Principal Components Analysis (PCA)

Mathematical Tools for Neuroscience (NEU 314) Fall, 2021

lecture 11

Jonathan Pillow

Summary of prev (online-only) lecture

- outer product (review)
- SVD as a sum of weighted outer products
- optimal low-rank matrix approximation using SVD
- Frobenius norm (Euclidean norm for matrices)

quick review: outer product

• produces a rank-1 matrix

matrix approximation

 the <u>best</u> rank-K approximation to A (in terms of squared error) is given by truncating the SVD after K terms.

Fraction of variance accounted for (by the rank-K approximation):

applications to neural data

(adapted from Williams et al, Neuron 2018)

Frobenius norm

(the Euclidean norm for matrices)

(see notes for proof)

PCA summary

PCA summary

PCA summary

Full derivation of PCA: see notes

Two equivalent formulations:

1.
$$\hat{B}_{pca} = \arg \max_{B} ||XB||_F^2$$

such that $B^{\top}B = I$

find subspace that preserves maximal sum-of-squares

2.
$$\hat{B}_{pca} = \arg \min_{B} ||X - XBB^{\top}||_{F}^{2}$$

such that $B^{\top}B = I$

minimize sum-of-squares of orthogonal component

reconstruction of X in subspace spanned by B