Information Theory part I: entropy

NEU 3I4, Fall 202I Lecture 17

Jonathan Pillow

practice problem

Consider the following model describing how a single neuron responds to houses and faces, which is given by a pair of conditional distributions:

Furthermore, suppose P (house) $=0.4, \mathrm{P}($ face $)=0.6$

1) What is the joint distribution P (\# spikes, stimulus)?
2) What is the marginal distribution P (\# spikes)?
bonus warmup problems for today:

- $\log (a b)=$?
- $\log (1 / \mathrm{a})=$?

Information Theory

A mathematical theory of communication,
 Claude Shannon 1948

Entropy

\# yes/no questions needed, on average, to determine the value of a random variable
motivating example \#1: I'm thinking of a \# between 1 and 8 . How many Y / N questions do you need to guess it?

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Strategy 1:

Q1: is it 1?
Q2: is it 2 ?

Q2: is it 8 ?

- worst case: 8 questions
- average case (assuming uniform): 4 questions

Can we do better???
motivating example \#1: I'm thinking of a \# between 1 and 8 . How many Y / N questions do you need to guess it?

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Strategy 2: Q1: is it >4 ?
motivating example \#1: I'm thinking of a \# between 1 and 8 . How many Y / N questions do you need to guess it?

motivating example \#1: I'm thinking of a \# between 1 and 8 . How many Y / N questions do you need to guess it?

motivating example \#1: I'm thinking of a \# between 1 and 8 . How many Y / N questions do you need to guess it?

motivating example \#1: I'm thinking of a \# between 1 and 8 . How many Y / N questions do you need to guess it?

- average: 3 questions
motivating example \#1: I'm thinking of a \# between 1 and 8 . How many Y / N questions do you need to guess it?

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

General result:

$$
2^{N} \text { options } \Longrightarrow \mathrm{N} \text { binary questions }
$$

Therefore: \quad \# questions $=\log _{2}(\underset{\uparrow}{K})$
\# possibilities (unknowns)

motivating example \#2: how many Y / N questions needed?

$P(X)$

$$
\begin{array}{cccccccc}
0 & 0 & 0 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 2 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

- 3 questions would still suffice
- But can we do better?
motivating example \#2: how many Y / N questions needed?

motivating example \#2: how many Y / N questions needed?
$P(X)$

$$
\begin{array}{cccccccc}
0 & 0 & 0 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 2 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Strategy: Q1: is it 8?

$$
4,5,6,7 \quad 8 \text { (done!) }
$$

Q2: is it >5 ?

motivating example \#2: how many Y / N questions needed?
$P(X)$

$$
\begin{array}{cccccccc}
0 & 0 & 0 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 2 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Strategy: Q1: is it 8 ?

$$
4,5,6,7 \quad 8 \text { (done!) }
$$

Q2: is it >5 ?
Q3: is it 5 ? $4,5 \quad 6,7$ is it 7 ?

motivating example \#2: how many Y/N questions needed?
$P(X)$

$$
\begin{array}{cc}
0 & 0 \\
1 & 2 \\
\text { Q1: is it } 8 ?
\end{array}
$$

$$
4,5,6,7
$$

8 (done!)
Q2: is it >5 ?
Q3: is it 5 ? $4,5 \quad 6,7$ is it 7 ?

- what is the average \# of questions?
$1 / 2\left(\begin{array}{c}1 \text { question }) \\ 8\end{array} \underset{4,5,6,7}{(3 \text { questions })}=1 / 2+3 / 2=\begin{array}{c}2 \text { questions } \\ \text { on average }\end{array}\right.$

motivating example \#2: how many Y / N questions needed?

P(X)

$$
\begin{array}{cccccccc}
0 & 0 & 0 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 2 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

General results:

- optimal strategy: divide probability in half w/ each question
- need N questions to identify options with probability $1 / 2^{\mathrm{N}}$
- thus: $\log _{2}(K)$ questions for options with probability $1 / K$
- or: $-\log _{2}(p)$ questions for options with probability p

$$
\text { (using: } \log (\mathrm{K})=-\log (1 / \mathrm{K})=-\log (\mathrm{p}) \text {) }
$$

code length
$P(X)$

$$
\begin{array}{llllllll}
0 & 0 & 0 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 2
\end{array}
$$

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Strategy: Q1: is it 8?

$$
4,5,6,7
$$

8
Q2: is it >5 ?
Q3: is it 5 ? $4,5 \quad 6,7$ is it 7 ?

- or: $-\log _{2}(p)$ questions for options with probability p

8: Y
7: NYY
6: NYN
5: NNY 8: Y
7: NYY
6: NYN
5: NNY 8: Y
7: NYY
6: NYN
5: NNY 8: Y
7: NYY
6: NYN
5: NNY
code:
code length

Entropy

$$
\begin{aligned}
& H(x)=-\sum_{x} p(x) \log p(x) \\
& \text { averaged \# questions } \\
& \text { over } p(x) \text { for } x
\end{aligned}
$$

- number of "yes/no" questions needed to identify x (on average)

exercises

Compute the entropy:

X	1	2	3	4	5	6	7	8
$P_{1}(X)$	$1 / 4$	0	0	$1 / 2$	$1 / 4$	0	0	0
$P_{2}(X)$	$1 / 16$	0	$1 / 16$	$1 / 4$	$1 / 8$	$1 / 4$	0	$1 / 4$
$P_{1}(X)$	0	0	0	0	0	0	1	0

Entropy

$$
\begin{aligned}
& H(x)=-\sum_{x} p(x) \log p(x) \\
& \text { averaged \# questions } \\
& \text { over } p(x) \text { for } x
\end{aligned}
$$

- number of "yes/no" questions needed to identify x (on average)
for distribution on K bins,
- maximum entropy $=\log \mathrm{K}$ (achieved by uniform dist)
- minimum entropy $=0 \quad$ (achieved by all probability in 1 bin)

What about when the probabilities aren't powers of 2?

formula still applies:

$$
\begin{aligned}
H(X) & =-P(A) \log P(A)-P(B) \log P(B) \\
& =-1 / 3 \log (1 / 3)-2 / 3 \log (2 / 3) \\
& \approx 0.91 \text { questions "on average" }
\end{aligned}
$$

But how could you achieve that?

ANSWER: consider longer blocks of symbols

What about when the probabilities aren't powers of 2?

formula still applies:

$$
\begin{aligned}
H(X) & =-P(A) \log P(A)-P(B) \log P(B) \\
& =-1 / 3 \log (1 / 3)-2 / 3 \log (2 / 3) \\
& \approx 0.91 \text { questions "on average" }
\end{aligned}
$$

AA AB BA BB

$1 / 9$	$2 / 9$	$2 / 9$	$4 / 9$

$=0.9444$ questions $/$ symbol

Shannon showed: converges to entropy as you make the blocks longer

entropy: alternate derivation

Shannon: wanted a "surprise" function $h(\cdot)$ that had two properties:

- decreasing function $p(X)$
- the surprise of independent variables adds:

$$
\begin{gathered}
h(p(X, Y))=h(p(X))+h(p(Y)) \\
\text { if } \\
p(X, Y)=p(X) p(Y)
\end{gathered}
$$

Only function that has this property: $h(p)=-\log (p)$

- entropy = "average surprise" for values from $P(X)$

Conditional Entropy

$$
H(x \mid y)=-\sum_{\substack{\text { averaged } \\
\text { over } \mathrm{p}(\mathrm{y}) \\
\begin{array}{c}
\text { entropy of } \mathrm{x} \text { given } \\
\text { some fixed value of } \mathrm{y}
\end{array}}}^{\sum_{x} p(x \mid y) \log p(x \mid y)}
$$

Conditional Entropy

$$
\begin{aligned}
H(x \mid y)= & -\underbrace{\sum_{\substack{\text { entropy of } \mathrm{x} \text { given } \\
\text { some fixed value of } \mathrm{y}}} p(y)}_{\substack{\text { averaged } \\
\text { over } \mathrm{p}(\mathrm{y})}} \sum_{\sum_{x} p(x \mid y) \log p(x \mid y)} \\
= & -\sum_{x, y} p(x, y) \log p(x \mid y) \\
= & H(x) \quad \text { if } \quad P(x, y)=P(x) P(y)
\end{aligned}
$$

"On average, how uncertain are you about x if you know y ?"

exercise

Compute the conditional entropy:

$$
\begin{array}{ccccccccc}
X & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
P(X \mid Y=0) & 1 / 4 & 0 & 0 & 1 / 2 & 1 / 4 & 0 & 0 & 0 \\
P(X I Y=1) & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
& & & & & & & & \\
Y & 0 & 1 & & & & & \\
P(Y) & 2 / 3 & 1 / 3 & & & & & &
\end{array}
$$

