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the data

Statistical Modeling and Analysis of Neural Data (NEU 560)
Princeton University, Fall 2020

Jonathan Pillow

Lecture 5: Principal Components Analysis

1 The raw data

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d. For example,
we might imagine we have made a simultaneous recording from d neurons, so each vector represents
the spike counts of all recorded neurons in a single time bin, and we have N time bins total in the
experiment.

Let’s think of the data arranged in an N ⇥ d matrix that we’ll call X. Each row of this matrix is
a data vector representing the response from d neurons to a single stimulus:

X =

2

6664

— ~x1 —
— ~x2 —

...
— ~xN —

3

7775

We suspect that these vectors not “fill” out the entire d-dimensional space, but instead be confined
to a lower-dimensional subspace. (For example, if two neurons always emit the same number of
spikes, then their responses live entirely along the 1D subspace corresponding to the xi = xj line).

Can we make a mathematically rigorous theory of dimensionality reduction that captures how much
of the “variance” in the data is captured by a low-dimensional projection? (Yes: it turns out the
tool we are looking for is PCA!)

2 Finding the best 1D subspace (first PC)

Let’s suppose we wish to find the best 1D subspace, i.e., the one-dimensional projection of the data
that captures the largest amount of variability. We can formalize this as the problem of finding the
unit vector ~v that maximizes the sum of squared linear projections of the data vectors:

Sum of squared linear projections =
NX

i=1

(~xi · ~v)2 = ||X~v||2

= (X~v)>(X~v)

= ~v>X>X~v

= ~v>(X>X)~v

= ~v>C~v,

1

d

N}
}

2nd moment matrix

do SVD

first k PCs 

fraction of sum 
of squares

PCA review
goal

Find a subspace (spanned by columns 
of B) that captures the maximum 

projected sum-of-squares

such that}
squared Frobenius norm

(sum-of-squares of data 

projected onto subspace)

columns of B are 
orthogonal unit 

vectors

Solution

collection of N data vectors

2



the data

Least Squares Regression review
goal

Find weight vector  that minimizes 
sum of squared residuals

⃗w

}
residuals 


(difference between observed yi 
and linear prediction  )⃗x i ⋅ ⃗w

Solution
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= ~v>X>X~v
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1

d

N}
}

…

1

inputs outputs

residuals  should be orthogonal to every column of (Y − X ⃗w ) X
proof based on:   
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Call-back:  
Cortical activity in the null space (Kaufman 2014)

1) Do PCA to reduce dimensionality
2) Then do least squares to estimate weights

(each column of W 
has weights for a 

single muscle)

Top 3 PCs

=

• 
• 

• 
• 

• 
•

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
•

M WN

Principal components regression (PCR) 

Top 6 PCs of neural activity
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now: begin probability!

5



neural coding problem

spike trainsstimuli

• what is the probabilistic relationship 
between stimuli and spike trains?
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spike trains

• what is the probabilistic relationship 
between stimuli and spike trains?

neural coding problem

stimuli “codebook”

“encoding”

7



“encoding”

?

neural coding problem

novel stimulus
(Aditi Jha, 

Cosyne 2020)

“codebook”
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?

“decoding”

    Bayes’ Rule:

“what was that”?

neural coding problem

posterior likelihood prior

“codebook”
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Goals for today

• basics of probability
• probability vs. statistics
• continuous & discrete distributions
• joint distributions
• marginalization 
• conditionalization 
• expectations & moments
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parameter samplesmodel

• “probability
     distribution”

• “events”
• “random variables”

also written:

or
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parameter samples

parameter
space

sample
space

• “probability
     distribution”

• “events”
• “random variables”

model
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parameter samples

parameter
space

sample
space

examples

• “probability
     distribution”

• “events”
• “random variables”

model

1. coin flipping
X = “H” or “T”

2. spike counts
mean spike rate
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parameter samples

parameter
space

sample
space

Probability vs. Statistics

model

coin flipping probability

T, T, H, T, H, T, 
T, T, T, ….

?
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parameter samples

parameter
space

sample
space

Probability vs. Statistics

model

statistics
T, T, H, T, H, T, 

T, T, T, H, T,
H, T, H, H, T, T

“inverse probability”

?
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discrete probability distribution
takes finite (or countably infinite) number of values, eg  

• 

•

probability mass function (pmf):

for all i non-negative

sums to 1

gives probability of 
observing a particular 

value of x
•
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some friendly neighborhood probability distributions

binomial

Poisson

Bernoulli

Discrete

(coin flipping)

(sum of n coin flips)

(sum of n coin flips with 
P(heads)=λ/n, in limit n→∞)
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To add: Pearson’s chi-squared test (goodness-of-fit); Kolmogorov-Smirnov test.

Aymptotic Equipartition Property (AEP)

limn�>⇥�1/n log p(X1, X2, ....Xn) = H(x)

1 Probability/Statistics

The sample space, ⇥, is the space of possible observed outcomes ⇧ . Events are subsets {⇧} ⇥ ⇥.
Probability is a measure p defined on ⇥ such that: (1) 0 ⇤ p(⇧) ⇤ 1, and (2)

⇧
⌅ p(⇧) = 1. A

random variable is a function X(⇧) : ⇥ ⌅ S, for some new space S. Then, for x ⇧ S, P [X = x] =⇧
{⌅|X(⌅)=x} p(⇧), where P is the distribution function for X.

1.1 Common Densities

Binomial Distr. P (k;n, p) =

⇤
n

k

⌅
pk(1� p)n�k(1.1)

Normal pdf P (x;µ,⌅) =
1 
2⇤⌅

exp
� (x� u)2

2⌅2

⇥

Mx(t) = etµet
2⇤2/2 (mom gf)

(1.2)

Multivar Normal P (xn;µ,�) =
1

(2⇤)
n
2 |�|

1
2

exp
�
� 1

2 (x� µ)T��1(x� µ)
⇥

� = covariance matrix, |�| = det

(1.3)

Poisson Distr. P (k;�) =
�k

k!
e��(1.4)
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⇧
⌅ p(⇧) = 1. A

random variable is a function X(⇧) : ⇥ ⌅ S, for some new space S. Then, for x ⇧ S, P [X = x] =⇧
{⌅|X(⌅)=x} p(⇧), where P is the distribution function for X.

1.1 Common Densities

Binomial Distr. P (k;n, p) =

⇤
n

k

⌅
pk(1� p)n�k(1.1)

Normal pdf P (x;µ,⌅) =
1 
2⇤⌅

exp
� (x� u)2

2⌅2

⇥

Mx(t) = etµet
2⇤2/2 (mom gf)

(1.2)

Multivar Normal P (xn;µ,�) =
1

(2⇤)
n
2 |�|

1
2

exp
�
� 1

2 (x� µ)T��1(x� µ)
⇥

� = covariance matrix, |�| = det

(1.3)

Poisson Distr. P (k;�) =
�k

k!
e��(1.4)

1
…
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continuous probability distribution
takes values in a continuous space, e.g.,

probability density function (pdf):

• 

• integrates to 1

for all x non-negative

gives probability of x falling 
within some interval

• 

•
18



Gaussian

multivariate Gaussian

exponential

Continuous

some friendly neighborhood probability distributions

Exponential pdf P (x; a) = ae�ax(1.5)

Gamma pdf P (x; a, k) =
ak

�(k)
xk�1e�ax

Mx(t) = (1� 2t)�ak (mom gf)

(1.6)

Chi-Square pdf ⌅2(x; k) =
1

2�(k/2)

⇥x
2

⇤(k/2)�1
e�x/2

x = y21 + . . . y2k; yi ⇤ N(0, 1) (k deg fr)

(1.7)

Student t pdf P (t, k) =
�([k + 1]/2)⌅
k⇥ �(k/2)

⌅
t2

k
+ 1

⇧�(k+1)/2

t =
x⌥
y/k

; x ⇤ N(0, 1), y ⇤ ⌅2, k deg fr

(1.8)

F pdf P (F ;m,n) =
�(m+n

2 )

�(m2 )�(
n
2 )

⇥m
n

⇤m
2
⇥m
n
F + 1

⇤�m+n
2

F
m
2 �1

F =
x/m

y/n
; x, y ⇤ ⌅2, m, n deg fr

(1.9)

The following functions are useful and related functions of a probability density.

Characteristic Function ⇧(t) = E[eitx] =

⌃ ⇤

�⇤
eitxp(x)dx(1.10)

Moment Generating Func. Mx(t) = E[etx] = ⇧(
t

i
)

E[xn] =
 n

 tn
Mx(t)

����
t=0

(1.11)

Factorial Mom Gen Func. ⇥(t) = E[tx] = Mx(log t)(1.12)

Score Function V =
d

d�
logL(�;X) =

L⇥(�;X)

L(�;X)
(1.13)

The score function (derivative of log-likelihood w.r.t. parameter of interest) has expectation of 0.
Variance of the score (expectation of squared score) is the Fisher Information.

1.2 Robust estimators

median absolute deviation XMAD = median(X �median(X))(1.14)

robust stdev ⇤̂ = 1.4826 XMAD(1.15)

1.3 Statistical Tests

• Fisher’s Analsis of Variance (ANOVA) Tests for heterogeneity of means across di⇤erent
populations/groups. Assumes: (1) independence of observations, (2) normality of each group
(3) homoscedasticity (equal variance for each group).
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joint distribution

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

• positive
• sums to 1
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marginalization (“integration”)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

21



marginalization (“integration”)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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conditionalization (“slicing”)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3

(“joint divided by marginal”)
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−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3

conditionalization (“slicing”)

(“joint divided by marginal”)
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−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3

marginal  
P(y)

conditional

conditionalization (“slicing”)
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conditional densities

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3
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conditional densities

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3
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Bayes’ Rule

Conditional 
Densities

rearranging gives:

Bayes’ Rule
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Expectations (“averages”)

pdf

con$nuous discrete 

or

Corresponds to taking weighted average of f(X), weighted by 
how probable they are under P(x).

Expectation is the weighted average of a function (of a random 
variable) according to the distribution (of that random variable)

pmf
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Expectations (“averages”)

Expectation is the weighted average of a function (of a random 
variable) according to the distribution (of that random variable)

It’s really just a dot product!

pdf

con$nuous 

pmf

discrete 

or
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Several important expectations: 
- the average value of a random variable

(here we have simply f(x) = x)

if x is discrete, taking on N values: 

1
2
3

x P(x)
0.5
0.3
0.2

⃗x ⋅ ⃗P
1(0.5) + 2(0.3) + 3(0.2) = 1.7

example

“1st moment”

1)  Mean:
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Several important expectations: 
1)  Mean: - the average value of a random variable

(here we have simply f(x) = x)“1st moment”

if x is continuous:

• can still think of this as a dot product between two 
(infinitely tall) vectors of x values and probilities

P(x1)
P(x2)…

x1
x2… ⋅
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Several important expectations: 
2)

“2nd moment”

- the average value of squared random variable
(here f(x) = x2)

1
2
3

x P(x)
0.5
0.3
0.2

⃗x2 ⋅ ⃗P
1(0.5) + 4(0.3) + 9(0.2) = 3.5

example

x2

1
4
9

if x is discrete, taking on N values: 
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Several important expectations: 
3) variance: 

if x is continuous:

if x is discrete:

mean

(average squared difference 
between x and its mean)
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Note: expectations don’t always exist! 

has no mean!

undefined / does not exist

e.g. 

the Cauchy distribution:
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Summary

• basics of probability
• probability vs. statistics
• continuous & discrete distributions
• joint distributions
• marginalization (splatting)
• conditionalization (slicing)
• Bayes’ rule (for relating conditionals)
• expectations & moments
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