PCA part II \& Least Squares Regression

Mathematical Tools for Neuroscience (NEU 314) Fall, 202I

lecture 12

Jonathan Pillow

Quiz

Suppose A is a 3×3 matrix with SVD: $A=U S V^{T}$
(1) If the A matrix above is rank 2, what does that imply about its singular values?
(2) What is UTU equal to?
(3) What is the SVD of A^{\top} ? (Write it using U, S, and V matrices given above)
(4) What is the SVD of $A^{\top} A$?
(5) Let $\overrightarrow{\mathrm{V}}_{2}$ denote the second right singular vector (i.e., the second row of V^{\top}). What is $\mathrm{V}^{\top} \overrightarrow{\mathrm{V}}_{2}$?
(hint: this is a 3-component vector).

quick review of PCA

PCA summary

the data
2nd moment matrix $C=X^{\top} X$

SVD
$C=U S U^{\top}$ 1 . 1
first kPCs: $\left\{u_{1}, \ldots u_{k}\right\}$
sum of squares of data within subspace: $s_{1}+\cdots+s_{k}$

PCA summary

the data
2nd moment matrix $C=X^{\top} X$

$$
\left.X=\left[\begin{array}{c}
-\vec{x}_{1}- \\
-\vec{x}_{2}- \\
\vdots \\
-\vec{x}_{N}-
\end{array}\right]\right\} \mathrm{N}
$$

SVD

$$
C=U S U^{\top}
$$

$$
\downarrow
$$

fraction of sum of squares: $\frac{s_{1}+\cdots+s_{k}}{s_{1}+\cdots+s_{N}}$

PCA summary

the data
2nd moment matrix

$$
C=X^{\top} X
$$

SUD
$C=U S U^{\top}$
1
first k PCs: $\left\{u_{1}, \ldots u_{k}\right\}$
$\|C\|_{F}^{2}=\sum_{i=1}^{N}\left\|\mathbf{x}_{i}\right\|^{2}=\sum_{i, j} x_{i j}^{2}$
sum of squares of all data

PCA is equivalent to fitting an ellipse to your data

dimension 2

PCA is equivalent to fitting an ellipse to your data

dimension 2

PCA is equivalent to fitting an ellipse to your data

dimension 2

PCA is equivalent to fitting an ellipse to your data

dimension 2

PCA is equivalent to fitting an ellipse to your data

dimension 2

- PCs are major axes of ellipse (or "ellipsoid")
- singular values specify lengths of axes
what is the top singular vector of $X^{\top} X$?

what is the top singular vector of $X^{\top} X$?

Centering the data $\quad \vec{x}_{i}-\bar{x}$

Centering the data $\quad \vec{x}_{i}-\bar{x}$

$$
C=(X-\bar{x})^{\top}(X-\bar{x})
$$

Centering the data $\quad \vec{x}_{i}-\bar{x}$

$$
C=\frac{1}{N}(X-\bar{x})^{\top}(X-\bar{x})
$$

1st PC \vec{u} $\operatorname{dim} 1$

- In practice, we almost always do PCA on centered data!
- C $=$ np.cov(X)

Projecting onto the PCs

- visualize low-dimensional projection that captures most variance

Full derivation of PCA: see notes

Two equivalent formulations:

1. $\hat{B}_{p c a}=\arg \max _{B}\|X B\|_{F}^{2}$
such that $B^{\top} B=I$
find subspace that preserves maximal sum-of-squares

Full derivation of PCA: see notes

Two equivalent formulations:

1. $\hat{B}_{p c a}=\arg \max _{B}\|X B\|_{F}^{2}$
such that $B^{\top} B=I$
find subspace that preserves maximal sum-of-squares
2. $\hat{B}_{p c a}=\arg \min _{B}\|X-\underbrace{X B B^{\top}}\|_{F}^{2} \quad \begin{gathered}\text { minimize sum-of-squares of } \\ \text { orthogonal component }\end{gathered}$
reconstruction of X in subspace spanned by B

Summary

- PCA recap
- PCA = fitting an ellipse to data. (PCs = major axes of ellipse; singular values = amount of variance captured by each PC)
- Centered vs. non-centered PCA
- Plotting data projected onto PCs.

Least Squares regression also known as

Ordinary Least Squares (OLS)

(on board)

