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Quiz 4

Suppose we have the following data matrix: X — N

—IN — | )

(1) What matrix do we form in order to compute the principal components of
this data?

(2) Once we’ve formed that matrix, how do we get the principal components?

(3) What is the fraction of the total variance captured by the 1st principal
component? (Write in terms of the singular values si, ..., Sd)

Suppose we want to use least-squares regression to find weights the W that
map from X to an output vector Y.

(4) What are the residuals? (ie, write down an expression for the the vector of
residuals between the linear prediction and the output vector)

(5) Suppose [p1 p2 ps p4] is a discrete probability distribution (PMF).
What two facts do we know about the values p1,p2, p3, ps?
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Quick recap

« Random variable X takes on different values

according to a probability distribution

- discrete: probability mass function (pmf)
 continuous: probability density function (pdf)
* marginalization: summing (“splatting”)

- conditionalization: “slicing”

- expectation: average of f(x) under P(x)



joint distribution

P(az, y) * positive

e sums to |

//P(at,y)d:z:dyzl




marginalization (“integration”)

P(x,y)




conditionalization (“slicing”)

P(x,y) Pile = 1) = e =1

P(x = -1)

(“joint divided by marginal”)




o~ b~

practice problems

................................................................................

y 2| 008 04 032

_________________________________________________________________________________

Is this a joint probability distribution?
What is the marginal P(x)?
What is the marginal P(y)?
What is the conditional P(y | x = 1)?
What is the conditional P(x | y = 3)?
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Expectations (“averages”)

Expectation is the weighted average of a function (of a random
variable) according to the distribution (of that random variable)

discrete continuous
or
pmt . pdf
E[f(2)] = 3 f(a:)P(a:) Elf ()] = [ f@)P(2)
o P(z1)
It’s really just a dot product! E[f(z)] =P f P=| f=
P(xm)

dx




Several important expectations:

1) Mean: [E[z] -the average value of a random variable

“Ist moment” (here we have simply f(x) = x)
N
iIf X is discrete, taking on N values: E[x] — Z xZP(:EZ)
1=1
example
S O
1 0.5
2 0.3
3 0.2

1(0.5) + 2(0.3) + 3(0.2) = 1.7J

-
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Several important expectations:

1) Mean: [E[z] -the average value of a random variable

“Ist moment” (here we have simply f(x) = x)
if x is continuous:  [E|x| = / rP(x)dx

* can still think of this as a dot product between two
(infinitely tall) vectors of x values and probilities

X1 _P(X1)
X2 P

Elx] = |
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Several important expectations:

2) E[xQ] - the average value of squared random variable
“2nd moment” (here f(x) = x?)

N
if x is discrete, taking on N values: E[an] — Z x?P(xz)
1=1

example

K X X2 P(x) w
1 1 0.5
2 4 0.3
_3_ _9_ _0.2_
E[z?] =2. P

-

1(0.5) + 4(0.3) + 9(0.2) = 3.5j
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Several important expectations:

o vaance: El(z —Els])”] (s e e

mean [E[x]

v
if x is discrete: var(x) = Z(ZEZ — ,u)QP(:Ei)
i=1

if x is continuous: var(z) = /($ — u)*P(x) dz
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practice problems

................................................................................

________________________________________________________________________________

Q: What are the mean and variance of x?

1) compute P(x)
3

2) compute E[x] = Z xP(x)
x=1

3) compute E[(x — E[x])?)

14



Monte Carlo evaluation of an expectation:

1. draw samples from distribution: z(¥ ~ P(x) fori=1toN

2. average ~ % Zf (Z)

1=1

For example, to evaluate the mean:

1) sample values x@ from P(x)
2) take the average of those samples % 2 x®
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A little math: Bayes’ rule

- very simple formula for manipulating probabilities

| X) P(X
P(X | Y) = P(Y ) ( ) probability of X
P(Y)
I N
conditional probability probability of Y

“probability of X given that Y occurred”

simplified form: P(XI1Y) < P(YIX)P(X)
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A little math: Bayes’ rule
P(X1Y) o P(Y I X) P(X)

Example: 2 coins

7 WS
=

* one coin is fake: “heads” on both sides (H / H)
* one coin is standard: (H/T)

You grab one of the coins at random and flip it. It comes up “heads”.
What is the probability that you're holding the fake!?

p( Fake | H) < p(H | Fake) p(Fake) %
(1) (%) = 1+1

p( Nrml 1 H) o< p (H I Nrml) p(Nrml) 1 1
(12) (12) =1 2 T 1

probabilities must
sumto 1
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A little math: Bayes’ rule
PXTY) &< P(Y1X)P(X)

start

Example: 2 coins /\

fake normal

ANPA
H BH T

p( Fake | H) < p(H | Fake) p(Fake) %
(1) (%) = 1+1
P(Nrml I'H) o< p (H I Nrml) p(Nrml) 1 1

(12) (12) =1 %"’i

probabilities must
sumto 1
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A little math: Bayes’ rule
P(X1Y) & P(Y I X)P(X)

start

Example: 2 coins /\

fake normal

H H H[T)

Experiment #2: It comes up “tails”.
What is the probability that you're holding the fake!?

p( Fake I T) < p(T | Fake) p(Fake)
( 0 ) ( Y2 ) =0
probabilities must

P(NrmlIT) o< p (T 1Nrml) p(Nrml) abiliies
(12) (12) =
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Is the middle circle popping “out” or “in”?

20



P(image | OUT & light is above) = 1
W P(image | IN & Light is below) = 1

- Image equally likely to be OUT or IN given sensory data alone

What we want to know: P(OUT | image) vs. P(IN | image)

Apply BayeS’ rUIe: prior
/—'/\__\
P(OUT | image) « P(image | OUT & light above) x P(OUT) x P(light above)
P(IN I image) =« P(image | IN & light below ) x P(IN) x P(light below)

Which of these is greater?
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Bayesian Models for Perception

Bayes’ rule: P(X1Y) & P(Y I X) P(X)

Formula for computing: P(what’s in the world | sensory data)

(This is what our brain wants to know!) / \

X Y
P(sense data | world)

P(world | sense data) )

Posterior Likelihood Prior
(resulting beliefs about (given by laws of physics; (given by past experience)
the world) ambiguous because many world states

could give rise to same sense data)

22



Helmholtz: perception as “optimal inference”

“Perception is our best guess as to what is in
the world, given our current sensory evidence
and our prior experience.”

helmholtz 1821-1894

P(world | sense data) P(sense data | world)

Posterior Likelihood Prior
(resulting beliefs about (given by laws of physics; (given by past experience)
the world) ambiguous because many world states

could give rise to same sense data)
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Helmholtz: perception as “optimal inference”

“Perception is our best guess as to what is in
the world, given our current sensory
evidence and our prior experience.”

helmholtz 1821-1894

P(world | sense data) <(P(sense data | world)

Posterior Likelihood Prior
(resulting beliefs about (given by laws of physics; (given by past experience)
the world) ambiguous because many world states

could give rise to same sense data)
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Many different 3D scenes can give rise to the same 2D retinal image

The Ames Room
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Many different 3D scenes can give rise to the same 2D retinal image

The Ames Room

. real place and size
of “‘smallest’’ man

apparent place and
size of “‘smallest”’ man

e H
N\ \‘

|B\V

Peephole for one eye

O real place and size
of ““medium’’ man

//

o) apparent place and
size of ““medium’’ man

D “largest’’ man

How does our brain go about deciding which interpretation?
P(image | A) and P(image | B) are equal! (both A and B could have generated this image)

Let’s use Bayes’ rule:

P(A | image) = P(image | A) P(A)/ Z
P(B | image) = P(image | B) P(B) / Z
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Hollow Face lllusion

http://www.richardgregory.org/experiments/
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Hollow Face lllusion

Hypothesis #1: face is concave
Hypothesis #2: face is convex

P(convex|video) = P(video|convex) P(convex)
P(concave|video) = P(video|concave) P(concave)

posterior likelihood

P(convex) > P(concave) = posterior probability of convex is higher
(which determines our percept)
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* prior belief that objects are convex is SO strong we can’t
over-ride it, even when we know it’s wrong!

(So your brain knows Bayes’ rule even if you don’t!)
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Summary

marginalization (splatting)
conditionalization (slicing)
expectation (averaging)

Monte Carlo evaluation of expectation
Bayes’ rule (prior, likelihood, posterior)
Bayesian models of perception
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