

\[\|A\|_F = \sqrt{\sum_{ij} a_{ij}^2} = \sqrt{\sum_i s_i^2} \]

(see notes for proof)
Thus we can write fraction of variance accounted for as:

\[
\sum_{i=1}^{K} \frac{s_i^2}{\|A\|_F^2} + \ldots + s_k \begin{pmatrix} u_k v_k^T \end{pmatrix}
\]

sum of squared first K singular values

sum of squares of all singular values
matrix approximation: applications to neural data

\[A \approx s_1 \tilde{u}_1 + \tilde{v}_1^T \text{ timecourse } \pm 1 + \tilde{v}_2^T \text{ timecourse } \pm 2 \]

neurons (firing rate)

\[s_1 \tilde{u}_1 \text{ neural weights } \pm 1 \]

\[s_2 \tilde{u}_2 \text{ neural weights } \pm 2 \]
Summary

• inverse
• pseudoinverse
• rank
• condition number
• ill-conditioned / singular matrix
• eigenvectors & eigenvalues
• positive semi-definite matrices
• spectral theorem
• determinants
• low-rank matrix approximation
• Frobenius norm (Euclidean norm for matrices)