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2nd moment matrix

C=X'X

do SVD
C=USU'

PCA review

goal

ﬂind a subspace (spanned by columns\

of B) that captures the maximum
projected sum-of-squares
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Least Squares Regression review

\

the data goal

d 1 \ @d weight vector w that minimia
T TN sum of squared residuals
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- Yo ) .

e Y=|.] VN arg min ||Y — X@||°

: . ’lB ——
|y yn| ) residuals

inputs

(difference between observed y;
outputs J K and linear prediction x; - W)

Solution

W= (XTX)"'Xx'Y

proof based on:

residuals (Y — Xw) should be orthogonal to every column of X



Call-back:
Cortical activity in the null space (Kaufman 2014)

Principal components regression (PCR)
) Do PCA to reduce dimensionality

2) Then do least squares to estimate weights

M N W
|
(each column of W

has weights for a
single muscle)

Top 3 PCs Top 6 PCs of neural activity







neural coding problem

T Y

stimuli spike trains

* what is the probabilistic relationship
between stimuli and spike trains?



neural coding problem

o o —

‘encoding”

g . SR

i “codebook” . .
stimuli spike trains

* what is the probabilistic relationship
between stimuli and spike trains?



neural coding problem

encodlng

e —

I

/
' P(y|x)
novel stimulus
“codebook”
(Aditi Jha,
Cosyne 2020)
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neural coding problem

>

“‘what was that"? “ T
P(y|x)
X Y
“codebook”
posterior likelihood prior

Bayes’ Rule: P(QE‘y) X P(y|$)P(QE)



Goals for today

basics of probability

probability vs. statistics

continuous & discrete distributions
joint distributions

marginalization

conditionalization

expectations & moments
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parameter

“probability

distribution”

model

~

-

Pg (.CIZ)
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J

also written:

P(x|0)

or

P(x;0)
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« “events”
* “random variables”

samples
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* “probability » “events’

distribution” * “random variables”
parameter model samples
a )
—  Py(z) —
parameter J sample

space space
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parameter

* “probability » “events’

parameter
space

examples

1. coin flipping
0 = p(“heads”)

2. spike counts
6 — mean spike rate

distribution” * “random variables”
model samples
- )
Py(r) —
\_ J
sample
space
X - “H” Or “T”

X e€{0,1,......}
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Probability vs. Statistics

parameter model samples
a )
—  by(z) —
_J
parameter sample
space space
coin flipping probability
6 =0.3 q LTLHTHT
T,T,T, ...
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Probability vs. Statistics

parameter

-

parameter
space

model samples
~
Py(r) —
/)
sample
space
statistics
T,TLHTHT,
LLTHT,
HTHHTT

“inverse probability”

15



discrete probability distribution

takes finite (or countably infinite) number of values,eg 2 € N

probability mass function (pmf):

f(z)

X
e f(x;) >0 foralli non-negative
N
° Zf(xi):l sums to 1
i=1

gives probability of
e Plx=2a)= f(a) observing a particular
value of x
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some friendly neighborhood probability distributions

Discrete

Bernoulli  P(z|p) =p® - (1 —p)t=%
(coin flipping)

binomial P(k|n,p) = (Z)pk(l —p) ¥
(sum of n coin flips)
e
Poisson P(k|X) = e

(sum of n coin flips with
P(heads)=A/n, in limit n—~)
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continuous probability distribution

takes values in a continuous space,e.g., T € R

probability density function (pdf):

f(w>V\

T
° ) >0 forall x non-negative
o / f iIntegrates to 1
e P(x = a)
gives probability of x falling
e Pla<x<b) / f(z within some interval



some friendly neighborhood probability distributions

Continuous
1 (x —u)?, =

P(xip, o) = exp |— o

Gaussian ( 1 ) Voo P [ 202 ]
4 2 0 2 4
multivariate Gaussian
1 B .
P(x|p,A) = ————exp [—3(x — )" A7 (x — p)]
(2m)2 [A)?

exponential P(x|a) = ae™ %"
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joint distribution

P(az, y) * positive

e sums to |

//P(at,y)d:z:dyzl




marginalization (“integration”)

P(x,y)




marginalization (“integration”)

P(x,y)




conditionalization (“slicing”)

P(x,y) Pile = 1) = e =1

P(x = -1)

(“joint divided by marginal”)




conditionalization (“slicing”)

P(xa y) Plylz =1) = Pé?z;xzzl)l)

(“joint divided by marginal”)




conditionalization (“slicing”)

conditional
P =1
T —=
marginal
P(y)




conditional densities

P(y|x) P(zx,




conditional densities




Conditional
Densities

Bayes’ Rule

Bayes’ Rule

rearranging gives:

P(y|z)P(x)
P(y)

P(rly) =



Expectations (“averages”)

Expectation is the weighted average of a function (of a random
variable) according to the distribution (of that random variable)

discrete continuous
or
pmf . pdf
E[f(2)] = Y fla)P(x) Blf ()] = [ f(o)P(a)ds

Corresponds to taking weighted average of f(X), weighted by
how probable they are under P(x).
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Expectations (“averages”)

Expectation is the weighted average of a function (of a random
variable) according to the distribution (of that random variable)

discrete continuous
or
pmt . pdf
E[f(2)] = 3 f(a:)P(a:) Elf ()] = [ f@)P(2)
o P(z1)
It’s really just a dot product! E[f(z)] =P f P=| f=
P(xm)
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Several important expectations:

1) Mean: [E[z] -the average value of a random variable

“Ist moment” (here we have simply f(x) = x)
N
iIf X is discrete, taking on N values: E[x] — Z xZP(:EZ)
1=1
example
S O
1 0.5
2 0.3
3 0.2

1(0.5) + 2(0.3) + 3(0.2) = 1.7J

-
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Several important expectations:

1) Mean: [E[z] -the average value of a random variable

“Ist moment” (here we have simply f(x) = x)
if x is continuous:  [E|x| = / rP(x)dx

* can still think of this as a dot product between two
(infinitely tall) vectors of x values and probilities

X1 _P(X1)
X2 P

Elx] = |
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Several important expectations:

2) E[xQ] - the average value of squared random variable
“2nd moment” (here f(x) = x?)

N
if x is discrete, taking on N values: E[an] — Z x?P(xz)
1=1

example

K X X2 P(x) w
1 1 0.5
2 4 0.3
_3_ _9_ _0.2_
E[z?] =2. P

-

1(0.5) + 4(0.3) + 9(0.2) = 3.5j
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Several important expectations:

o vaance: El(z —Els])”] (s e e

mean [E[x]

v
if x is discrete: var(x) = Z(ZEZ — ,u)QP(:Ei)
i=1

if x is continuous: var(z) = /($ — u)*P(x) dz
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Note: expectations don’t always exist!

e.g.
1
the Cauchy distribution: P — has no mean!
y )= i
Elx] = / rP(x) = / . x)de
\— _

undefined / does not exist
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Summary

basics of probability

probability vs. statistics

continuous & discrete distributions
joint distributions

marginalization (splatting)
conditionalization (slicing)

Bayes’ rule (for relating conditionals)
expectations & moments
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