Probability Theory Intro

Jonathan Pillow
Mathematical Tools for Neuroscience (NEU 314)
Fall, 2021
lecture 13

PCA review

the data

collection of N data vectors

goal

Find a subspace (spanned by columns of B) that captures the maximum projected sum-of-squares
squared Frobenius norm (sum-of-squares of data projected onto subspace)
columns of B are orthogonal unit vectors

Solution

2nd moment matrix $\left\{u_{1}, \ldots u_{k}\right\}$ first k PCs
do SVD

$$
C=U S U^{\top}
$$

$s_{1}+\cdots+s_{k}$
$s_{1}+\cdots+s_{N}$
of squares

Least Squares Regression review

the data

goal
Find weight vector \vec{w} that minimizes sum of squared residuals $\arg \min _{\vec{w}}\|\underbrace{Y-X \vec{w}}_{\text {residuals }}\|^{2}$ (difference between observed y_{i} and linear prediction $\vec{x}_{i} \cdot \vec{w}$)

Solution

$$
\hat{w}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

proof based on:
residuals ($Y-X \vec{w}$) should be orthogonal to every column of X

Call-back:

Cortical activity in the null space (Kaufman 2014)

Principal components regression (PCR)

I) Do PCA to reduce dimensionality
2) Then do least squares to estimate weights

now: begin probability!

neural coding problem

- what is the probabilistic relationship between stimuli and spike trains?

neural coding problem

- what is the probabilistic relationship between stimuli and spike trains?

neural coding problem

novel stimulus
(Aditi Jha,
Cosyne 2020)
x

$P(y \mid x)$
"codebook"
?

neural coding problem

$\begin{array}{cc} & \begin{array}{l}\text { posterior } \\ \text { Bayes' Rule: }\end{array} \quad P(x \mid y) \propto P(y \mid x) P(x)\end{array}$

Goals for today

- basics of probability
- probability vs. statistics
- continuous \& discrete distributions
- joint distributions
- marginalization
- conditionalization
- expectations \& moments
- "probability distribution"
- "events"
- "random variables"
parameter

model

samples
X
also written:
$P(x \mid \theta)$
or
$P(x ; \theta)$

- "probability distribution"
- "events"
- "random variables"
parameter

model

- "probability distribution"
- "events"
- "random variables"
parameter
 space

samples

examples

1. coin flipping

$$
\theta=p(\text { "heads" }) \quad \mathrm{X}=\text { " } \mathrm{H} \text { " or " "T" }
$$

2. spike counts

$$
\theta=\text { mean spike rate }
$$

$$
X \in\{0,1, \ldots \ldots\}
$$

Probability vs. Statistics

parameter

coin flipping

$$
\theta=0.3
$$

model

probability

Probability vs. Statistics

parameter

> T, T, H, T, H, T, T, T, T, H, T, H, T, H, H, T, T
"inverse probability"

discrete probability distribution

takes finite (or countably infinite) number of values, eg $\quad x \in \mathbb{N}$

probability mass function (pmf):

- $f\left(x_{i}\right) \geq 0$ for all i
- $\sum_{i=1}^{N} f\left(x_{i}\right)=1$
- $P(x=a)=f(a)$
sums to 1
non-negative
sum
gives probability of observing a particular value of x
some friendly neighborhood probability distributions

Discrete

Bernoulli $\quad P(x \mid p)=p^{x} \cdot(1-p)^{(1-x)}$
(coin flipping)

binomial
$P(k \mid n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}$ (sum of n coin flips)

Poisson

$$
P(k \mid \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

(sum of n coin flips with
P (heads) $=\lambda / n$, in limit $n \rightarrow \infty$)

continuous probability distribution

takes values in a continuous space, e.g., $\quad x \in \mathbb{R}$

probability density function (pdf):

$$
f(x)
$$

- $f(x) \geq 0 \quad$ for all \mathbf{x}
non-negative
- $\int_{-\infty}^{\infty} f(x) d x=1 \quad$ integrates to 1
- $P(x=a)=0$
- $\left.P(a<x<b)=\int_{a}^{b} f(x) d x\right\}$
gives probability of x falling within some interval

Continuous

Gaussian

$$
\underbrace{\frac{\widetilde{x}}{\alpha}}_{-4} \underbrace{2}_{\substack{0}}
$$

multivariate Gaussian
$P(\mathbf{x} \mid \mu, \Lambda)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Lambda|^{\frac{1}{2}}} \exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Lambda^{-1}(\mathbf{x}-\mu)\right]$

exponential

$$
P(x \mid a)=a e^{-a x}
$$

joint distribution

marginalization ("integration")

marginalization ("integration")

$$
P(x, y)
$$

$P(y)=\int P(x, y) d x$

y

conditionalization ("slicing")

$$
P(y \mid x=-1)=\frac{P(y, x=-1)}{P(x=-1)}
$$

("joint divided by marginal")

conditionalization ("slicing")

$$
P(y \mid x=1)=\frac{P(y, x=1)}{P(x=1)}
$$

conditionalization ("slicing")

conditional densities

conditional densities

Bayes’ Rule

```
Conditional Densities
\[
\begin{aligned}
& P(y \mid x)=\frac{P(x, y)}{P(x)} \quad P(x \mid y)=\frac{P(x, y)}{P(y)} \\
& P(x, y)=P(y \mid x) P(x)=P(x \mid y) P(y)
\end{aligned}
\]
```

rearranging gives:

Bayes' Rule

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

Expectations ("averages")

Expectation is the weighted average of a function (of a random variable) according to the distribution (of that random variable)

discrete

continuous

or

$$
\mathbb{E}[f(x)]=\sum_{i} f\left(x_{i}\right) P\left(x_{i}\right) \quad \mathbb{E}[f(x)]=\int f(x) P(x) d x
$$

Corresponds to taking weighted average of $f(X)$, weighted by how probable they are under $\mathrm{P}(\mathrm{x})$.

Expectations ("averages")

Expectation is the weighted average of a function (of a random variable) according to the distribution (of that random variable)

discrete

continuous

$$
\begin{array}{rlr}
\text { pmf } & \text { or } \\
\mathbb{E}[f(x)]=\sum_{i} f\left(x_{i}\right) P\left(x_{i}\right) & & \mathbb{E}[f(x)]=\int f(x) P(x) d x
\end{array}
$$

It's really just a dot product! $\quad \mathbb{E}[f(x)]=\vec{P} \cdot \vec{f} \quad \vec{P}=\left[\begin{array}{c}P\left(x_{1}\right) \\ \vdots \\ P\left(x_{m}\right)\end{array}\right] \quad \vec{f}=\left[\begin{array}{c}f\left(x_{1}\right) \\ \vdots \\ f\left(x_{m}\right)\end{array}\right]$

Several important expectations:

1) Mean: $\mathbb{E}[x]$ - the average value of a random variable "I st moment" (here we have simply $f(x)=x$)
if x is discrete, taking on N values:

$$
\mathbb{E}[x]=\sum_{i=1}^{N} x_{i} P\left(x_{i}\right)
$$

$$
\begin{aligned}
& \text { example } \\
& x \quad P(x) \\
& {\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{l}
0.5 \\
0.3 \\
0.2
\end{array}\right]} \\
& \mathbb{E}[x]=\vec{x} \cdot \vec{P} \\
& =1(0.5)+2(0.3)+3(0.2)=1.7
\end{aligned}
$$

Several important expectations:

1) Mean: $\mathbb{E}[x]$ - the average value of a random variable "I st moment" (here we have simply $f(x)=x$)
if x is continuous: $\mathbb{E}[x]=\int x P(x) d x$

- can still think of this as a dot product between two (infinitely tall) vectors of x values and probilities

$$
\mathbb{E}[x]=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{P}\left(\mathrm{x}_{1}\right) \\
\mathrm{P}\left(\mathrm{x}_{2}\right) \\
\vdots
\end{array}\right]
$$

Several important expectations:

2) $\mathbb{E}\left[x^{2}\right]$ - the average value of squared random variable "2nd moment" (here $\left.f(x)=x^{2}\right)$
if x is discrete, taking on N values: $\quad \mathbb{E}\left[x^{2}\right]=\sum_{i=1}^{N} x_{i}^{2} P\left(x_{i}\right)$
example

x	x^{2}	$\mathrm{P}(\mathrm{x})$
$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$	$\left[\begin{array}{l}1 \\ 4 \\ 9\end{array}\right]$	$\left[\begin{array}{l}0.5 \\ 0.3 \\ 0.2\end{array}\right]$
$\mathbb{E}\left[x^{2}\right]$	$=\overrightarrow{x^{2}} \cdot \vec{P}$	
	$=1(0.5)+4(0.3)+9(0.2)=3.5$	

Several important expectations:

3) variance: $\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]$ (average squared difference between x and its mean)

if x is continuous: $\operatorname{var}(x)=\int(x-\mu)^{2} P(x) d x$

Note: expectations don't always exist!

the Cauchy distribution: $P(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ has no mean!

$$
\mathbb{E}[x]=\int_{-\infty}^{\infty} x P(x)=\underbrace{\int_{-\infty}^{\infty} \frac{x}{\pi(1+x)^{2}} d x}_{\text {undefined / does not exist }}
$$

Summary

- basics of probability
- probability vs. statistics
- continuous \& discrete distributions
- joint distributions
- marginalization (splatting)
- conditionalization (slicing)
- Bayes' rule (for relating conditionals)
- expectations \& moments

