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Bayesian theories of perception:
dealing with probabilities



Quick math quiz:

X+3=8

What is x?



Quick math quiz:

Xxx2=10

What is x?



Quick math quiz:

X+y=9

What are x and y?

This is an example of an ill-posed problem

» problem that has no unique solution
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Perception is also an ill-posed problem!

Example #1:
Spectrum of X Reflectance function __ Light Hitting
llluminant of surface — Eye

T

Question we want to answer: what are the surface
properties (i.e., color) of the surface?

Equivalently: X xY = R (cone responses)

Given R, was Y?

(you’d have to know X to make it well-posed)
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Perception is also an ill-posed problem!
Example #2: 3D worla — 2D retinal image

Question: what’s out there in the 3D world?

Image on
retina

Objects that create the same
image on the retina

* ill-posed because there are infinitely many 3D objects that give
rise to the same 2D retinal image
* need some additional info to make it a well-posed problem
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Luckily, having some probabilistic information can help:

X+y=9
Table showing past
values of y:
y
71717
717 |7 Given this information,
5|77 what would you guess to
?
716 | 7 be the values of X"
|77 How confident are you in
8178 your answers?
71717
71717




A little math: Bayes’ rule

- very simple formula for manipulating probabilities

P(AlB) P(B)
P(B | A) = probability of B
Vs P(A)
conditional probability probability of A

“probability of B given that A occurred”

P(BIA) = P(AlB)P(B)

simplified form:



A little math: Bayes’ rule
P(BIA) < P(AlB)P(B)

Example: 2 coins

* one coin is fake: “heads” on both sides (H/H)
* one coin is standard: (H/T)

You grab one of the coins at random and flip it. It comes up “heads”.
What is the probability that you’re holding the fake!?

o( Fake | H) & P(H 1 Fake) p(Fake) 5 [2
(1) (%) =% s+t3 \3
p( Nrml [ H) < p (H 1 Nrml) p(Nrml) x .

(1) (%) =% 3t1

probabilities must

sum to 1
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A little math: Bayes’ rule
PBIA) < P(AIB)P(B)

: start
Example: 2 coins /\

—
e~

fake normal

N\ N\
HE_BH T

o( Fake | H) X p(H | Fake) p(Fake) % [2
(1) (%) =% 3t1 \3
p( Nrml | H) < p (H 1 Nrml) p(Nrmi) : 1

(2) (%) =% 32t

probabilities must
sum to 1
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A little math: Bayes’ rule
PBIA) < P(AIB)P(B)
start

Example: 2 coins /\

fake normal

HHH.

Experiment #2: It comes up “tails”.
What is the probability that you're holding the fake!?

X p(T | Fake) p(Fake)
(0) (%2) =0
probabilities must

p( Nrml | T) < p (T 1 Nrml) p(Nrmi) o
(%2) (%) =Y

p( Fake | T)
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What does this have to do with perception?
Bayes’ rule: P(BIA) & P(AlB) P(B)

Formula for computing: P(what’s in the world | sensory data)
(This is what our brain wants to know!) / \

B A
P(world | sense data)) << (P(sense data | world)
Posterior Likelihood Prior
(resulting beliefs about (given by laws of physics; (given by past experience)
the world) ambiguous because many world states

could give rise to same sense data)
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Helmholtz: perception as “optimal inference”

“Perception is our best guess as to what is in
the world, given our current sensory
evidence and our prior experience.”

helmholtz 1821-1894

@Id I sense@ X @se data I@

Posterior Likelihood Prior
(resulting beliefs about (given by laws of physics; (given by past experience)
the world) ambiguous because many world states

could give rise to same sense data)
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Helmholtz: perception as “optimal inference”

“Perception is our best guess as to what is
in the world, given our current sensory
evidence and our prior experience.’

helmholtz 1821-1894

@Id I sense@c< @se data I

Posterior Likelihood Prior
(resulting beliefs about (given by laws of physics; (given by past experience)
the world) ambiguous because many world states

could give rise to same sense data)
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what is perception!
prior (“top down”)
statistical knowledge

about the structure
* seeing  of the world

* hearing *
* touchin
- : 5 =P percept posterior
* smelling
® tasting
* orienting

likelihood (“bottom up”)
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Examples

Using Bayes’ rule to understand how
the brain resolves ambiguous stimuli
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Many different 3D scenes can give rise to the same 2D retinal image

The Ames Room

real place and size
‘ of ““smallest’’ man \\\
apparent place and \ \ _
size of ‘smallest’’ man \i ‘?
Apparent \
real place and size walls of room! \
O “" . " | \
of ““medium’’ man | \ \ /
|

0O apparent place and
size of ‘/medium’’ man

D “largest’’ man

Peephole for one eye

How does our brain go about deciding which interpretation?
P(image | A) and P(image | B) are equal! (both A and B could have generated this image)

Let’'s use Bayes' rule:

P(A | image) = P(image | A) P(A) _ _ ,
P(B | image) = P(image | B) P(B) Which of these is greater
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Is the middle circle popping “out” or “in”?



P(image | OUT & light is above) = 1
W P(image | IN & Light is below) = 1

- Image equally likely to be OUT or IN given sensory data alone

What we want to know: P(OUT | image) vs. P(IN | image)

Apply Bayes’ rule: prior

/—/\A
P(OUT | image) « P(image | OUT & light above) x P(OUT) x P(light above)

P(IN I image) « P(image | IN & light below ) x P(IN) x P(light below)

Which of these is greater?
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Motion example: “stereokinetic effect”
* use prior to interpret ambiguous motions

Rokers, Yuille, & Liu

At least two possible scene interpretations are possible
* both could give rise to the same visual input
* percept is therefore determined by which has higher prior of occurring
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Application #1: Biases in Motion Perception

/
-

Which grating moves faster?
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Application #1: Biases in Motion Perception

/
-

Which grating moves faster?
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Explanation from Weiss, Simoncelli & Adelson (2002):

posterior likelihood

prior likelihood prior

- L
7

Noisier measurements,
so likelihood is broader

* In the limit of a zero-contrast grating, likelihood becomes infinitely

broad = percept goes to zero-motion.

= posterior has

larger shift toward 0
(prior = no motion)

 Claim: explains why people actually speed up when driving in fog!
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Hollow Face lllusion

/experiments/




Hollow Face lllusion

Hypothesis #1: face is concave
Hypothesis #2: face is convex

P(convex|video) <« P(video|convex) P(convex)
P(concave|video) « P(video|concave) P(concave)

posterior likelihood

P(convex) > P(concave) = posterior probability of convex is higher
(which determines our percept)
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Hollow Face lllusion: other examples

mask with nose ring Gathering for Gardner dragon

http://www.youtube.com/watch?NR=1&v=Rc6LRxjqzkA

https://www.youtube.com/watch?v=MUZS UYO0pgg

this one is so strange it looks incredibly https://www.youtube.com/watch?v=0QzggKdkPRc8
fake, but it’s a real video!

You can download this and make one
yourself!

* our prior belief that objects are convex is SO strong, we can’t
over-ride it, even when we know intellectually it’s wrong!
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Summary:

® Perception is an ill-posed problem

equivalently: the world is still ambiguous even given all our sensory
information

Probabilistic information can be used to solve ill-posed problems (via
Bayes’ theorem)

Bayes’ theorem:

posterior likelihood prior
— ee— — ee— —
P(world | sense data) & P(sense data | world ) P(world)

The brain takes into account “prior knowledge” to figure out what’s
in the world given our sensory information
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