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practice problem

0.1 0.1 0.3 0.4 0.1

0.1 0.4 0.3 0.2 0

0 1 2

P( # spikes | “house”)

Furthermore, suppose P(house) = 0.4, P(face) = 0.6

P( # spikes | “face”)

3# spikes 4

1) What is the joint distribution P(# spikes, stimulus)? 
2) What is the marginal distribution P(# spikes)?

Consider the following model describing how a single neuron responds to 
houses and faces, which is given by a pair of conditional distributions: 

•  log(ab) =  ?
• log (1/a) = ?

bonus warmup problems for today: 
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Information Theory

A mathematical theory of communication,
Claude Shannon 1948
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Entropy

# yes/no questions needed, on average, to determine 
the value of a random variable
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motivating example #1:  I’m thinking of a # between 1 and 8. 
How many Y/N questions do you need to guess it?

Q2:  is it 2?

Q2:  is it 8?

. .
 .

1    2    3    4    5    6    7    8 

Q1:  is it 1?
Strategy 1:

• worst case: 8 questions
• average case (assuming uniform): 4 questions

Can we do better???
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motivating example #1:  I’m thinking of a # between 1 and 8. 
How many Y/N questions do you need to guess it?

1    2    3    4    5    6    7    8 
Strategy 2: Q1: is it >4?
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motivating example #1:  I’m thinking of a # between 1 and 8. 
How many Y/N questions do you need to guess it?

1    2    3    4    5    6    7    8 
Strategy 2: YN

5,6,7,8
Q1: is it >4?

1,2,3,4
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motivating example #1:  I’m thinking of a # between 1 and 8. 
How many Y/N questions do you need to guess it?

1    2    3    4    5    6    7    8 
Strategy 2: YN

5,6,7,8
Q1: is it >4?

1,2,3,4
Q2:  is it >2?  is it >6?YN

1,2 3,4 5,6 7,8
YN
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motivating example #1:  I’m thinking of a # between 1 and 8. 
How many Y/N questions do you need to guess it?

1    2    3    4    5    6    7    8 
Strategy 2: YN

5,6,7,8
Q1: is it >4?

1,2,3,4
Q2:  is it >2?  is it >6?YN

5,6 7,8
Q3:

1,2 3,4
 is it 8? is it 6? is it 4?

YN

 is it 2?
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motivating example #1:  I’m thinking of a # between 1 and 8. 
How many Y/N questions do you need to guess it?

1    2    3    4    5    6    7    8 

• average: 3 questions

Strategy 2: YN

5,6,7,8
Q1: is it >4?

1,2,3,4
Q2:  is it >2?  is it >6?YN

5,6 7,8
Q3:

1,2 3,4
 is it 8? is it 6? is it 4?

YN

YN

87

YNYNYN
 is it 2?

1 2 3 4 5 6
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motivating example #1:  I’m thinking of a # between 1 and 8. 
How many Y/N questions do you need to guess it?

1    2    3    4    5    6    7    8 

General result: 

options N binary questions

Therefore:  # questions = 

# possibilities (unknowns)
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motivating example #2: how many Y/N questions needed?

1    2    3    4    5    6    7    8 

• 3 questions would still suffice
• But can we do better?

P(X) 1/21/8 1/8 1/8 1/80 00
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1    2    3    4    5    6    7    8 
Strategy: Q1: is it 8? YN

84,5,6,7

P(X) 1/21/8 1/8 1/8 1/80 00

(done!)

motivating example #2: how many Y/N questions needed?
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1    2    3    4    5    6    7    8 
Strategy:

Q2: is it >5?

P(X) 1/21/8 1/8 1/8 1/80 00

YN

84,5,6,7
Q1: is it 8?

4,5 6,7
YN

(done!)

motivating example #2: how many Y/N questions needed?
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1    2    3    4    5    6    7    8 
Strategy:

Q2: is it >5?

4,5 6,7Q3:  is it 7? is it 5?

YN

YNYN

4 5 6 7

P(X) 1/21/8 1/8 1/8 1/80 00

YN

84,5,6,7
Q1: is it 8?

(done!)

motivating example #2: how many Y/N questions needed?
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1    2    3    4    5    6    7    8 

• what is the average # of questions?

Strategy:

Q2: is it >5?

4,5 6,7Q3:  is it 7? is it 5?

YN

YNYN

4 5 6 7

P(X) 1/21/8 1/8 1/8 1/80 00

YN

84,5,6,7
Q1: is it 8?

(done!)

motivating example #2: how many Y/N questions needed?

8 4,5,6,7
1/2 (1 question) + 1/2 (3 questions)  = 1/2 + 3/2 2 questions 

on average! =
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1    2    3    4    5    6    7    8 
P(X) 1/21/8 1/8 1/8 1/80 00

General results: 

• optimal strategy: divide probability in half w/ each question

• need N questions to identify options with probability 1/2N

• thus: log2(K) questions for options with probability 1/K

• or: -log2(p) questions for options with probability p

motivating example #2: how many Y/N questions needed?

}

code length
(using:  log(K) = -log(1/K) = -log(p))
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1    2    3    4    5    6    7    8 
Strategy:

Q2: is it >5?

4,5 6,7Q3:  is it 7? is it 5?

YN

YNYN

4 5 6 7

P(X) 1/21/8 1/8 1/8 1/80 00

YN

84,5,6,7
Q1: is it 8?

• or: -log2(p) questions for options with probability p}

code length

code:
8: Y
7: NYY
6: NYN
5: NNY
4: NNN
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Entropy

averaged 
over p(x)

• number of “yes/no” questions needed to identify x (on average)

# questions 
for x
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exercises

Compute the entropy:

P1(X)

1      2      3      4      5      6      7      8 X

1/41/16 1/8 1/4 01/16 0 1/4P2(X)

00 1/4 0 01/4 0 1/2

P1(X) 00 0 0 10 0 0
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Entropy

averaged 
over p(x)

• number of “yes/no” questions needed to identify x (on average)

for distribution on K bins, 
• maximum entropy = log K  (achieved by uniform dist)
• minimum entropy = 0   (achieved by all probability in 1 bin)

# questions 
for x
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What about when the probabilities 
aren’t powers of 2?

P1(X)

A      B  X:

1/3 2/3

formula still applies:

H(X) =  - P(A) log P(A)  - P(B) log P(B)

= -1/3 log(1/3) - 2/3 log(2/3)

≈ 0.91  questions “on average”

But how could you achieve that?

ANSWER: consider longer blocks of symbols
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What about when the probabilities 
aren’t powers of 2?

P1(X)

A      B  X:

1/3 2/3

AA      AB      BA      BB  
1/9 2/9 2/9 4/9

formula still applies:

H(X) =  - P(A) log P(A)  - P(B) log P(B)

= -1/3 log(1/3) - 2/3 log(2/3)

≈ 0.91  questions “on average”

= 0.9444  questions / symbol 

Shannon showed: converges to entropy as you make the blocks longer
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entropy: alternate derivation

Shannon: wanted a “surprise” function  that had two properties:h( ⋅ )

- decreasing function 

- the surprise of independent variables adds:  
 

    
if  

p(X)

h(p(X, Y)) = h(p(X)) + h(p(Y))

p(X, Y) = p(X)p(Y)

Only function that has this property:  h(p) = − log(p)

• entropy = “average surprise” for values from P(X)
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Conditional Entropy

identity of a random variable with distribution P (x). As a simple example, if a fair coin is
flipped with p(H) = p(T ) = 1

2 , the entropy is

H(x) = �1
2 log

1
2 �

1
2 log

1
2 = 1 bit.

A completely biased coin with P (H) = 1 has entropy

H(x) = �1 log 1� 0 log 0 = 0 bits,

where we have used 0 log 0 = 0 (which is true in the limit limp�0 p log p = 0).

2 Di�erential Entropy

Not a “real” entropy, since it can be negative and a deterministic transformation (e.g.,
y = ax) can change it. But we can define di�erential entropy as

H(x) =

⇥
p(x) log p(x)dx

3 Conditional Entropy

Conditional entropy H(x|y) is the average entropy in x given the value of y.

H(x|y) = �
�

y

p(y)
�

x

p(x|y) log p(x|y)

= �
�

x,y

p(x, y) log p(x|y)

4 Mutual Information

Mutual information is a (symmetric) function two random variables x and y that quantifies
how many bits of information x conveys about y (and vice-versa). It can be written as the

2

entropy of x given 
some fixed value of y

averaged 
over p(y)
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Conditional Entropy

identity of a random variable with distribution P (x). As a simple example, if a fair coin is
flipped with p(H) = p(T ) = 1

2 , the entropy is

H(x) = �1
2 log

1
2 �

1
2 log

1
2 = 1 bit.

A completely biased coin with P (H) = 1 has entropy

H(x) = �1 log 1� 0 log 0 = 0 bits,

where we have used 0 log 0 = 0 (which is true in the limit limp�0 p log p = 0).

2 Di�erential Entropy

Not a “real” entropy, since it can be negative and a deterministic transformation (e.g.,
y = ax) can change it. But we can define di�erential entropy as

H(x) =

⇥
p(x) log p(x)dx

3 Conditional Entropy

Conditional entropy H(x|y) is the average entropy in x given the value of y.

H(x|y) = �
�

y

p(y)
�

x

p(x|y) log p(x|y)

= �
�

x,y

p(x, y) log p(x|y)

4 Mutual Information

Mutual information is a (symmetric) function two random variables x and y that quantifies
how many bits of information x conveys about y (and vice-versa). It can be written as the

2

if

entropy of x given 
some fixed value of y

averaged 
over p(y)

identity of a random variable with distribution P (x). As a simple example, if a fair coin is
flipped with p(H) = p(T ) = 1

2 , the entropy is

H(x) = �1
2 log

1
2 �

1
2 log

1
2 = 1 bit.

A completely biased coin with P (H) = 1 has entropy

H(x) = �1 log 1� 0 log 0 = 0 bits,

where we have used 0 log 0 = 0 (which is true in the limit limp�0 p log p = 0).

2 Di�erential Entropy

Not a “real” entropy, since it can be negative and a deterministic transformation (e.g.,
y = ax) can change it. But we can define di�erential entropy as

H(x) =

⇥
p(x) log p(x)dx

3 Conditional Entropy

Conditional entropy H(x|y) is the average entropy in x given the value of y.

H(x|y) = �
�

y

p(y)
�

x

p(x|y) log p(x|y)

= �
�

x,y

p(x, y) log p(x|y)

4 Mutual Information

Mutual information is a (symmetric) function two random variables x and y that quantifies
how many bits of information x conveys about y (and vice-versa). It can be written as the

2

“On average, how uncertain are you about x if you know y?”
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exercise

Compute the conditional entropy:

1      2      3      4      5      6      7      8 X
P(X|Y=0)

P(X|Y=1)

00 1/4 0 01/4 0 1/2

00 0 0 10 0 0

Y 0 1

P(Y) 2/3 1/3
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