Principal Components Analysis (PCA)

Mathematical Tools for Neuroscience (NEU 314) Fall, 202I

lecture II

Jonathan Pillow

Summary of prev (online-only) lecture

- outer product (review)
- SVD as a sum of weighted outer products
- optimal low-rank matrix approximation using SVD
- Frobenius norm (Euclidean norm for matrices)

quick review: outer product

- produces a rank-I matrix

SVD as a sum of outer-products

$$
\begin{aligned}
& A=U S V^{\top} \\
& {\left[\begin{array}{ccc}
\mid & 1 & \\
u_{1} u_{2} & \ldots & u_{n} \\
1 & 1 &
\end{array}\right]\left[\begin{array}{ccc}
s_{1} & & \\
& s_{2} & \\
& & \ddots \\
& & \\
& & s_{n}
\end{array}\right]\left[\begin{array}{c}
-v_{1}
\end{array}\right]\left[\begin{array}{c}
-v_{2} \\
\vdots \\
-v_{n}
\end{array}\right]} \\
& =\underbrace{S_{2} S_{2} u_{2} v_{2}^{\top}}_{\underbrace{S_{1}-v_{1}}_{\substack{u_{1} \\
1}} u_{\text {(rank } 1 \text { matrix) }}^{u_{1} v_{1}^{\top}}}+\cdots+S_{n} u_{n} v_{n}^{\top}
\end{aligned}
$$

matrix approximation

- the best rank-K approximation to A (in terms of squared error) is given by truncating the SVD after K terms.

Fraction of variance accounted for (by the rank-K approximation):

applications to neural data

Frobenius norm

(the Euclidean norm for matrices)

(see notes for proof)

PCA

PCA summary

the data
2nd moment matrix $C=X^{\top} X$

SVD
$C=U S U^{\top}$ 1 . 1
first k PCs: $\left\{u_{1}, \ldots u_{k}\right\}$
sum of squares of data within subspace: $s_{1}+\cdots+s_{k}$

PCA summary

the data
2nd moment matrix $C=X^{\top} X$

$$
\left.X=\left[\begin{array}{c}
-\vec{x}_{1}- \\
-\vec{x}_{2}- \\
\vdots \\
-\vec{x}_{N}-
\end{array}\right]\right\} \mathrm{N}
$$

SVD

$$
C=U S U^{\top}
$$

$$
\downarrow
$$

fraction of sum of squares: $\frac{s_{1}+\cdots+s_{k}}{s_{1}+\cdots+s_{N}}$

PCA summary

the data
2nd moment matrix

$$
C=X^{\top} X
$$

SUD
$C=U S U^{\top}$
1
first k PCs: $\left\{u_{1}, \ldots u_{k}\right\}$
$\|C\|_{F}^{2}=\sum_{i=1}^{N}\left\|\mathbf{x}_{i}\right\|^{2}=\sum_{i, j} x_{i j}^{2}$
sum of squares of all data

Full derivation of PCA: see notes

Two equivalent formulations:

1. $\hat{B}_{p c a}=\arg \max _{B}\|X B\|_{F}^{2}$
such that $B^{\top} B=I$
find subspace that preserves maximal sum-of-squares
2. $\hat{B}_{p c a}=\arg \min _{B}\|X-\underbrace{X B B^{\top}}\|_{F}^{2} \quad \begin{gathered}\text { minimize sum-of-squares of } \\ \text { orthogonal component }\end{gathered}$
reconstruction of X in subspace spanned by B
