Independence \& Correlations

Jonathan Pillow

Mathematical Tools for Neuroscience (NEU 314) Fall, 2021
lecture 15

PCA warmup problem

the data

collection of N data vectors

As a reminder from last week's quiz, PCA involves the following two steps:

1. Compute the ("covariance" or "2nd moment") matrix:

$$
C=X^{\top} X
$$

2. Perform SVD:
$C=U S U^{\top}$

- the top k principal components (PCs) are the first k columns of U !

Question: let us denote the SVD of X by: $X=U_{x} S_{x} V_{x}^{T}$
What is the relationship between the SVD of C and the SVD of X? (That is, what is the relationship between U, S and $\mathrm{U}_{\mathrm{x}}, \mathrm{S}_{\mathrm{x}}, \mathrm{V}_{\mathrm{x}}$, if any?)

- put another way, is there a way to get the PCs \& their fraction-of-variance explained without computing C ?

warmup problem: PCA \& regression

Consider the following two kinds of distances from datapoints to a line:

warmup problem: PCA \& regression

Consider the following two kinds of distances from datapoints to a line:

warmup problem: PCA \& regression

Consider the following two kinds of distances from datapoints to a line:

1. Which is correct:
a) PCA minimizes sum of red² and Least Squares minimizes sum of blue²
b) PCA minimizes sum of blue ${ }^{2}$ and Least Squares minimizes red ${ }^{2}$
c) PCA and Least Squares both minimize sum of blue ${ }^{2}$
d) PCA and Least Squares both minimize sum of red²
2. There is a special name for the red lines, what is it?

practice problems: probability

1. Compute the marginal $P(x)$
2. Compute the marginal $P(y)$
3. Compute the conditional $P(y \mid x=2)$
4. Compute the conditional $P(x \mid y=1)$
5. What is the most probable value for y ?

practice problems: probability

6. What is the conditional $P(x \mid y>1)$?
7. What is the conditional $P(x \mid x=y)$?
8. What is the conditional expectation $\mathbb{E}[x \mid y=3]$
bonus: compute the conditional variance $\operatorname{var}(x \mid y=3)$

practice problems: Bayes rule

Consider the following model describing how a single neuron responds to houses and faces, which is given by a pair of conditional distributions:

\# spikes	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
P(\# spikes I "house")	0.1	0.1	0.3	0.4	0.1
P(\# spikes I "face")	0.1	0.4	0.3	0.2	0

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

Furthermore, suppose P (house) $=\mathrm{P}($ face $)=0.5$

1) Does this neuron respond more to houses or faces?
2) What is the most probable stimulus if you observe 2 spikes?

- Compute P(face I 2 spikes) and P(house I 2 spikes)

3) What is the most probable stimulus if you observe 3 spikes?

- Compute P (face I 3 spikes) and P (house I 3 spikes)

4) Is there any response for which you can be certain of what the stimulus was?
5) Re-answer \#3 under the prior that $P($ house $)=0.2, P($ face $)=0.8$

Joint Distribution

$$
P(x, y)
$$

independence

Definition: x, y are independent iff
$P(x, y)$

("if and only if")

$$
P(x, y)=P(x) P(y)
$$

independence

Definition: x, y are independent iff

("if and only if")

$$
P(x, y)=P(x) P(y)
$$

In linear algebra terms:

$$
P(x, y)=\vec{p}_{y} \vec{p}_{x}^{T}
$$

(outer product)

independence

Original definition:

$$
P(x, y)=P(x) P(y)
$$

Equivalent definition:

independence

Original definition:

$$
P(x, y)=P(x) P(y)
$$

Equivalent definition:

