Perception: The Bayesian Approach

(Discussed in chapter 6)

Lecture 19

Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2019

Bayesian theories of perception: dealing with probabilities

Quick math quiz:

x + 3 = 8

What is x?

Quick math quiz:

$x \times 2 = 10$

What is x?

Quick math quiz:

$$x + y = 9$$

What are x and y?

This is an example of an *ill-posed* problem

problem that has no unique solution

Question we want to answer: what are the surface properties (i.e., color) of the surface?

Equivalently:

 $X \times Y = R$ (cone responses)

Given R, was Y?

(you'd have to know X to make it well-posed)

Perception is also an ill-posed problem! Example #2: 3D world \Rightarrow 2D retinal image Question: what's out there in the 3D world?

- ill-posed because there are infinitely many 3D objects that give rise to the same 2D retinal image
- need some additional info to make it a well-posed problem

Luckily, having some probabilistic information can help:

$$\mathbf{x} + \mathbf{y} = \mathbf{9}$$

Table showing past values of y:

У		
7	7	7
7	7	7
5	7	7
7	6	7
7	7	7
8	7	8
7	7	7
7	7	7

Given this information, what would you guess to be the values of x?

How confident are you in your answers?

A little math: **Bayes' rule**

very simple formula for manipulating probabilities

simplified form: $P(B | A) \propto P(A | B) P(B)$

A little math: **Bayes' rule** $P(B | A) \propto P(A | B) P(B)$

Example: 2 coins

- one coin is fake: "heads" on both sides (H / H)
- one coin is standard: (H / T)

You grab one of the coins at random and flip it. It comes up "heads". What is the probability that you're holding the fake?

sum to 1

A little math: **Bayes' rule** $P(B|A) \propto P(A|B) P(B)$

Example: 2 coins

Experiment #2: It comes up "tails". What is the probability that you're holding the fake?

p(Fake | T) $\propto p(T | Fake) p(Fake)$ (0) (1/2) = 0

 $p(NrmIT) \propto p(TINrmI) p(NrmI)$

 $(\frac{1}{2})$ $(\frac{1}{2})$ $=\frac{1}{4}$

probabilities must sum to 1

= 1

What does this have to do with perception? **Bayes' rule:** $P(B|A) \propto P(A|B) P(B)$

Helmholtz: perception as "optimal inference"

"Perception is our best guess as to what is in the world, given our current sensory evidence and our prior experience."

helmholtz 1821-1894

 $(P(world | sense data) \propto (P(sense data | world)) (P(world))$

Posterior

(resulting beliefs about the world)

Likelihood

(given by laws of physics; ambiguous because many world states could give rise to same sense data) (given by past experience)

Helmholtz: perception as "optimal inference"

"Perception is our **best guess** as to what is in the world, given our current **sensory evidence** and our **prior experience**."

helmholtz 1821-1894

 $P(world | sense data) \propto P(sense data | world) P(world)$

Posterior

(resulting beliefs about the world)

Likelihood

(given by laws of physics; ambiguous because many world states could give rise to same sense data) (given by past experience)

what is perception?

likelihood ("bottom up")

Examples

Using Bayes' rule to understand how the brain resolves ambiguous stimuli

Many different 3D scenes can give rise to the same 2D retinal image

The Ames Room

How does our brain go about deciding which interpretation? <u>P(image | A)</u> and <u>P(image | B)</u> are equal! (both A and B could have generated this image)

Let's use Bayes' rule:

P(A | image) = P(image | A) P(A)P(B | image) = P(image | B) P(B)

Which of these is greater?

Is the middle circle popping "out" or "in"?

P(image | OUT & light is above) = 1 P(image | IN & Light is below) = 1

Image equally likely to be OUT or IN given sensory data alone
What we want to know: P(OUT I image) vs. P(IN I image)

Apply Bayes' rule:

 $P(OUT | image) \propto P(image | OUT \& light above) \times P(OUT) \times P(light above)$ $P(IN | image) \propto P(image | IN \& light below) \times P(IN) \times P(light below)$

Which of these is greater?

Motion example: "stereokinetic effect"

• use prior to interpret ambiguous motions

At least two possible scene interpretations are possible

- both could give rise to the same visual input
- percept is therefore determined by which has higher prior of occurring

Application #1: Biases in Motion Perception

Which grating moves faster?

Application #1: Biases in Motion Perception

Which grating moves faster?

Explanation from Weiss, Simoncelli & Adelson (2002):

 In the limit of a zero-contrast grating, likelihood becomes infinitely broad ⇒ percept goes to zero-motion.

• Claim: explains why people actually speed up when driving in fog!

Hollow Face Illusion

http://www.richardgregory.org/experiments/

Hollow Face Illusion

Hypothesis #1: face is concave Hypothesis #2: face is convex

 $P(convex|video) \propto P(video|convex) P(convex)$ $P(concave|video) \propto P(video|concave) P(concave)$

posterior likelihood prior

 $P(convex) > P(concave) \Rightarrow posterior probability of convex is higher$ (which determines our percept)

Hollow Face Illusion: other examples

mask with nose ring

http://www.youtube.com/watch?NR=I&v=Rc6LRxjqzkA

this one is so strange it looks incredibly fake, but it's a real video!

Gathering for Gardner dragon

https://www.youtube.com/watch?v=MUZS_UY0pgg https://www.youtube.com/watch?v=QzggKdkPRc8 You can download this and make one yourself!

• our prior belief that objects are convex is SO strong, we can't over-ride it, even when we know intellectually it's wrong!

Summary:

- Perception is an ill-posed problem
- equivalently: the world is still ambiguous even given all our sensory information
- Probabilistic information can be used to solve ill-posed problems (via Bayes' theorem)
- Bayes' theorem:

• The brain takes into account "prior knowledge" to figure out what's in the world given our sensory information