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Entropy

• average number of “yes/no” questions needed to identify x

• average “surprise” from encountering a sample from p(x)

in “bits”

other ways of writing it:

code length / # questionshow often it’s used



Conditional Entropy

identity of a random variable with distribution P (x). As a simple example, if a fair coin is
flipped with p(H) = p(T ) = 1

2 , the entropy is

H(x) = �1
2 log

1
2 �

1
2 log

1
2 = 1 bit.

A completely biased coin with P (H) = 1 has entropy

H(x) = �1 log 1� 0 log 0 = 0 bits,

where we have used 0 log 0 = 0 (which is true in the limit limp�0 p log p = 0).

2 Di�erential Entropy

Not a “real” entropy, since it can be negative and a deterministic transformation (e.g.,
y = ax) can change it. But we can define di�erential entropy as

H(x) =

⇥
p(x) log p(x)dx

3 Conditional Entropy

Conditional entropy H(x|y) is the average entropy in x given the value of y.

H(x|y) = �
�

y

p(y)
�

x

p(x|y) log p(x|y)

= �
�

x,y

p(x, y) log p(x|y)

4 Mutual Information

Mutual information is a (symmetric) function two random variables x and y that quantifies
how many bits of information x conveys about y (and vice-versa). It can be written as the

2

entropy of x given 
some fixed value of y

averaged 
over p(y)
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“On average, how uncertain are you about x if you know y?”

“On average, how many questions do you need to identify x when you know y?”



exercise
Compute the conditional entropy:

1      2      3      4      5      6      7      8 X
p(X|Y=0)
p(X|Y=1)

00 1/4 0 01/4 0 1/2
00 0 0 10 0 0

Y 0 1
p(Y) 2/3 1/3

H(p(X|Y=0) = 3/2
H(p(X|Y=1) = 0

H(X | Y) =  2/3 (3/2)  + 1/3 (0) = 1 bit

“On average, you need 1 question to guess X when you know Y”



Mutual Information

sum of entropies 
minus joint entropy

total entropy in X minus 
conditional entropy of X given Y

total entropy in Y minus 
conditional entropy of Y given X

“How much does X tell me about Y (or vice versa)?”

“How much is your uncertainty about X reduced from knowing Y?”

“What is the difference between (# of questions needed to guess X) 
and (# questions needed to guess X when you’re given Y)”



Venn diagram of entropy and information



Kullback-Leibler Divergence

entropy of either variable minus the conditional entropy of that variable given the other.

I(x, y) = H(x)�H(x|y)
= �

�

x

p(x) log p(x) +
�

x,y

p(x, y) log p(x|y)

= �
�

x,y

p(x, y) log p(x) +
�

x,y

p(x, y) log p(x|y)

=
�

x,y

p(x, y) log
p(x|y)
p(x)

=
�

x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
�

x,y

p(x, y) log
p(y|x)
p(y)

= �
�

x,y

p(x, y) log p(y) +
�

x,y

p(x, y) log p(y|x)

= �
�

y

p(y) log p(y) +
�

x,y

p(x, y) log p(y|x)

= H(y)�H(y|x)

5 Kullback-Leibler Divergence

Definition: for two discrete distributions P (x) and Q(x),

DKL(P ||Q) =
�

x

P (x) log
P (x)

Q(x)
,

or for continuous densities P (x) and Q(x) :

DKL(P ||Q) =

⇥
P (x) log

P (x)

Q(x)
dx.

KL divergence is also known as the information divergence or relative entropy. It quantifies
the number of extra bits required to code samples from P (x) if a codebook based on Q(x)
is used. Facts about KL:

• DKL(P ||Q) ⇤ 0, ⌅P,Q

• DKL(P ||Q) = 0, i� P = Q

3

for two distributions P(x) and Q(x)

• quantifies the number of extra bits required to code samples from P(x) if 
you use a codebook (“question asking strategy”) based on Q(x)
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Properties:

• KL is not in general symmetric: DKL(P ||Q) ⇤= DKL(Q||P ).

Relationship to mutual information:

I(X, Y ) = DKL(P (X, Y )||P (X)P (Y )),

which can be observed from the middle line of the equations for mutual information given
above. Put plainly, this means that the mutual information between random variablesX and
Y is the KL divergence between their joint distribution P (x, y) and their product distribution
P (x)P (y).

6 Relationship between Maximum Likelihood and KL
Divergence

Suppose that we have data {Xi} from some unknown distribution Ptrue(x) and we wish to fit
the data with a parametric model described by a P�(x) = P (x|�). The maximum likelihood
estimator for � is defined

�̂ML = argmax
�

⇤

i

logP (Xi|�)

Result: maximizing the likelihood is equivalent to minimizing DKL(Ptrue||P�), the KL diver-
gence between Ptrue(x) and P�(x). This follows from

DKL(Ptrue||P�) =
⇤

x

Ptrue(x) log
Ptrue(x)

P�(x)

= �
⇤

x

Ptrue(x) logP�(x) +
⇤

x

Ptrue(x) logPtrue(x)

=

�
lim

N�⇥
� 1

N

N⇤

i=1

logP�(xi)

⇥
�H[Ptrue],

where this last line is just the average negative log-likelihood, computed using {xi}Ni=1 sam-
pled iid from Ptrue, minus the entropy of Ptrue. Since the entropy H[Ptrue] is independent
of �, minimizing KL divergence as a function of � is equivalent to minimizing negative log-
likelihood, or maximizing the likelihood.

4

code length 
based on Q(x)

avg under
P(x) entropy of P(x)

“cross-entropy”



Illustrating non-symmetry of KL divergence

P2(X)

1/21/8 1/8 1/8 1/80 00
1    2    3    4    5    6    7    8 

P1(X)
1/81/8 1/8 1/8 1/81/8 1/81/8

1    2    3    4    5    6    7    8 

1st probability distribution

2nd probability distribution:

Exercise:  1) What is KL(P2 || P1)?
2) What is KL(P1 || P2)?
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Mutual Information identities
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KL divergence between joint distribution 
and product of marginals



Data Processing Inequality

Suppose                                           form a Markov chain, that is

Then necessarily: 

• in other words, we can only lose information during processing



“surprise” function:

Entropy:  “avg # Y/N Q’s” = 

Conditional Entropy: 
 

Mutual information:

KL divergence

Summary with formulas: 

(in bits)

entropy of either variable minus the conditional entropy of that variable given the other.

I(x, y) = H(x)�H(x|y)
= �

�

x

p(x) log p(x) +
�

x,y

p(x, y) log p(x|y)

= �
�

x,y

p(x, y) log p(x) +
�

x,y

p(x, y) log p(x|y)

=
�

x,y

p(x, y) log
p(x|y)
p(x)

=
�

x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
�

x,y

p(x, y) log
p(y|x)
p(y)

= �
�

x,y

p(x, y) log p(y) +
�

x,y

p(x, y) log p(y|x)

= �
�

y

p(y) log p(y) +
�

x,y

p(x, y) log p(y|x)

= H(y)�H(y|x)

5 Kullback-Leibler Divergence

Definition: for two discrete distributions P (x) and Q(x),

DKL(P ||Q) =
�

x

P (x) log
P (x)

Q(x)
,

or for continuous densities P (x) and Q(x) :

DKL(P ||Q) =

⇥
P (x) log

P (x)

Q(x)
dx.

KL divergence is also known as the information divergence or relative entropy. It quantifies
the number of extra bits required to code samples from P (x) if a codebook based on Q(x)
is used. Facts about KL:

• DKL(P ||Q) ⇤ 0, ⌅P,Q

• DKL(P ||Q) = 0, i� P = Q

3



Barlow’s 
“Efficient Coding 

Hypothesis”



Efficient Coding Hypothesis: 
Barlow 1961 

Atick & Redlich 1990

mutual information:
• avg # yes/no questions you can 

answer about x given y  (“bits”)“noise” entropyresponse entropy

• goal of nervous system: maximize information about environment
   (one of the core “big ideas” in theoretical neuroscience)

spikesstimuli



Barlow’s original version:

mutual information:

response entropy “noise” entropy
if responses are noiseless

Barlow 1961 
Atick & Redlich 1990



Barlow’s original version:

mutual information:

“noise” entropy
noiseless system

brain should maximize response entropy
•  use full dynamic range
•  decorrelate (“reduce redundancy”)

• mega impact: huge number of theory and experimental papers focused 
on decorrelation / information-maximizing codes in the brain

Barlow 1961 
Atick & Redlich 1990

response entropy



basic intuition
natural image

nearby pixels exhibit 
strong dependencies

neural response i
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stimulus prior

noiseless, discrete
encoding

ï� 0 �
0

0.25

0.5

x

p(
x)

Gaussian prior
Q: what solution for infomax?

Application Example: single neuron encoding stimuli from a distribution P(x)
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Gaussian prior
Q: what solution for infomax?
A: histogram-equalization

Application Example: single neuron encoding stimuli from a distribution P(x)



response
data

Laughlin 1981:  blowfly light response

cdf of light level

• first major validation of Barlow’s theory



luminance-dependent receptive fields
318 Joseph J. Atick and A. Norman Redlich 

(4 S/N-O.l 

I I I I I 

-10 -5 0 5 10 

Figure 3: (a-c) Optimal solution at three different values of SIN. These profiles 
have been produced from the two-dimensional solution by summing over one 
direction and normalizing the resulting profile such that the height central point 
is equal to the center height in the two-dimensional solution. 

as a redundancy reduction technique in our previous paper (Atick and 
Redlich 1989). The spatial profiles for the square root solution are very 
similar to the prediction profiles, albeit a bit more spread out in the 
surround region. This type of profile reduces redundancy by reducing 
the amount of correlations present in the signal. 

In the other regime, where noise is very large compared to the signal, 
the solution for A(w) - (&/N2)*/4 and has the same qualitative features 
as the smoothing solution (Atick and Redlich 1989) which in that limit is 
Asmoothg = &/N2.  Smoothing increases the signal to noise of the out- 
put and, in our earlier work, we argued that it is a good redundancy 
reducing technique in that noise regime. Moreover, in that work, we 

Atick & Redlich 1990 - extended theory to noisy responses

w
ei

gh
tin

g

space

High SNR
(“whitening” / decorrelating)

Middle SNR
(partial decorrelating)

Low SNR
(averaging / correlating)



• entropy

• conditional entropy

• mutual information

• data processing inequality

• efficient coding hypothesis (Barlow) 
- neurons should “maximize their dynamic range” 
- multiple neurons: responses should decorrelate 
- Atick & Redlich: extended to noisy responses

summary: info theory


