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Quiz
Suppose A is a 3 x 3 matrix with SVD:

(1) If the A matrix above is rank 2, what does that imply about 
its singular values?

(2) What is UTU equal to?

(3) What is the SVD of AT? (Write it using U, S, and V matrices 
given above)

(4) What is the SVD of ATA?

(5) Let v2 denote the second right singular vector (i.e., the 
second row of VT). What is VT v2  ?
(hint: this is a 3-component vector).
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quick review of PCA
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PCA summary

Statistical Modeling and Analysis of Neural Data (NEU 560)
Princeton University, Fall 2020

Jonathan Pillow

Lecture 5: Principal Components Analysis

1 The raw data

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d. For example,
we might imagine we have made a simultaneous recording from d neurons, so each vector represents
the spike counts of all recorded neurons in a single time bin, and we have N time bins total in the
experiment.

Let’s think of the data arranged in an N ⇥ d matrix that we’ll call X. Each row of this matrix is
a data vector representing the response from d neurons to a single stimulus:

X =

2

6664

— ~x1 —
— ~x2 —

...
— ~xN —

3

7775

We suspect that these vectors not “fill” out the entire d-dimensional space, but instead be confined
to a lower-dimensional subspace. (For example, if two neurons always emit the same number of
spikes, then their responses live entirely along the 1D subspace corresponding to the xi = xj line).

Can we make a mathematically rigorous theory of dimensionality reduction that captures how much
of the “variance” in the data is captured by a low-dimensional projection? (Yes: it turns out the
tool we are looking for is PCA!)

2 Finding the best 1D subspace (first PC)

Let’s suppose we wish to find the best 1D subspace, i.e., the one-dimensional projection of the data
that captures the largest amount of variability. We can formalize this as the problem of finding the
unit vector ~v that maximizes the sum of squared linear projections of the data vectors:

Sum of squared linear projections =
NX

i=1

(~xi · ~v)2 = ||X~v||2

= (X~v)>(X~v)

= ~v>X>X~v

= ~v>(X>X)~v

= ~v>C~v,

1

the data

d

N}
}

2nd moment matrix

SVD

first k PCs:

sum of squares of

data within subspace:

4



Statistical Modeling and Analysis of Neural Data (NEU 560)
Princeton University, Fall 2020

Jonathan Pillow

Lecture 5: Principal Components Analysis

1 The raw data

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d. For example,
we might imagine we have made a simultaneous recording from d neurons, so each vector represents
the spike counts of all recorded neurons in a single time bin, and we have N time bins total in the
experiment.

Let’s think of the data arranged in an N ⇥ d matrix that we’ll call X. Each row of this matrix is
a data vector representing the response from d neurons to a single stimulus:

X =

2

6664

— ~x1 —
— ~x2 —

...
— ~xN —

3

7775

We suspect that these vectors not “fill” out the entire d-dimensional space, but instead be confined
to a lower-dimensional subspace. (For example, if two neurons always emit the same number of
spikes, then their responses live entirely along the 1D subspace corresponding to the xi = xj line).

Can we make a mathematically rigorous theory of dimensionality reduction that captures how much
of the “variance” in the data is captured by a low-dimensional projection? (Yes: it turns out the
tool we are looking for is PCA!)

2 Finding the best 1D subspace (first PC)

Let’s suppose we wish to find the best 1D subspace, i.e., the one-dimensional projection of the data
that captures the largest amount of variability. We can formalize this as the problem of finding the
unit vector ~v that maximizes the sum of squared linear projections of the data vectors:

Sum of squared linear projections =
NX

i=1

(~xi · ~v)2 = ||X~v||2

= (X~v)>(X~v)

= ~v>X>X~v

= ~v>(X>X)~v

= ~v>C~v,

1

the data

d

N}
}

2nd moment matrix

SVD

first k PCs:

fraction of sum of squares:

PCA summary
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PCA summary
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Lecture 5: Principal Components Analysis

1 The raw data

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d. For example,
we might imagine we have made a simultaneous recording from d neurons, so each vector represents
the spike counts of all recorded neurons in a single time bin, and we have N time bins total in the
experiment.

Let’s think of the data arranged in an N ⇥ d matrix that we’ll call X. Each row of this matrix is
a data vector representing the response from d neurons to a single stimulus:

X =

2

6664

— ~x1 —
— ~x2 —

...
— ~xN —

3

7775

We suspect that these vectors not “fill” out the entire d-dimensional space, but instead be confined
to a lower-dimensional subspace. (For example, if two neurons always emit the same number of
spikes, then their responses live entirely along the 1D subspace corresponding to the xi = xj line).

Can we make a mathematically rigorous theory of dimensionality reduction that captures how much
of the “variance” in the data is captured by a low-dimensional projection? (Yes: it turns out the
tool we are looking for is PCA!)

2 Finding the best 1D subspace (first PC)

Let’s suppose we wish to find the best 1D subspace, i.e., the one-dimensional projection of the data
that captures the largest amount of variability. We can formalize this as the problem of finding the
unit vector ~v that maximizes the sum of squared linear projections of the data vectors:

Sum of squared linear projections =
NX

i=1

(~xi · ~v)2 = ||X~v||2

= (X~v)>(X~v)

= ~v>X>X~v

= ~v>(X>X)~v

= ~v>C~v,

1

the data

d

N}
}

2nd moment matrix

SVD

first k PCs:

sum of squares of all data
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PCA is equivalent to fitting an ellipse to your data

dimension 1

dimension 2
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PCA is equivalent to fitting an ellipse to your data

dimension 1

dimension 2

1st PC
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PCA is equivalent to fitting an ellipse to your data

1st PC

dimension 1

dimension 2

}
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PCA is equivalent to fitting an ellipse to your data

2nd PC

dimension 1

dimension 2

}
1st PC
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PCA is equivalent to fitting an ellipse to your data

2nd PC

dimension 1

dimension 2

}
1st PC

}
• PCs are major axes of ellipse (or “ellipsoid”)

• singular values specify lengths of axes
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dim 1

di
m

 2

what is the top singular vector of           ?
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dim 1

di
m

 2

what is the top singular vector of           ?
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dim 1

di
m

 2

Centering the data
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Centering the data

dim 1

di
m

 2

1st PC
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Centering the data

dim 1

di
m

 2

now it’s a covariance!1st PC

• In practice, we almost 
always do PCA on 
centered data!


• C = np.cov(X)

16



Projecting onto the PCs

PC-1 projection

PC
-2

 p
ro

je
ct

io
n

• visualize low-dimensional projection that captures most variance
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Full derivation of PCA: see notes

which implies
C~v = ��~v. (5)

What is this? It’s the eigenvector equation! This implies that the derivative of the Lagrangian
is zero when ~v is an eigenvector of C. So this establishes, combined with the argument from last
week, that the unit vector that captures the greatest squared projection of the raw data is the top
eigenvector of C.

4.1 Objective functions for PCA

Formally, we can write the principal components as the columns of a d⇥k matrix B that maximizes
the Frobenious norm of the data projected onto B:

B̂pca = argmax
B

||XB||2F

such that B>B = I.

An equivalent definition is
B̂pca = argmin

B
||X �XBB>||2F

such that B>B = I. This objective function says that the principal components define an or-
thonormal basis such that the distance between the original data and the data projected onto that
subspace is minimal. It shouldn’t take to much e↵ort to see that that the rows of XBB> correspond
to the rows of X reconstructed in the basis defined by columns of B.

5
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to the rows of X reconstructed in the basis defined by columns of B.

5

1.

Two equivalent formulations:

find subspace that preserves 
maximal sum-of-squares
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Full derivation of PCA: see notes
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1.

2.

Two equivalent formulations:
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5

find subspace that preserves 
maximal sum-of-squares

minimize sum-of-squares of 
orthogonal component}

reconstruction of X in 
subspace spanned by B
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Summary

• PCA recap
• PCA = fitting an ellipse to data.   

(PCs = major axes of ellipse;   
singular values = amount of variance captured by each PC)

• Centered vs. non-centered PCA
• Plotting data projected onto PCs.
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Least Squares regression
also known as

Ordinary Least Squares (OLS)

(on board)
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