Spatial Vision: Primary Visual Cortex
(Chapter 3, part 1)

Lecture 6

Jonathan Pillow
Sensation & Perception
(PSY 345 / NEU 325)
Princeton University, Fall 2017
Eye growth regulation

Chicks’ emmetropic response to hyperopic defocus

KL Schmid, CF Wildsoet - Vision Research, 1996
FJ Rucker, J Wallman - Vision research, 2009
Eye growth regulation

Chicks’ emmetropic response to hyperopic defocus
Eye growth regulation

Chicks’ emmetropic response to hyperopic defocus

KL Schmid, CF Wildsoet - Vision Research, 1996
FJ Rucker, J Wallman - Vision research, 2009
Defocus detection

Chicks’ emmetropic response to hyperopic defocus

No optic nerve \(\rightarrow\) still proper emmetropization
Defocus detection

Chicks’ emmetropic response to hyperopic defocus

No optic nerve \rightarrow still proper emmetropization

KL Schmid, CF Wildsoet - Vision Research, 1996
FJ Rucker, J Wallman - Vision research, 2009
Defocus detection

Chicks’ emmetropic response to hyperopic defocus

No optic nerve \rightarrow *still* proper emmetropization

KL Schmid, CF Wildsoet - Vision Research, 1996
FJ Rucker, J Wallman - Vision research, 2009
Defocus detection

Chicks’ emmetropic response to hyperopic defocus

No optic nerve \rightarrow still proper emmetropization
remaining Chapter 2 stuff
phototransduction: converting light to electrical signals

rods
- respond in low light ("scotopic")
- only one kind: don’t process color
- 90M in humans

cones
- respond in daylight ("photopic")
- 3 different kinds: responsible for color processing
- 4-5M in humans
phototransduction: converting light to electrical signals

- **outer segments**
 - packed with discs
 - discs have **opsins** (proteins that change shape when they absorb a photon - amazing!)
 - different opsins sensitive to different wavelengths of light
 - **rhodopsin**: opsin in rods
 - **photopigment**: general term for molecules that are photosensitive (like opsins)
dark current

- In the dark, membrane channels in rods and cones are open by default (unusual!)
- current flows in continuously
- membrane is depolarized (less negative)

- neurotransmitter is released at a high rate to bipolar cells
transduction & signal amplification

- photon is absorbed by an opsin
- channels close (dark current turns off)
- membrane becomes more polarized (more negative)

- neurotransmitter is released at a lower rate

![Diagram of phototransduction](image)
transduction & signal amplification

inner segments

machinery for amplifying signals from outer segment

neurotransmitter release
graded potential (not spikes!)

to bipolar cells
Photoreceptors: not evenly distributed across the retina

- fovea: mostly cones
- periphery: mostly rods

Q: what are the implications of this?
Photoreceptors: not evenly distributed across the retina

- not much color vision in the periphery
- highest sensitivity to dim lights: 5° eccentricity
Vision scientists measure the size of visual stimuli by how large an image appears on the retina rather than by how large the object is.
Retinal Information Processing: Kuffler’s experiments

“ON” Cell

(a) ON-center ganglion cell

Spot in center

Response

Light on

Spot in surround

Response
Retinal Information Processing: Kuffler’s experiments

“OFF” Cell

- **OFF-center ganglion cell**
 - **Spot in center**
 - **Spot in surround**

- **Response**
 - **Light on**
Receptive field: “what makes a neuron fire”

- weighting function that the neuron uses to add up its inputs”

Response to a dim light

![Diagram of ON cell with patch of light and light level calculation]

\[1 \times (+5) + 1 \times (-4) = +1 \text{ spikes}\]
Receptive field: “what makes a neuron fire”

- weighting function that the neuron uses to add up its inputs”

Response to a spot of light

patch of bright light

ON cell

light level

1 \times (+5) + 0 \times (-4) = +5 \text{ spikes}

“center” weight

“surround” weight
Mach Bands

Each stripe has constant luminance ("light level")
Response to a bright light

light=+2

2 × (+5) + 2 × (-4) = +2 spikes

higher light level

“center” “surround” weight

weight
Response to an edge

\[2 \times (+5) + 2 \times (-3) + 1 \times (-1) = +3 \text{ spikes} \]
Mach Band response

\[2 \times (+5) + 2 \times (-3) + 1 \times (-1) = +3 \text{ spikes} \]
Mach Band response

edges are where light difference is greatest

$$2 \times (+5) + 2 \times (-3) + 1 \times (-1) = +3 \text{ spikes}$$

“center” weight

“surround” weight
Also (partially) explains:

Lightness illusion
ON and OFF retinal ganglion cells’ dendrites arborize (“extend”) in different layers:

Parvocellular
(“small”, feed pathway processing shape, color)

Magnocellular
(“big”, feed pathway processing motion)
“Channels” in visual processing

Incoming Light

- ON, M-cells (light stuff, big, moving)
- OFF, M-cells (dark stuff, big, moving)
- ON, P-cells (light, fine shape/color)
- OFF, P-cells (dark, fine shape/color)

The Retina

Optic Nerve

the brain
Luminance adaptation

remarkable things about the human visual system:
• incredible range of luminance levels to which we can adapt
 (six orders of magnitude, or 1 million times difference)

Two mechanisms for **luminance adaptation**
(adaptation to levels of dark and light):
 (1) Pupil dilation
 (2) Photoreceptors and their photopigment levels

/ the more light, the more photopigment gets “used up”,
→ less available photopigment,
→ retina becomes less sensitive
The possible range of pupil sizes in bright illumination versus dark:

- 16 times more light entering the eye

(a) Bright illumination

2-mm pupil

(b) Dark

8-mm pupil
Contrast = difference in light level, divided by overall light level

Contrast = difference in light level, divided by overall light level

\[C = \frac{\Delta I}{I} \]

(Think back to Weber’s law!)
Luminance adaptation

“center-surround” receptive field

Contast is (roughly) what retinal neurons compute, taking the difference between light in the center and surround!

\[
\Delta I = (5 \cdot I_{\text{ctr}}) - (4 \cdot I_{\text{surround}})
\]

Contrast = difference in light level, divided by overall light level

\[
C = \frac{\Delta I}{I}
\]

(Think back to Weber’s law!)

• from an “image compression” standpoint, it’s better to just send information about local differences in light
summary: Chap 2

- transduction: changing energy from one state to another
- Retina: photoreceptors, opsins, chromophores, dark current, bipolar cells, retinal ganglion cells.
- “backward” design of the retina
- rods, cones; their relative concentrations in the eye
- Blind spot & “filling in”
- Receptive field
- ON / OFF, M / P channels in retina
- contrast, Mach band illusion
- Light adaptation: pupil dilation and photopigment cycling
Spatial Vision: From Stars to Stripes
Motivation

We’ve now learned:
• how the eye (like a camera) forms an image.
• how the retina processes that image to extract contrast (with “center-surround” receptive fields)

Next:
• how does the brain begin processing that information to extract a visual interpretation?