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HRTF for one sound source location 
(30° to left, 12° above horizontal)

HRTF: can be measured with microphone in ear canal

  some frequencies attenuated; others amplified



Head-related transfer function (HRTF)

• Can learn a new HRTF in about 6 weeks (shown 
experimentally using inserted artificial pinna) 

• Old HRTF is stored (can return to old one instantaneously)

• Hofman et al 1998:  inserted plastic molds into pinnae, 
altering subjects’ HRTFs 

• sound localization performance abruptly degraded

Findings:



• Loudness (“inverse square law”) -  Intensity decreases as 
square of the distance:  (quieter = farther away) 
(duh.) 

• Spectral composition - Higher frequencies decrease in 
energy more than lower frequencies as sound waves travel 

        Example:  distant vs. nearby thunder.   
     - This cue only works for long distances (d > 1000m)

Auditory distance perception

Several Cues:



• Reverberant energy - whether most sound is arriving 
directly (nearby sound source) or from reverberations (far 
away sound source); conveyed by timing information



Auditory properties of 
complex sounds

(to be posted online)



perception - alan stocker © 2009

perception: dealing 
with probabilities

15
Bayesian theories of perception: 

dealing with probabilities



Quick math quiz: 

x + 3 = 8

What is x?



Quick math quiz: 

x × 2 = 10

What is x?



Quick math quiz: 

x + y = 9

What are x and y?

This is an example of an ill-posed problem
• problem that has no unique solution



Perception is also an ill-posed problem!

Example #1:

Light Hitting
Eye× =Spectrum of

Illuminant
Reflectance function

of surface

Question we want to answer: what are the surface 
properties (i.e., color) of the surface?

Equivalently:        X × Y = R (cone responses) 
Given R, was Y?
(you’d have to know X to make it well-posed)



Perception is also an ill-posed problem!
Example #2: ⇒3D world
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projection

george berkeleyQuestion: what’s out there in the 3D world?

• ill-posed because there are infinitely many 3D objects that give 
rise to the same 2D retinal image
• need some additional info to make it a well-posed problem

2D retinal image



Luckily, having some probabilistic information can help:

x + y = 9
Table showing past 
values of y:

7 7 7
7 7 7
5 7 7
7 6 7
7 7 7
8 7 8
7 7 7
7 7 7

y

Given this information,
what would you guess to 
be the values of x?

How confident are you in 
your answers?



A little math:  Bayes’ rule

• very simple formula for manipulating probabilities
P(A | B) P(B) 

P(A)
P(B | A)  = 

conditional probability
“probability of B given that A occurred”

P(B | A)  ∝  P(A | B) P(B) 

probability of A

probability of B

simplified form:



A little math:  Bayes’ rule
P(B | A)  ∝  P(A | B) P(B) 
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Example: 2 coins

• one coin is fake: “heads” on both sides   (H / H)
• one coin is standard: (H / T)

You grab one of the coins at random and flip it.  It comes up “heads”.  
What is the probability that you’re holding the fake?

p( Fake | H)

p( Nrml | H)

( ½ )( 1 )

( ½ )( ½ ) = ¼

= ½
 ∝ p(H | Fake) p(Fake)

 ∝ p (H | Nrml) p(Nrml)

probabilities must
sum to 1



A little math:  Bayes’ rule
P(B | A)  ∝  P(A | B) P(B) 
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p( Fake | H)

p( Nrml | H)

( ½ )( 1 ) = ½
 ∝ p(H | Fake) p(Fake)

 ∝ p (H | Nrml) p(Nrml)

fake normal

start

H H H T

( ½ )( ½ ) = ¼
probabilities must

sum to 1



= 0

A little math:  Bayes’ rule
P(B | A)  ∝  P(A | B) P(B) 
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Example: 2 coins

Experiment #2: It comes up “tails”.  
What is the probability that you’re holding the fake?

p( Fake | T)

p( Nrml | T)

( ½ )( 0 )

( ½ )( ½ ) = ¼

= 0
probabilities must

sum to 1

 ∝ p(T | Fake) p(Fake)

 ∝ p (T | Nrml) p(Nrml)

fake normal

start

H H H T

= 1



What does this have to do with perception?
P(B | A)  ∝  P(A | B) P(B) Bayes’ rule: 

Formula for computing: P(what’s in the world | sensory data)

B A

(This is what our brain wants to know!)

P(world | sense data) ∝ P(sense data | world)  P(world)

(given by past experience)
Prior

(given by laws of physics;
ambiguous because many world states

could give rise to same sense data)

LikelihoodPosterior
(resulting beliefs about

the world)



Helmholtz:  perception as “optimal inference”

“Perception is our best guess as to what is in 
the world, given our current sensory 
evidence and our prior experience.”

“perception is our best guess as to 
what is in the world, given our 

current sensory evidence and our 
prior experience.”
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perception as optimal inference

helmholtz 1821-1894

P(world | sense data) ∝ P(sense data | world)  P(world)

(given by past experience)
Prior

(given by laws of physics;
ambiguous because many world states

could give rise to same sense data)

LikelihoodPosterior
(resulting beliefs about

the world)



Helmholtz:  perception as “optimal inference”

“perception is our best guess as to 
what is in the world, given our 

current sensory evidence and our 
prior experience.”
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perception as optimal inference

helmholtz 1821-1894

P(world | sense data) ∝ P(sense data | world)  P(world)

(given by past experience)
Prior

(given by laws of physics;
ambiguous because many world states

could give rise to same sense data)

LikelihoodPosterior
(resulting beliefs about

the world)

“Perception is our best guess as to what is 
in the world, given our current sensory 
evidence and our prior experience.”



what is perception?

percept

• seeing
• hearing
• touching
• smelling
• tasting
• orienting

“bottom-up”

“top-down”

statistical knowledge 
about the structure 
of the world

prior (“top down”)

likelihood (“bottom up”)

posterior



Using Bayes’ rule to understand how 
the brain resolves ambiguous stimuli

Examples



Many different 3D scenes can give rise to the same 2D retinal image

The Ames Room

How does our brain go about deciding which interpretation?

A

B

P(image | A) and P(image | B) are equal!   (both A and B could have generated this image)

Let’s use Bayes’ rule: 
P(A | image) = P(image | A) P(A) 
P(B | image) = P(image | B) P(B) Which of these is greater? 



Is the middle circle popping “out” or “in”?



P( image | OUT & light is above) = 1
P(image | IN & Light is below) = 1

• Image equally likely to be OUT or IN given sensory data alone

What we want to know:  P(OUT | image) vs. P(IN | image)

P(OUT | image) ∝ P(image | OUT & light above) × P(OUT) × P(light above)
P(IN | image) ∝ P(image | IN & light below ) × P(IN) × P(light below)

prior

Which of these is greater?

Apply Bayes’ rule:



Motion example:  “stereokinetic effect”  
• use prior to interpret ambiguous motions

At least two possible scene interpretations are possible
• both could give rise to the same visual input
• percept is therefore determined by which has higher prior of occurring



+

Which grating moves faster?

Application #1: Biases in Motion Perception



+

Which grating moves faster?

Application #1: Biases in Motion Perception



Explanation from Weiss, Simoncelli & Adelson (2002):

• In the limit of a zero-contrast grating, likelihood becomes infinitely 
broad ⇒ percept goes to zero-motion.

prior priorlikelihood

likelihoodposterior

0 0

Noisier measurements, 
so likelihood is broader
⇒ posterior has

larger shift toward 0
(prior = no motion)

• Claim: explains why people actually speed up when driving in fog!



Hollow Face Illusion

http://www.richardgregory.org/experiments/
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perception as optimal inference
Perception as Bayesian Inference

www.youramazingbrain.org.uk/supersenses/hollow.htm

Very sharp prior favours convex faces: P(H1) >> P(H2)

Nearly flat likelihood function: P(D | H1) ! P(D | H2)

∴ Posterior favours convex: P(H1 | D) > P(H2 | D)

H1: convex

H2: concave

D: image

Richard Gregory

H1 : convex
H2 : concave
D : video

Hollow Face Illusion

Hypothesis #1:  face is concave
Hypothesis #2:  face is convex

P(convex|video) ∝P(video|convex) P(convex)
P(concave|video)∝P(video|concave) P(concave)

posterior likelihood prior

P(convex) > P(concave) ⇒ posterior probability of convex is higher
(which determines our percept)





Hollow Face Illusion: other examples

http://www.youtube.com/watch?NR=1&v=Rc6LRxjqzkA

Gathering for Gardner dragon

https://www.youtube.com/watch?v=MUZS_UY0pgg

mask with nose ring

• our prior belief that objects are convex is SO strong, we can’t 
over-ride it, even when we know intellectually it’s wrong!

https://www.youtube.com/watch?v=QzggKdkPRc8this one is so strange it looks incredibly 
fake, but it’s a real video! You can download this and make one 

yourself!



• Perception is an ill-posed problem 

• equivalently: the world is still ambiguous even given all our sensory 
information

• Probabilistic information can be used to solve ill-posed problems (via 
Bayes’ theorem)

• Bayes’ theorem:   
 
 
 
 

• The brain takes into account “prior knowledge” to figure out what’s 
in the world given our sensory information

Summary:

P(world | sense data) ∝ P(sense data | world ) P(world)

priorlikelihoodposterior


