# Estimation \& Maximum Likelihood 

Jonathan Pillow

Mathematical Tools for Neuroscience (NEU 314) Fall, 2021
lecture 19

## warmup problems



1) Compute the marginals $P(x)$ and $P(y)$
2) Compute the means, $E(x)$ and $E(y)$
3) Compute the covariance, $\operatorname{Cov}(x, y)$ (are $x$ and $y$ positively correlated, negatively correlated, or uncorrelated?)
4) Compute the $P(x) P(y)$, the independent approximation to $P(x, y)$ (Is this joint distribution independent or dependent?)
5) Compute the entropy of $P(x)$ ? What is the entropy of $P(x \mid y=1)$
6) Compute the mutual information between $x$ and $y$ using one of the four formulas we discussed in class. (Can you remember them all?)

## Estimation

model
parameter
("stimulus")
$\theta$

## measured dataset

("population response")

$$
m=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}
$$



An estimator is a function $f: m \longrightarrow \hat{\theta}$

- often we will write $\hat{\theta}(m)$ or just $\hat{\theta}$


## Estimation

model
parameter
("stimulus")

$$
p(m \mid \theta)
$$

Maximum likelihood estimator measured dataset
("population response")

$$
m=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}
$$


$\hat{\theta}_{M L}=$ value of $\theta$ at which the likelihood $p(m \mid \theta)$ is maximal
Maximum a posteriori (MAP) estimator $\Longrightarrow \frac{p(m \mid \theta) p(\theta)}{p(m)}$ $\hat{\theta}_{M A P}=$ value of $\theta$ at which the posterior $p(\theta \mid m)$ is maximal

## Properties of an estimator

bias:


$$
b(\theta)=\mathbb{E}[\hat{\theta}]-\theta
$$

- "unbiased" if bias=0
variance: $\quad \operatorname{var}(\theta)=\mathbb{E}\left[(\hat{\theta}-\mathbb{E}[\hat{\theta}])^{2}\right]$
- "consistent" if bias and variance both go to zero asymptotically

Q1: what is the variance of the estimator $\hat{\theta}(m)=7$ (i.e., estimate is 7 for all datasets $m$ )

Q2: what is the bias of this estimator?

## Simple Example: Gaussian noise \& prior

additive Gaussian noise

1. Likelihood $\quad p(m \mid \theta) \quad m=\theta+$ noise

$$
p(m \mid \theta)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(m-\theta)^{2}}{2 \sigma^{2}}}
$$

2. Prior $p(\theta)$
zero-mean Gaussian
$p(\theta)=\frac{1}{\sqrt{2 \pi} \gamma} e^{\frac{-\theta^{2}}{2 \gamma^{2}}}$
posterior distribution

$$
p(\theta \mid m)=\mathcal{N}\left(\frac{\gamma^{2}}{\sigma^{2}+\gamma^{2}} m, \frac{\sigma^{2} \gamma^{2}}{\sigma^{2}+\gamma^{2}}\right)
$$

## Observation model

$$
m=\theta+n o i s e
$$

$$
p(m \mid \theta)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(m-\theta)^{2}}{2 \sigma^{2}}}
$$



## Observation model

$$
m=\theta+n o i s e
$$

$$
p(m \mid \theta)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(m-\theta)^{2}}{2 \sigma^{2}}}
$$



## Observation model

$$
m=\theta+n o i s e
$$

$$
p(m \mid \theta)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(m-\theta)^{2}}{2 \sigma^{2}}}
$$



Likelihood: considering as a function of $\theta$

$$
m=\theta+n o i s e
$$

$$
p(m \mid \theta)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(m-\theta)^{2}}{2 \sigma^{2}}}
$$



