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1. Compute the marginal P(x)
2. Compute the marginal P(y)
3. Compute the conditional P(y | x = 0)
4. Compute the conditional P(x | y = 1)
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Use the joint distribution P(x,y) shown on 
the left to answer the following: 

Use the distribution P(x) shown on the 
left to answer:

5. What is  expected value of x?𝔼[x],
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practice problems: Bayes rule
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P( # spikes | “house”)

Furthermore, suppose P(house) = P(face) = 0.5

P( # spikes | “face”)

3# spikes 4

3) What is the most probable stimulus if you observe 3 spikes?  
• Compute P(face | 3 spikes) and P(house | 3 spikes) using Bayes’ rule?

4) Is there any response for which you can be certain of what the stimulus was?
5) Re-answer #3 under the prior that P(house) = 0.2 ,  P(face) = 0.8

Consider the following model describing how a single neuron responds to 
houses and faces, which is given by a pair of conditional distributions: 

or practically:
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Recap:
• expectation (averages)

• independence

for all y
or

• mean and variance (moments)

OR

for all x
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Correlation vs. Dependence
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Linear relationship 
between x and y

• value between -1 (“perfect anti-correlation”) and +1 (“perfect correlation”)

• 0 = no correlation
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1. Correlation coefficient
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Correlation vs. Dependence

Linear relationship 
between x and y
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2. Dependence

• arises whenever 

• can be quantified by anything that measures mismatch
e.g., mutual information:

KL divergence

•  MI=0 ⇒ independence

1. Correlation coefficient
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Correlation vs. Dependence

Q: Can you draw a distribution that is uncorrelated 
but dependent?
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Correlation vs. Dependence

allows a system with limited response
range to handle a wider dynamic range of
input. Divisive normalization achieves
this goal, producing sigmoidal con-
trast–response functions similar to those
seen in neurons. In addition, it seems
advantageous for tuning curves in stim-
ulus parameters such as orientation to
retain their shape at different contrasts,
even in the presence of response satura-
tion20. Previous models have accom-
plished this by computing a normalization
signal that is independent of parameters
such as orientation (achieved with a uni-
formly weighted sum over the entire neur-
al population). A consequence of this
design is that the models can account for
the response suppression that occurs, for example, when a grat-
ing of non-optimal orientation is superimposed on a stimulus.

Model simulations versus physiology
We compared our model with electrophysiological measurements
from single neurons. To simulate an experiment, we chose a pri-
mary filter and a set of neighboring filters that would interact
with this primary filter. We pre-computed the optimal normal-
ization weights for an ensemble of natural signals (see Methods).
We then simulated each experiment, holding all parameters of
the model fixed, by computing the normalized responses of the
primary filter to the experimental stimuli. We compared these
responses to the physiologically measured average firing rates of
neurons. Our extended normalization model, with all parame-
ters chosen to optimize statistical independence of responses,
accounted for those nonlinear behaviors in V1 neurons previ-
ously modeled with divisive normalization (see above). Figure 5
shows data and model simulations demonstrating preservation
of orientation tuning curves and cross-orientation inhibition.

Our model also accounted for nonlinear behaviors not pre-
viously modeled using normalization. Figure 6a shows data from
an experiment in which an optimal sinusoidal grating stimulus
was placed inside the classical receptive field of a neuron in pri-
mary visual cortex of a macaque monkey24. A mask grating was
placed in an annular region surrounding the classical receptive
field. Each curve in the figure indicates the response as a func-

Fig. 3. Examples of variance dependency in
natural signals. (a) Responses of two filters to
several different signals. Dependency is strong
for natural signals, but is negligible for white
noise. Filters as in Fig. 1. (b) Responses of dif-
ferent pairs of filters to a fixed natural signal.
The strength of the variance dependency
depends on the filter pair. For the image, the
red × represents a fixed spatial location on
the retina. The ordinate response is always
computed with a vertical filter, and the
abscissa response is computed with a vertical
filter (shifted 4 pixels), vertical filter (shifted
12 pixels) and horizontal filter (shifted 12 pix-
els). For the sound, the red × represents a
fixed time. Temporal frequency of ordinate fil-
ter is 2000 Hz. Temporal frequencies of
abscissa filter are 2000 Hz (shifted 9 ms in
time), 2840 Hz (shifted 9 ms) and 4019 Hz
(shifted 9 ms).

tion of the center contrast for a particular surround contrast. The
sigmoidal shape of the curves results from the squaring nonlin-
earity and the normalization. Presentation of the mask grating
alone does not elicit a response from the neuron, but its presence
suppresses the responses to the center grating. Specifically, the
contrast response curves are shifted to the right (on a log axis),
indicative of a divisive gain change. When the mask orientation is
parallel to the center, this shift is much larger than when the mask
orientation is orthogonal to the center (Fig. 6b).

Our model exhibits similar behavior (Fig. 6a and b), which
is due to suppressive weighting of neighboring model neurons
with the same orientation preference that is stronger than that
of neurons with perpendicular orientation preference (see also
ref. 25). This weighting is determined by the statistics of our
image ensemble, and is due to the increased likelihood that adja-
cent regions in natural images have similar rather than orthogo-
nal orientations. For example, oriented structures in images (such
as edges of objects) tend to extend along smooth contours, yield-
ing strong responses in linear filters that are separated from each
other spatially, but lying along the same contour (see also refs.
26, 27). This behavior would not be observed in previous nor-
malization models, because the parallel and orthogonal surround
stimuli would produce the same normalization signal.

An analogous effect is seen in the auditory system. Figure 6
shows example data recorded from a cat auditory nerve fiber, in
which an optimal sinusoidal tone stimulus is combined with a
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[Schwartz & 
Simoncelli 2001]

“Bowtie” dependencies 
in natural scenes: 

(uncorrelated but dependent)

Q: Can you draw a distribution that is uncorrelated 
but dependent?
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Is this distribution independent?
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Is this distribution independent?
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(each column is a conditional distribution)
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Is this distribution independent?
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No!  Conditionals over y are different for different x!
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FUN FACT: 

• independent (equal to the product of its marginals)

• spherically symmetric:                     

Gaussian is the only distribution that can be both:

Corollary: circular scatter / contour plot  
not sufficient to show independence!

orthogonal matrix
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What else about Gaussians is awesome?

1. scaling:  

2. sums:


Gaussian family closed under many operations:

is Gaussian
is Gaussian

(thus, any linear function Gaussian RVs is Gaussian)

3.  products of Gaussian distributions Gaussian

density

the amazing Gaussian
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4. Average of many (non-Gaussian) RVs is Gaussian!

the amazing Gaussian

Central Limit Theorem: is Gaussian

coin flipping:

http://statwiki.ucdavis.edu/Textbook_Maps/General_Statistics/Shafer_and_Zhang's_Introductory_Statistics/06%3A_Sampling_Distributions/6.2_The_Sampling_Distribution_of_the_Sample_Mean

• explains why many things in the world 
are (approximately) Gaussian distributed
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the amazing Gaussian

Multivariate Gaussians: 

mean cov

5. Marginals and conditionals (“slices”) are Gaussian

(The random variable X is 
distributed according to a 
Gaussian distribution)

6. Linear projections:
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multivariate Gaussian
mean covariance

(“X is distributed according to a 
Gaussian distribution”)
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what is covariance?

• n x n matrix

xi

xj

• the i,j’th element of the matrix: 

• diagonal elements are variances

mean

• relationship to correlation coefficient:
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true mean: [0 0.8]
true cov: [1.0 -0.25

-0.25 0.3]

sample mean: [-0.05 0.83]
sample cov: [0.95 -0.23

-0.23 0.29]

700 samples

Measurement
(sampling)

Inference

bivariate normal density

sampling vs. inference

18


