Information Theory II: mutual information and efficient coding

NEU 314, Fall 2021
Lecture 18

Jonathan Pillow
Entropy

\[H(x) = - \sum_x p(x) \log p(x) \quad \text{in “bits”} \]

\[= \mathbb{E}[- \log p(x)] \]

other ways of writing it:

\[H(x) = \sum_{i=1}^{N} p_i (\log \left(\frac{1}{p_i} \right)) \]

- average number of “yes/no” questions needed to identify x
- average “surprise” from encountering a sample from p(x)
Conditional Entropy

\[H(x|y) = -\sum_y p(y) \sum_x p(x|y) \log p(x|y) \]

- Averaged over \(p(y) \)
- Entropy of \(x \) given some fixed value of \(y \)
Conditional Entropy

\[H(x|y) = -\sum_y p(y) \sum_x p(x|y) \log p(x|y) \]

averaged over \(p(y) \)

entropy of \(x \) given some fixed value of \(y \)

\[= -\sum_{x,y} p(x, y) \log p(x|y) \]

“On average, how uncertain are you about \(x \) if you know \(y \)?”

“On average, how many questions do you need to identify \(x \) when you know \(y \)?”
Exercise

Compute the conditional entropy:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1/2)</td>
<td>(1/4)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p(Y)</td>
<td>(2/3)</td>
<td>(1/3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[H(p(X|Y=0)) = 3/2\]

\[H(p(X|Y=1)) = 0\]

\[H(X \, | \, Y) = \frac{2}{3} \left(\frac{3}{2}\right) + \frac{1}{3} \left(0\right) = 1 \text{ bit}\]

“On average, you need 1 question to guess X when you know Y”
Mutual Information

\[I(x, y) = H(x) - H(x|y) \]

Total entropy in X minus conditional entropy of X given Y

\[= H(y) - H(y|x) \]

Total entropy in Y minus conditional entropy of Y given X

\[= H(x) + H(y) - H(x, y) \]

Sum of entropies minus joint entropy

“How much does X tell me about Y (or vice versa)?”

“How much is your uncertainty about X reduced from knowing Y?”

“What is the difference between (# of questions needed to guess X) and (# questions needed to guess X when you’re given Y)”
Venn diagram of entropy and information
Kullback-Leibler Divergence

for two distributions $P(x)$ and $Q(x)$

$$D_{KL}(P||Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)}$$

$$= \sum x \ P(x) \log P(x) - \sum x \ P(x) \log Q(x)$$

$$= \sum x \ P(x)(-\log Q(x)) - \sum x \ P(x)(-\log P(x))$$

- quantifies the number of extra bits required to code samples from $P(x)$ if you use a codebook (“question asking strategy”) based on $Q(x)$

Properties:

- $D_{KL}(P||Q) \geq 0, \ \forall P, Q$
- $D_{KL}(P||Q) = 0, \ \text{iff} \ P = Q$
- $\text{KL is not in general symmetric: } D_{KL}(P||Q) \neq D_{KL}(Q||P)$
Illustrating non-symmetry of KL divergence

\[D_{KL}(P||Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)} \]

1st probability distribution \(P_1(X) \)

\[
\begin{array}{cccccccc}
1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

2nd probability distribution: \(P_2(X) \)

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 1/8 & 1/8 & 1/8 & 1/8 & 1/2 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Exercise: 1) What is KL(\(P_2 || P_1 \))?

2) What is KL(\(P_1 || P_2 \))?
Mutual Information identities

\[I(x, y) = H(x) - H(x|y) \]

\[= - \sum_{x} p(x) \log p(x) + \sum_{x,y} p(x, y) \log p(x|y) \]

\[= - \sum_{x,y} p(x, y) \log p(x) + \sum_{x,y} p(x, y) \log p(x|y) \]

\[= \sum_{x,y} p(x, y) \log \frac{p(x|y)}{p(x)} \]

\[= \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} = D_{KL}(p(x, y)\|p(x)p(y)) \]

KL divergence between joint distribution and product of marginals

\[= - \sum_{x,y} p(x, y) \log p(y) + \sum_{x,y} p(x, y) \log p(y|x) \]

\[= - \sum_{y} p(y) \log p(y) + \sum_{x,y} p(x, y) \log p(y|x) \]

\[= H(y) - H(y|x) \]
Data Processing Inequality

Suppose $S \rightarrow R_1 \rightarrow R_2$ form a Markov chain, that is

$$P(R_1, R_2|S) = P(R_2|R_1)P(R_1|S)$$

Then necessarily:

$$I(S, R_2) \leq I(S, R_1)$$

• in other words, we can only lose information during processing
Summary with formulas:

“surprise” function: \(- \log[p(x)]\)

Entropy: “avg # Y/N Q’s” = \(- \sum_x P(x) \log P(x)\) (in bits)

Conditional Entropy: \(H(x|y) = - \sum P(x, y) \log P(x|y)\)

Mutual information: \(I(x, y) = H(x) - H(x|y) = H(y) - H(y|x)\)
\(= KL[p(x, y)\|p(x)p(y)]\)

KL divergence \(D_{KL}(P\|Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)}\)
Barlow’s
“Efficient Coding Hypothesis”
Efficient Coding Hypothesis:

- goal of nervous system: maximize information about environment (one of the core “big ideas” in theoretical neuroscience)

mutual information:

\[I(x, y) = H(y) - H(y|x) \]

- avg # yes/no questions you can answer about x given y (“bits”)
Barlow’s original version:

\[I(x, y) = H(y) - H(y|x) \]

if responses are noiseless

mutual information:

- response entropy
- “noise” entropy

Barlow 1961
Atick & Redlich 1990
Barlow’s original version:

mutual information:

\[I(x, y) = H(y) - H(y|x) \]

- response entropy
- “noise” entropy

noiseless system

\[\Rightarrow \text{brain should maximize response entropy} \]
- use full dynamic range
- decorrelate (“reduce redundancy”)

- mega impact: huge number of theory and experimental papers focused on decorrelation / information-maximizing codes in the brain
basic intuition

natural image

nearby pixels exhibit strong dependencies

pixels

desired encoding

neural representation

pixel \(i\)

pixel \(i+1\)

neural response \(i\)

neural response \(i+1\)
Application Example: single neuron encoding stimuli from a distribution $P(x)$

- **stimulus prior**

 $x \sim P(x)$

- **noiseless, discrete encoding**

 $y = f(x), \quad y \in \{y_1, y_2, \ldots, y_n\}$

Q: what solution for infomax?
Application Example: single neuron encoding stimuli from a distribution $P(x)$

stimulus prior \[x \sim P(x) \]

noiseless, discrete encoding \[y = f(x), \quad y \in \{y_1, y_2, \ldots, y_n\} \]

Q: what solution for infomax?
A: histogram-equalization

\[I(X, Y) = H(Y) - H(Y|X) \]
Laughlin 1981: blowfly light response

- first major validation of Barlow’s theory
luminance-dependent receptive fields

(a) $S/N=10$

High SNR
(“whitening” / decorrelating)

(b) $S/N=2$

Middle SNR
(partial decorrelating)

(c) $S/N=0.1$

Low SNR
(averaging / correlating)
summary: info theory

- entropy
- conditional entropy
- mutual information
- data processing inequality
- efficient coding hypothesis (Barlow)
 - neurons should “maximize their dynamic range”
 - multiple neurons: responses should decorrelate
 - Atick & Redlich: extended to noisy responses