Information Theory II: mutual information and efficient coding

NEU 314, Fall 2021 Lecture 18

Jonathan Pillow

Entropy

$$\begin{split} H(x) &= -\sum_{x} p(x) \log p(x) & \text{ in ``bits''} \\ &= \mathbb{E}[-\log p(x)] \end{split}$$

other ways of writing it:

- average number of "yes/no" questions needed to identify x
- average "surprise" from encountering a sample from p(x)

Conditional Entropy

averagedentropy of x givenover p(y)some fixed value of y

Conditional Entropy

"On average, how uncertain are you about x if you know y?"

"On average, how many questions do you need to identify x when you know y?"

exercise

Compute the conditional entropy:

Х	1	2	3	4	5	6	7	8
p(XIY=0)	1/4	0	0	1/2	1/4	0	0	0
p(XIY=1)	0	0	0	0	0	0	1	0
Y p(Y)	0 2/3	1 1/3						
H(p(XI H(p(XI	Y=0) = Y=1) =	= 3/2 = 0						
H(X I `	Y) = 2/	/3 (<mark>3/2</mark>)	+ 1/3	s (<mark>0</mark>) =	1 bit			

"On average, you need 1 question to guess X when you know Y"

Mutual Information

$$I(x,y) = H(x) - H(x|y)$$

total entropy in X minus conditional entropy of X given Y

$$= H(y) - H(y|x)$$
 total entropy in Y minus conditional entropy of Y given X

$$= H(x) + H(y) - H(x, y)$$
 sum of entropies
minus joint entropy

"How much does X tell me about Y (or vice versa)?"

"How much is your uncertainty about X reduced from knowing Y?"

"What is the difference between (# of questions needed to guess X) and (# questions needed to guess X when you're given Y)"

Venn diagram of entropy and information

Kullback-Leibler Divergence

for two distributions P(x) and Q(x) $D_{KL}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$ $= \sum_{x} P(x) \log P(x) - \sum_{x} P(x) \log Q(x)$ $= \sum_{x} P(x)(-\log Q(x)) - \sum_{x} P(x)(-\log P(x))$ entropy of P(x) avg under code length P(x) based on Q(x) entropy of P(x)

• quantifies the number of *extra* bits required to code samples from P(x) if you use a codebook ("question asking strategy") based on Q(x)

Properties:

- $D_{KL}(P||Q) \ge 0, \forall P, Q$
- $D_{KL}(P||Q) = 0$, iff P = Q
- KL is not in general symmetric: $D_{KL}(P||Q) \neq D_{KL}(Q||P)$

Illustrating non-symmetry of KL divergence $D_{KL}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$

1st probability distribution P₁(X) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1 2 3 4 5 6 7 8

 2^{nd} probability distribution: $P_2(X)$

0 0 0 1/8 1/8 1/8 1/8 1/2 1 2 3 4 5 6 7 8

Exercise: 1) What is KL(P₂ II P₁)?2) What is KL(P₁ II P₂)?

Mutual Information identities

$$\begin{split} I(x,y) &= H(x) - H(x|y) \\ &= -\sum_{x} p(x) \log p(x) + \sum_{x,y} p(x,y) \log p(x|y) \\ &= -\sum_{x,y} p(x,y) \log p(x) + \sum_{x,y} p(x,y) \log p(x|y) \\ &= \sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(x)} \\ &= \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = D_{KL}(p(x,y) \| p(x)p(y)) \\ &= \sum_{x,y} p(x,y) \log \frac{p(y|x)}{p(y)} \\ &= \sum_{x,y} p(x,y) \log \frac{p(y|x)}{p(y)} \\ &= -\sum_{x,y} p(x,y) \log p(y) + \sum_{x,y} p(x,y) \log p(y|x) \\ &= -\sum_{y} p(y) \log p(y) + \sum_{x,y} p(x,y) \log p(y|x) \\ &= H(y) - H(y|x) \end{split}$$

Data Processing Inequality

Suppose $S o R_1 o R_2$ form a Markov chain, that is

 $P(R_1, R_2|S) = P(R_2|R_1)P(R_1|S)$

Then necessarily: $I(S, R_2) \leq I(S, R_1)$

• in other words, we can only lose information during processing

Summary with formulas:

"surprise" function: $-\log|p(x)|$ Entropy: "avg # Y/N Q's" = $-\sum P(x) \log P(x)$ (in bits) \boldsymbol{x} Conditional Entropy: $H(x|y) = -\sum P(x,y) \log P(x|y)$ I(x, y) = H(x) - H(x|y) = H(y) - H(y|x)Mutual information: = KL[p(x, y) || p(x)p(y)] $D_{KL}(P||Q) = \sum P(x) \log \frac{P(x)}{Q(x)}$ KL divergence

Barlow's "Efficient Coding Hypothesis"

Efficient Coding Hypothesis:

• goal of nervous system: maximize information about environment (one of the core "big ideas" in theoretical neuroscience)

mutual information:

$$I(x, y) = H(y) - H(y|x)$$
`response entropy "noise" entropy`

 avg # yes/no questions you can answer about x given y ("bits")

Barlow 1961 Atick & Redlich 1990

Barlow's original version:

mutual information:

$$I(x,y) = H(y) - H(y) - H(y)$$
response entropy "noise" entropy

if responses are noiseless

Barlow 1961 Atick & Redlich 1990

Barlow's original version:

mutual information:

$$I(x,y) = H(y) - H(y|x)$$
response entropy "noise" entropy

\implies brain should maximize response entropy

- use full dynamic range
- decorrelate ("reduce redundancy")
- mega impact: huge number of theory and experimental papers focused on decorrelation / information-maximizing codes in the brain

noiseless system

basic intuition

natural image

nearby pixels exhibit strong dependencies

neural representation

Application Example: single neuron encoding stimuli from a distribution P(x)

stimulus prior
$$x \sim P(x)$$

noiseless, discrete $y = f(x), \quad y \in \{y_1, y_2, \dots, y_n\}$
encoding
^{0.5} Gaussian prior

Application Example: single neuron encoding stimuli from a distribution P(x)

Laughlin 1981: blowfly light response

first major validation of Barlow's theory

Atick & Redlich 1990 - extended theory to noisy responses

summary: info theory

- entropy
- conditional entropy
- mutual information
- data processing inequality
- efficient coding hypothesis (Barlow)
 - neurons should "maximize their dynamic range"
 - multiple neurons: responses should decorrelate
 - Atick & Redlich: extended to noisy responses