PCA part II & Least Squares Regression

Mathematical Tools for Neuroscience (NEU 314) Fall, 2021

lecture 12

Jonathan Pillow

Quiz

Suppose A is a 3 x 3 matrix with SVD: $A = USV^T$

(1) If the A matrix above is rank 2, what does that imply about its singular values?

(2) What is $U^{T}U$ equal to?

(3) What is the SVD of A^T ? (Write it using U, S, and V matrices given above)

(4) What is the SVD of $A^{T}A$?

(5) Let \vec{v}_2 denote the second right singular vector (i.e., the second row of V^T). What is V^T \vec{v}_2 ?

(hint: this is a 3-component vector).

quick review of PCA

PCA summary

PCA summary

PCA summary

- PCs are major axes of ellipse (or "ellipsoid")
- singular values specify lengths of axes

what is the top singular vector of $X^{\top}X$?

what is the top singular vector of $X^{\top}X$?

Projecting onto the PCs

• visualize low-dimensional projection that captures most variance

Full derivation of PCA: see notes

Two equivalent formulations:

1.
$$\hat{B}_{pca} = \arg \max_{B} ||XB||_F^2$$

such that $B^{\top}B = I$

find subspace that preserves *maximal* sum-of-squares

Full derivation of PCA: see notes

Two equivalent formulations:

1.
$$\hat{B}_{pca} = \arg \max_{B} ||XB||_F^2$$

such that $B^{\top}B = I$

find subspace that preserves *maximal* sum-of-squares

2.
$$\hat{B}_{pca} = \arg \min_{B} ||X - XBB^{\top}||_{F}^{2}$$

such that $B^{\top}B = I$

minimize sum-of-squares of orthogonal component

reconstruction of X in subspace spanned by B

Summary

- PCA recap
- PCA = fitting an ellipse to data. (PCs = major axes of ellipse; singular values = amount of variance captured by each PC)
- Centered vs. non-centered PCA
- Plotting data projected onto PCs.

Least Squares regression also known as Ordinary Least Squares (OLS)

(on board)