Information Theory part I: entropy

NEU 314, Fall 2021 Lecture 17

Jonathan Pillow

practice problem

Consider the following model describing how a single neuron responds to houses and faces, which is given by a pair of conditional distributions:

# spikes	0	1	2	3	4
P(# spikes I "house")	0.1	0.1	0.3	0.4	0.1
P(# spikes I "face")	0.1	0.4	0.3	0.2	0

Furthermore, suppose P(house) = 0.4, P(face) = 0.6

- 1) What is the joint distribution P(# spikes, stimulus)?
- 2) What is the marginal distribution P(# spikes)?

bonus warmup problems for today:

- log(ab) = ?
- log (1/a) = ?

Information Theory

A mathematical theory of communication, Claude Shannon 1948

Entropy

yes/no questions needed, on average, to determine the value of a random variable

Strategy 1:

Q1: is it 1?

Q2: is it 2?

- •
- •
- •

Q2: is it 8?

- worst case: 8 questions
- average case (assuming uniform): 4 questions

Can we do better???

Strategy 2: Q1: is it >4?

average: 3 questions

Therefore: # questions = $\log_2(K)$ # possibilities (unknowns)

P(X) 0 0 0 1/8 1/8 1/8 1/8 1/2 1 2 3 4 5 6 7 8

- 3 questions would still suffice
- But can we do better?

• what is the average # of questions? $1/2 (1 \text{ question}) + 1/2 (3 \text{ questions}) = 1/2 + 3/2 = \begin{cases} 2 \text{ questions} \\ 0 \text{ on average!} \end{cases}$

P(X) 0 0 0 1/8 1/8 1/8 1/8 1/2 1 2 3 4 5 6 7 8

General results:

- optimal strategy: divide probability in half w/ each question
- need N questions to identify options with probability $1/2^{N}$
- thus: log₂(K) questions for options with probability 1/K
- or: -log₂(p) questions for options with probability p

(using: $\log(K) = -\log(1/K) = -\log(p)$)

code length

Entropy

number of "yes/no" questions needed to identify x (on average)

exercises

Compute the entropy:

X 1 2 3 4 5 6 7 8 P₁(X) 1/4 0 0 1/2 1/4 0 0 0 P₂(X) 1/16 0 1/16 1/4 1/8 1/4 0 1/4 $P_1(X) = 0$ 0 0 0 0 0 1 0

Entropy

number of "yes/no" questions needed to identify x (on average)

for distribution on K bins,

- maximum entropy = log K (achieved by uniform dist)
- minimum entropy = 0 (achieved by all probability in 1 bin)

What about when the probabilities aren't powers of 2?

X: A B P₁(X) 1/3 2/3 formula still applies:

 $H(X) = - P(A) \log P(A) - P(B) \log P(B)$

 $= -1/3 \log(1/3) - 2/3 \log(2/3)$

 ≈ 0.91 questions "on average"

But how could you achieve that?

ANSWER: consider longer blocks of symbols

What about when the probabilities aren't powers of 2?

X٠	Α	R	formula still applies:
<i>/</i> \.	Λ	D	$H(X) = - P(A) \log P(A) - P(B) \log P(B)$
P ₁ (X)	1/3	2/3	= -1/3 log(1/3) - 2/3 log(2/3)

 ≈ 0.91 questions "on average"

AA AB BA BB

1/9 2/9 2/9 4/9

= 0.9444 questions / symbol

Shannon showed: converges to entropy as you make the blocks longer

entropy: alternate derivation

Shannon: wanted a "surprise" function $h(\cdot)$ that had two properties:

- decreasing function p(X)
- the surprise of independent variables adds:

$$h(p(X, Y)) = h(p(X)) + h(p(Y))$$

if
$$p(X, Y) = p(X)p(Y)$$

Only function that has this property: $h(p) = -\log(p)$

• <u>entropy</u> = "average surprise" for values from P(X)

Conditional Entropy

Conditional Entropy

$$H(x|y) = -\sum_{y} p(y) \sum_{x} p(x|y) \log p(x|y)$$

averaged entropy of x given
over p(y) some fixed value of y
$$= -\sum_{x,y} p(x,y) \log p(x|y)$$

$$=H(x)$$
 if $P(x,y)=P(x)P(y)$

"On average, how uncertain are you about x if you know y?"

exercise

Compute the conditional entropy:

Х	1	2	3	4	5	6	7	8
P(XIY=0)	1/4	0	0	1/2	1/4	0	0	0
P(XIY=1)	0	0	0	0	0	0	1	0
Y	0	1						
P(Y)	2/3	1/3						
• (•)		170						