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Quiz

(1) What matrix do we form in order to compute the principal components of 
this data?

(2) Once we’ve formed that matrix, how do we get the principal components?

(3) What is the fraction of the total variance captured by the 1st principal 
component? (Write in terms of the singular values s1, …, sd)

Suppose we have the following data matrix:
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Lecture 5: Principal Components Analysis

1 The raw data

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d. For example,
we might imagine we have made a simultaneous recording from d neurons, so each vector represents
the spike counts of all recorded neurons in a single time bin, and we have N time bins total in the
experiment.

Let’s think of the data arranged in an N ⇥ d matrix that we’ll call X. Each row of this matrix is
a data vector representing the response from d neurons to a single stimulus:

X =

2

6664

— ~x1 —
— ~x2 —

...
— ~xN —

3

7775

We suspect that these vectors not “fill” out the entire d-dimensional space, but instead be confined
to a lower-dimensional subspace. (For example, if two neurons always emit the same number of
spikes, then their responses live entirely along the 1D subspace corresponding to the xi = xj line).

Can we make a mathematically rigorous theory of dimensionality reduction that captures how much
of the “variance” in the data is captured by a low-dimensional projection? (Yes: it turns out the
tool we are looking for is PCA!)

2 Finding the best 1D subspace (first PC)

Let’s suppose we wish to find the best 1D subspace, i.e., the one-dimensional projection of the data
that captures the largest amount of variability. We can formalize this as the problem of finding the
unit vector ~v that maximizes the sum of squared linear projections of the data vectors:

Sum of squared linear projections =
NX

i=1

(~xi · ~v)2 = ||X~v||2

= (X~v)>(X~v)

= ~v>X>X~v

= ~v>(X>X)~v

= ~v>C~v,

1

d

N}

}

Suppose we want to use least-squares regression to find weights the  that 
map from X to an output vector Y.

⃗w

(4) What are the residuals?  (ie, write down an expression for the the vector of 
residuals between the linear prediction and the output vector)

(5) Suppose [p1 p2 p3 p4] is a discrete probability distribution (PMF).
What two facts do we know about the values p1,p2, p3, p4?
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Quick recap 

• Random variable X takes on different values 
according to a probability distribution

• discrete: probability mass function (pmf)
• continuous: probability density function (pdf)
• marginalization: summing (“splatting”)
• conditionalization: “slicing”
• expectation: average of f(x) under P(x)
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joint distribution
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marginalization (“integration”)
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conditionalization (“slicing”)
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(“joint divided by marginal”)
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practice problems
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y

P(x,y)

1. Is this a joint probability distribution?
2. What is the marginal P(x)?
3. What is the marginal P(y)?
4. What is the conditional P(y | x = 1)?
5. What is the conditional P(x | y = 3)?

7



practice problems

0.01 0.05 0.04

0.08 0.4 0.32

0.01 0.05 0.04

1 2 3

1

2

3

x

y

P(x,y)

1. Is this a joint probability distribution?
2. What is the marginal P(x)?
3. What is the marginal P(y)?
4. What is the conditional P(y | x = 1)?
5. What is the conditional P(x | y = 3)?

8



Expectations (“averages”)

Expectation is the weighted average of a function (of a random 
variable) according to the distribution (of that random variable)

It’s really just a dot product!

pdf

con$nuous 

pmf

discrete 

or
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Several important expectations: 
- the average value of a random variable

(here we have simply f(x) = x)

if x is discrete, taking on N values: 

1
2
3

x P(x)
0.5
0.3
0.2

⃗x ⋅ ⃗P
1(0.5) + 2(0.3) + 3(0.2) = 1.7

example

“1st moment”

1)  Mean:
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Several important expectations: 
1)  Mean: - the average value of a random variable

(here we have simply f(x) = x)“1st moment”

if x is continuous:

• can still think of this as a dot product between two 
(infinitely tall) vectors of x values and probilities

P(x1)
P(x2)…

x1
x2… ⋅
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Several important expectations: 
2)

“2nd moment”

- the average value of squared random variable
(here f(x) = x2)

1
2
3

x P(x)
0.5
0.3
0.2

⃗x2 ⋅ ⃗P
1(0.5) + 4(0.3) + 9(0.2) = 3.5

example

x2

1
4
9

if x is discrete, taking on N values: 
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Several important expectations: 
3) variance: 

if x is discrete:

if x is continuous:

mean

(average squared difference 
between x and its mean)
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practice problems

0.01 0.05 0.04

0.08 0.4 0.32

0.01 0.05 0.04

1 2 3

1

2

3

x

y

P(x,y)

Q:  What are the mean and variance of x?
1) compute P(x)

2) compute 

3) compute 

𝔼[x] =
3

∑
x=1

xP(x)

𝔼[(x − 𝔼[x])2)
14



Monte Carlo evaluation of an expectation:

x(i) ⇠ P (x)1. draw samples from distribu3on:

2. average

for i = 1 to N

E[f(x)] ⇡ 1
N

NX

i=1

f(x(i))

For example, to evaluate the mean: 
 
1) sample values  from P(x)
2) take the average of those samples 

x(i)

1
N ∑ x(i)
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A little math:  Bayes’ rule

• very simple formula for manipulating probabilities
P(Y | X) P(X) 

P(Y)
P(X | Y)  = 

conditional probability
“probability of X given that  Y occurred”

P(X | Y)  ∝  P(Y | X) P(X) 

probability of  Y

probability of X

simplified form:
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A little math:  Bayes’ rule

perception - alan stocker © 2009

perception: dealing 
with probabilities

15
Example: 2 coins

• one coin is fake: “heads” on both sides   (H / H)
• one coin is standard: (H / T)

You grab one of the coins at random and flip it.  It comes up “heads”.  
What is the probability that you’re holding the fake?

p( Fake | H)

p( Nrml | H)

( ½ )( 1 )

( ½ )( ½ ) = ¼

= ½
 ∝ p(H | Fake) p(Fake)

 ∝ p (H | Nrml) p(Nrml)

probabilities must
sum to 1

P(X | Y)  ∝  P(Y | X) P(X) 
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A little math:  Bayes’ rule

perception - alan stocker © 2009

perception: dealing 
with probabilities

15
Example: 2 coins

p( Fake | H)

p( Nrml | H)

( ½ )( 1 ) = ½
 ∝ p(H | Fake) p(Fake)

 ∝ p (H | Nrml) p(Nrml)

fake normal

start

H H H T

( ½ )( ½ ) = ¼
probabilities must

sum to 1

P(X | Y)  ∝  P(Y | X) P(X) 
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= 0

A little math:  Bayes’ rule

perception - alan stocker © 2009

perception: dealing 
with probabilities

15
Example: 2 coins

Experiment #2: It comes up “tails”.  
What is the probability that you’re holding the fake?

p( Fake | T)

p( Nrml | T)

( ½ )( 0 )

( ½ )( ½ ) = ¼

= 0
probabilities must

sum to 1

 ∝ p(T | Fake) p(Fake)

 ∝ p (T | Nrml) p(Nrml)

fake normal

start

H H H T

= 1

P(X | Y)  ∝  P(Y | X) P(X) 
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Is the middle circle popping “out” or “in”?
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P( image | OUT & light is above) = 1
P(image | IN & Light is below) = 1

• Image equally likely to be OUT or IN given sensory data alone

What we want to know:  P(OUT | image) vs. P(IN | image)

P(OUT | image) ∝ P(image | OUT & light above) × P(OUT) × P(light above)
P(IN | image) ∝ P(image | IN & light below ) × P(IN) × P(light below)

prior

Which of these is greater?

Apply Bayes’ rule:
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Bayesian Models for Perception

Bayes’ rule: 

Formula for computing: P(what’s in the world | sensory data)

X Y

(This is what our brain wants to know!)

P(world | sense data) ∝ P(sense data | world)  P(world)

(given by past experience)
Prior

(given by laws of physics;
ambiguous because many world states

could give rise to same sense data)

LikelihoodPosterior
(resulting beliefs about

the world)

P(X | Y)  ∝  P(Y | X) P(X) 
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Helmholtz:  perception as “optimal inference”

“Perception is our best guess as to what is in 
the world, given our current sensory evidence 

and our prior experience.”

“perception is our best guess as to 
what is in the world, given our 

current sensory evidence and our 
prior experience.”

perception - alan stocker © 2009

perception as optimal inference

helmholtz 1821-1894

P(world | sense data) ∝ P(sense data | world)  P(world)

(given by past experience)
Prior

(given by laws of physics;
ambiguous because many world states

could give rise to same sense data)

LikelihoodPosterior
(resulting beliefs about

the world)
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perception as optimal inference

helmholtz 1821-1894

“Perception is our best guess as to what is in 
the world, given our current sensory 

evidence and our prior experience.”

P(world | sense data) ∝ P(sense data | world)  P(world)

(given by past experience)
Prior

(given by laws of physics;
ambiguous because many world states

could give rise to same sense data)

LikelihoodPosterior
(resulting beliefs about

the world)
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Many different 3D scenes can give rise to the same 2D retinal image

The Ames Room
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Many different 3D scenes can give rise to the same 2D retinal image

The Ames Room

How does our brain go about deciding which interpretation?

A

B

P(image | A) and P(image | B) are equal!   (both A and B could have generated this image)

Let’s use Bayes’ rule: 

P(A | image) = P(image | A) P(A) / Z 
P(B | image) = P(image | B) P(B) / Z 
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Hollow Face Illusion

http://www.richardgregory.org/experiments/
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perception - alan stocker © 2009

perception as optimal inference
Perception as Bayesian Inference

www.youramazingbrain.org.uk/supersenses/hollow.htm

Very sharp prior favours convex faces: P(H1) >> P(H2)

Nearly flat likelihood function: P(D | H1) ! P(D | H2)

∴ Posterior favours convex: P(H1 | D) > P(H2 | D)

H1: convex

H2: concave

D: image

Richard Gregory

H1 : convex
H2 : concave
D : video

Hollow Face Illusion

Hypothesis #1:  face is concave
Hypothesis #2:  face is convex

P(convex|video) ∝P(video|convex) P(convex)
P(concave|video)∝P(video|concave) P(concave)

posterior likelihood prior

P(convex) > P(concave) ⇒ posterior probability of convex is higher
(which determines our percept)
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• prior belief that objects are convex is SO strong we can’t 
over-ride it, even when we know it’s wrong!

(So your brain knows Bayes’ rule even if you don’t!)
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Summary

• marginalization (splatting)
• conditionalization (slicing)
• expectation (averaging)

• Monte Carlo evaluation of expectation
• Bayes’ rule (prior, likelihood, posterior)
• Bayesian models of perception
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