Perception:
 The Bayesian Approach
 (Discussed in chapter 6)

Lecture 19

Jonathan Pillow
Sensation \& Perception (PSY 345 / NEU 325)
Princeton University, Spring 2019

Bayesian theories of perception: dealing with probabilities

Quick math quiz:

$$
x+3=8
$$

What is x ?

Quick math quiz:

$$
x \times 2=10
$$

What is x ?

Quick math quiz:

$$
x+y=9
$$

What are x and y ?

This is an example of an ill-posed problem

- problem that has no unique solution

Perception is also an ill-posed problem!

Example \#1:

Spectrum of Illuminant

Reflectance function of surface
\uparrow

Light Hitting
Eye

Question we want to answer: what are the surface properties (i.e., color) of the surface?

Equivalently: $\quad \mathrm{X} \times \mathrm{Y}=\mathrm{R}$ (cone responses)
Given R, was Y ?
(you'd have to know X to make it well-posed)

Perception is also an ill-posed problem!

Example \#2: 3D world $\quad \Rightarrow$ 2D retinal image
Question: what's out there in the 3D world?

Objects that create the same
image on the retina

- ill-posed because there are infinitely many 3D objects that give rise to the same 2D retinal image
- need some additional info to make it a well-posed problem

Luckily, having some probabilistic information can help:

$$
x+y=9
$$

Table showing past values of y :

y		
7	7	7
7	7	7
5	7	7
7	6	7
7	7	7
8	7	8
7	7	7
7	7	7

Given this information, what would you guess to be the values of x ?

How confident are you in your answers?

A little math: Bayes' rule

- very simple formula for manipulating probabilities

"probability of B given that A occurred"
simplified form:
$P(B \mid A) \propto P(A \mid B) P(B)$

A little math: Bayes' rule
 $P(B \mid A) \propto P(A \mid B) P(B)$

Example: 2 coins

- one coin is fake: "heads" on both sides
- one coin is standard: (H/T)

You grab one of the coins at random and flip it. It comes up "heads". What is the probability that you're holding the fake?
$p($ Fake I H) $\propto p($ HI Fake $) p($ Fake $)$
(1) $\quad(1 / 2)=1 / 2$

$$
\begin{equation*}
\frac{\frac{1}{2}}{\frac{1}{2}+\frac{1}{4}} \tag{2}
\end{equation*}
$$

$p($ Nrml| H) $\propto p(H \mid N r m l) p(N r m l)$
$(1 / 2) \quad(1 / 2) \quad=1 / 4$

$$
\begin{gathered}
\frac{\frac{1}{4}}{\frac{1}{2}+\frac{1}{4}} \\
\text { orobabilities must } \\
\text { sum to } 1
\end{gathered}
$$

A little math: Bayes' rule
 $P(B \mid A) \propto P(A \mid B) P(B)$

Example: $\mathbf{2}$ coins

start

fake normal

$$
\frac{\frac{1}{2}}{\frac{1}{2}+\frac{1}{4}}
$$

$$
=\left(\frac{2}{3}\right.
$$

$p($ Nrml I H) $\propto p(\mathrm{HINrml}) p($ Nrml $)$
$(1 / 2) \quad(1 / 2)=1 / 4$

$$
\begin{aligned}
& \frac{\frac{1}{4}}{\frac{1}{2}+\frac{1}{4}} \\
& \text { orobabilities must } \\
& \text { sum to } 1
\end{aligned}
$$

A little math: Bayes' rule
 $P(B \mid A) \propto P(A \mid B) P(B)$

Example: $\mathbf{2}$ coins

start

Experiment \#2: It comes up "tails". What is the probability that you're holding the fake?
$p($ Fake IT) $\propto p($ I I Fake $) p($ Fake $)$

$$
(0) \quad(1 / 2)=0
$$

$\mathrm{p}(\mathrm{Nrml} \operatorname{lT}) \propto p(\mathrm{~T} \mid \mathrm{Nrml}) \mathrm{p}(\mathrm{Nrml})$
probabilities must sum to 1
$(1 / 2) \quad(1 / 2)=1 / 4$

$=1$

What does this have to do with perception?
Bayes' rule: $P(B \mid A) \propto P(A \mid B) P(B)$

Formula for computing: $\quad \mathrm{P}$ (what's in the world I sensory data)
(This is what our brain wants to know!)

A
$P($ world I sense data) $) \propto P($ sense data I world $) P($ world $)$

Posterior

(resulting beliefs about the world)

Likelihood

(given by laws of physics; ambiguous because many world states could give rise to same sense data)

Helmholtz: perception as "optimal inference"

"Perception is our best guess as to what is in the world, given our current sensory evidence and our prior experience."
helmholtz I82I-I894

P(world I sen

(resulting beliefs about
the world)

(given by laws of physics;

Prior
(given by past experience)
ambiguous because many world states could give rise to same sense data)

Helmholtz: perception as "optimal inference"

"Perception is our best guess as to what is in the world, given our current sensory evidence and our prior experience."
helmholtz I82I-I894

P(world I sen

(resulting beliefs about
the world)

(given by laws of physics;

Prior
(given by past experience) ambiguous because many world states could give rise to same sense data)

what is perception?

prior ("top down")

statistical knowledge about the structure

- seeing of the world
- hearing
- touching
- smelling
percept
- tasting
- orienting
likelihood ("bottom up")

Examples

Using Bayes' rule to understand how the brain resolves ambiguous stimuli

Many different 3D scenes can give rise to the same 2D retinal image

The Ames Room

-
real place and size of "smallest" man
apparent place and size of "smallest" manreal place and size
of "medium" man
O
apparent place and size of "medium" man
\square "largest" man

How does our brain go about deciding which interpretation?
$P($ image $\mid A)$ and $P($ image $\mid B$) are equal! (both A and B could have generated this image)
Let's use Bayes' rule:
$P(A \mid$ image $)=P($ image $\mid A) P(A)$
$P(B \mid$ image $)=P($ image $\mid B) P(B)$
Which of these is greater?

Is the middle circle popping "out" or "in"?

$\mathrm{P}($ image I OUT \& light is above $)=1$ P (image I IN \& Light is below) $=1$

- Image equally likely to be OUT or IN given sensory data alone What we want to know: P (OUT I image) vs. P (IN I image)

Apply Bayes' rule:

prior

$\mathrm{P}($ OUT I image $) \propto \mathrm{P}$ (image I OUT \& light above) $\times \mathrm{P}($ OUT $) \times \mathrm{P}$ (light above) $P(I N$ I image $) \propto P($ image I IN \& light below $) \times P(I N) \times P($ light below $)$

Which of these is greater?

Motion example: "stereokinetic effect"

- use prior to interpret ambiguous motions

At least two possible scene interpretations are possible

- both could give rise to the same visual input
- percept is therefore determined by which has higher prior of occurring

Application \#1: Biases in Motion Perception

Which grating moves faster?

Application \#1: Biases in Motion Perception

Which grating moves faster?

Explanation from Weiss, Simoncelli \& Adelson (2002):

- In the limit of a zero-contrast grating, likelihood becomes infinitely broad \Rightarrow percept goes to zero-motion.
- Claim: explains why people actually speed up when driving in fog!

http://www.richardgregory.org/experiments/

Hollow Face Illusion

Hypothesis \#I: face is concave Hypothesis \#2: face is convex
$\mathrm{P}($ convex \mid video $) \propto \mathrm{P}($ video \mid convex $) \mathrm{P}($ convex $)$
$\mathrm{P}($ concave \mid video $) \propto \mathrm{P}($ video concave $) \mathrm{P}($ concave $)$
posterior
likelihood
prior

P (convex) $>\mathrm{P}($ concave $) \Rightarrow$ posterior probability of convex is higher (which determines our percept)

Hollow Face Illusion: other examples

mask with nose ring

http://www.youtube.com/watch? NR=1\&v=Rc6LRxjqzkA this one is so strange it looks incredibly fake, but it's a real video!

Gathering for Gardner dragon

https://www.youtube.com/watch?v=MUZS_UYOpgg https://www.youtube.com/watch?v=QzggKdkPRc8 You can download this and make one yourself!

- our prior belief that objects are convex is SO strong, we can't over-ride it, even when we know intellectually it's wrong!

Summary:

- Perception is an ill-posed problem
- equivalently: the world is still ambiguous even given all our sensory information
- Probabilistic information can be used to solve ill-posed problems (via Bayes' theorem)
- Bayes' theorem:

- The brain takes into account "prior knowledge" to figure out what's in the world given our sensory information

