Probability Theory Intro

Jonathan Pillow

Mathematical Tools for Neuroscience (NEU 314) Fall, 2021

lecture 13

PCA review

Solution

Least Squares Regression review

Solution

$$\hat{w} = (X^T X)^{-1} X^T Y$$

proof based on: residuals $(Y - X \overrightarrow{w})$ should be orthogonal to every column of X

Call-back:

Cortical activity in the null space (Kaufman 2014)

Principal components regression (PCR)

I) Do PCA to reduce dimensionality

2) Then do least squares to estimate weights

Top 3 PCs Top 6 PCs of neural activity

now: begin probability!

• what is the probabilistic relationship between stimuli and spike trains?

• what is the probabilistic relationship between stimuli and spike trains?

 ${\mathcal X}$

Goals for today

- basics of probability
- probability vs. statistics
- continuous & discrete distributions
- joint distributions
- marginalization
- conditionalization
- expectations & moments

also written: $P(x|\theta)$ or $P(x;\theta)$

<u>examples</u>

1. coin flipping

$$\theta = p(\text{``heads''})$$

2. spike counts

 $\theta = \text{ mean spike rate}$

X = "H" or "T"

$$X \in \{0, 1, \ldots\}$$

Probability vs. Statistics

Probability vs. Statistics

discrete probability distribution

takes finite (or countably infinite) number of values, eg $x \in \mathbb{N}$

probability mass function (pmf):

some friendly neighborhood probability distributions

Discrete

Bernoulli (coin flipping)

binomial

(sum of n coin flips)

$$P(x|p) = p^x \cdot (1-p)^{(1-x)}$$

Poisson

$$P(k|\lambda) = \frac{\lambda^n}{k!}e^{-\lambda}$$

(sum of n coin flips with P(heads)= λ/n , in limit $n \rightarrow \infty$) \mathbf{k}

continuous probability distribution

takes values in a continuous space, e.g., $x \in \mathbb{R}$

probability density function (pdf):

- $f(x) \ge 0$ for all x non-negative • $\int_{-\infty}^{\infty} f(x) \, dx = 1$ integrates to 1
- P(x = a) = 0• $P(a < x < b) = \int_{a}^{b} f(x) dx$ } gives probability of x falling within some interval

some friendly neighborhood probability distributions

<u>Continuous</u>

Gaussian
$$P(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-u)^2}{2\sigma^2}\right]$$

multivariate Gaussian

$$P(\mathbf{x} \mid \mu, \Lambda) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Lambda|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Lambda^{-1}(\mathbf{x} - \mu)\right]$$

exponential

$$P(x|a) = ae^{-ax}$$

joint distribution

- positive
- sums to |

 $\iint P(x,y) \, dx \, dy = 1$

marginalization ("integration")

P(x,y)

marginalization ("integration")

P(x,y)

conditionalization ("slicing")

conditionalization ("slicing")

conditionalization ("slicing")

conditional densities

conditional densities

Bayes' Rule

Conditional Densities

$$P(y|x) = \frac{P(x,y)}{P(x)} \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

$$P(x, y) = P(y|x)P(x) = P(x|y)P(y)$$

rearranging gives:

Bayes' Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

Expectations ("averages")

Expectation is the weighted average of a function (of a random variable) according to the distribution (of that random variable)

Corresponds to taking weighted average of f(X), weighted by how probable they are under P(x).

Expectations ("averages")

Expectation is the weighted average of a function (of a random variable) according to the distribution (of that random variable)

 $\begin{array}{ll} \mbox{discrete} & \mbox{continuous} \\ \mbox{pmf} & \mbox{or} \\ \mathbb{E}[f(x)] = \sum_i f(x_i) P(x_i) & \mbox{} \mathbb{E}[f(x)] = \int f(x) P(x) dx \end{array}$

It's really just a dot product!
$$\mathbb{E}[f(x)] = \vec{P} \cdot \vec{f}$$
 $\vec{P} = \begin{bmatrix} P(x_1) \\ \vdots \\ P(x_m) \end{bmatrix}$ $\vec{f} = \begin{bmatrix} f(x_1) \\ \vdots \\ f(x_m) \end{bmatrix}$

1) Mean: $\mathbb{E}[x]$ - the average value of a random variable "Ist moment" (here we have simply f(x) = x)

if x is discrete, taking on N values:

$$\mathbb{E}[x] = \sum_{i=1}^{N} x_i P(x_i)$$

1) Mean: $\mathbb{E}[x]$ - the average value of a random variable "Ist moment" (here we have simply f(x) = x)

if x is continuous:
$$\mathbb{E}[x] = \int x P(x) \, dx$$

• can still think of this as a dot product between two (infinitely tall) vectors of x values and probilities

$$\mathbb{E}[x] = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix} \cdot \begin{bmatrix} \mathsf{P}(x_1) \\ \mathsf{P}(x_2) \\ \vdots \end{bmatrix}$$

2) $\mathbb{E}[x^2]$ - the average value of squared random variable "2nd moment" (here $f(x) = x^2$)

if x is discrete, taking on N values:

$$\begin{bmatrix} 2\\3 \end{bmatrix} \begin{bmatrix} 4\\9 \end{bmatrix} \begin{bmatrix} 0.3\\0.2 \end{bmatrix}$$
$$\mathbb{E}[x^2] = \overrightarrow{x^2} \cdot \overrightarrow{P}$$
$$= 1(0.5) + 4(0.3) + 9(0.2) = 3.5$$

3) variance: $\mathbb{E}[(x - \mathbb{E}[x])^2]$

(average squared difference between x and its mean)

if x is discrete:
$$\operatorname{var}(x) = \sum_{i=1}^{N} (x_i - \mu)^2 P(x_i)$$

if x is continuous:
$$\operatorname{var}(x) = \int (x - \mu)^2 P(x) \, dx$$

Note: expectations don't always exist!

e.g. the Cauchy distribution:
$$P(x) = rac{1}{\pi(1+x^2)}$$
 has no mean!

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} x P(x) = \int_{-\infty}^{\infty} \frac{x}{\pi (1+x)^2} dx$$

undefined / does not exist

Summary

- basics of probability
- probability vs. statistics
- continuous & discrete distributions
- joint distributions
- marginalization (splatting)
- conditionalization (slicing)
- Bayes' rule (for relating conditionals)
- expectations & moments