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Summary of prev (online-only) lecture

• outer product (review)
• SVD as a sum of weighted outer products
• optimal low-rank matrix approximation using SVD
• Frobenius norm (Euclidean norm for matrices)

2



quick review: outer product

=          C

= k
m

1

1

k

m

• produces a rank-1 matrix
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SVD as a sum of outer-products
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matrix approximation

… uku1
=

s1 …
sk vk

v1… (this is an easier 
way to compute it)

• the best rank-K approximation to A (in terms of squared error) 
is given by truncating the SVD after K terms.
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Fraction of variance accounted for

(by the rank-K approximation):

sum of squared first K 
singular values

sum of squares of all 
singular values
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applications to neural data

single-trial dynamics, they can be cumbersome in experiments
consisting of thousands of trials.
Our proposal is to perform dimensionality reduction directly on

the original neural data tensor (Figure 1C), rather than first con-
verting it to a matrix. This TCAmethod then yields the decompo-
sition (Harshman, 1970; Carroll and Chang, 1970; Kolda and
Bader, 2009)

xntkz
XR

r = 1

wr
nb

r
ta

r
k : (Equation 2)

In analogy to PCA, we can think of wr as a prototypical firing
rate pattern across neurons, andwe can think of br as a temporal
basis function across timewithin trials. These neuron factors and
temporal factors constitute structure that is common across all
trials. We call the third set of factors, ar , ‘‘trial factors’’ (green
vectors in Figure 1), which are new to TCA and not present in
PCA. The trial factors can be thought of as trial-specific ampli-
tudes for the within-trial activity patterns identified by the neuron
and temporal factors. Thus, in TCA, the trial-to-trial fluctuations
in neural activity are also embedded in R-dimensional space.
TCA achieves a dramatic reduction of the original data tensor,
reducing NTK data points to RðN+T +KÞ values, while still
capturing trial-to-trial variability.
An important feature of PCA is that it requires both the neuron

ðwrÞ and temporal ðbrÞ factors to be orthogonal sets of vectors to

yield a unique solution. This assumption is, however, motivated
by mathematical convenience rather than biological principles.
In real biological circuits, cell ensembles may overlap and tem-
poral firing patterns may be correlated, producing non-orthog-
onal structure that cannot be recovered by PCA. An important
advantage of TCA is that it does not require orthogonality con-
straints to yield a unique solution (Kruskal, 1977; Qi et al.,
2016) (STARMethods). Below, we demonstrate that this theoret-
ical advantage enables TCA to demix neural data in addition to
reducing its dimensionality. In particular, on a range of datasets,
TCA can recover non-orthogonal cell ensembles and firing pat-
terns that map onto interpretable task variables, such as trial
conditions, decisions, and rewards, while PCA recovers features
that encode complex mixtures of these variables (Kobak
et al., 2016).

TCA as a Generalized Cortical Gain Control Model
Although TCA was originally developed as a statistical method
(Harshman, 1970; Carroll and Chang, 1970), here we show that
it concretely relates to a prominent theory of neural computation
when applied to multi-trial datasets. In particular, performing
TCA is equivalent to fitting a gain-modulated linear network
model to neural data. In this networkmodel,N observed neurons
(light gray circles, Figure 2A) are driven by a much smaller num-
ber of R unobserved, or latent, inputs (dark gray circles, Fig-
ure 2A) that have a fixed temporal profile but have varying
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Figure 1. Tensor Representation of Trial-Structured Neural Data
(A) Schematic of trial-averaged PCA for spiking data. The data are represented as a sequence ofN3T matrices (top). Thesematrices are averaged across trials to

build a matrix of trial-averaged neural firing rates. PCA approximates the trial-averaged matrix as a sum of outer products of vectors (Equation 1). Each outer

product contains a neuron factor (blue rectangles) and a temporal factor (red rectangles).

(B) Schematic of trial-concatenated PCA for spiking data. Data may be temporally smoothed (e.g., by a Gaussian filter) to estimate neural firing rates before

concatenating all trials along the time axis. Applying PCA produces a separate set of temporal factors for each trial (subsets of the red vectors).

(C) Schematic of TCA. Data are organized into a third-order tensor with dimensions N3 T 3 K. TCA approximates the data as a sum of outer products of three

vectors, producing an additional set of low-dimensional factors (trial factors, green vectors) that describe how activity changes across trials.
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neural weights

single-trial dynamics, they can be cumbersome in experiments
consisting of thousands of trials.
Our proposal is to perform dimensionality reduction directly on

the original neural data tensor (Figure 1C), rather than first con-
verting it to a matrix. This TCAmethod then yields the decompo-
sition (Harshman, 1970; Carroll and Chang, 1970; Kolda and
Bader, 2009)
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In analogy to PCA, we can think of wr as a prototypical firing
rate pattern across neurons, andwe can think of br as a temporal
basis function across timewithin trials. These neuron factors and
temporal factors constitute structure that is common across all
trials. We call the third set of factors, ar , ‘‘trial factors’’ (green
vectors in Figure 1), which are new to TCA and not present in
PCA. The trial factors can be thought of as trial-specific ampli-
tudes for the within-trial activity patterns identified by the neuron
and temporal factors. Thus, in TCA, the trial-to-trial fluctuations
in neural activity are also embedded in R-dimensional space.
TCA achieves a dramatic reduction of the original data tensor,
reducing NTK data points to RðN+T +KÞ values, while still
capturing trial-to-trial variability.
An important feature of PCA is that it requires both the neuron

ðwrÞ and temporal ðbrÞ factors to be orthogonal sets of vectors to

yield a unique solution. This assumption is, however, motivated
by mathematical convenience rather than biological principles.
In real biological circuits, cell ensembles may overlap and tem-
poral firing patterns may be correlated, producing non-orthog-
onal structure that cannot be recovered by PCA. An important
advantage of TCA is that it does not require orthogonality con-
straints to yield a unique solution (Kruskal, 1977; Qi et al.,
2016) (STARMethods). Below, we demonstrate that this theoret-
ical advantage enables TCA to demix neural data in addition to
reducing its dimensionality. In particular, on a range of datasets,
TCA can recover non-orthogonal cell ensembles and firing pat-
terns that map onto interpretable task variables, such as trial
conditions, decisions, and rewards, while PCA recovers features
that encode complex mixtures of these variables (Kobak
et al., 2016).

TCA as a Generalized Cortical Gain Control Model
Although TCA was originally developed as a statistical method
(Harshman, 1970; Carroll and Chang, 1970), here we show that
it concretely relates to a prominent theory of neural computation
when applied to multi-trial datasets. In particular, performing
TCA is equivalent to fitting a gain-modulated linear network
model to neural data. In this networkmodel,N observed neurons
(light gray circles, Figure 2A) are driven by a much smaller num-
ber of R unobserved, or latent, inputs (dark gray circles, Fig-
ure 2A) that have a fixed temporal profile but have varying
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Figure 1. Tensor Representation of Trial-Structured Neural Data
(A) Schematic of trial-averaged PCA for spiking data. The data are represented as a sequence ofN3T matrices (top). Thesematrices are averaged across trials to

build a matrix of trial-averaged neural firing rates. PCA approximates the trial-averaged matrix as a sum of outer products of vectors (Equation 1). Each outer

product contains a neuron factor (blue rectangles) and a temporal factor (red rectangles).

(B) Schematic of trial-concatenated PCA for spiking data. Data may be temporally smoothed (e.g., by a Gaussian filter) to estimate neural firing rates before

concatenating all trials along the time axis. Applying PCA produces a separate set of temporal factors for each trial (subsets of the red vectors).

(C) Schematic of TCA. Data are organized into a third-order tensor with dimensions N3 T 3 K. TCA approximates the data as a sum of outer products of three

vectors, producing an additional set of low-dimensional factors (trial factors, green vectors) that describe how activity changes across trials.
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single-trial dynamics, they can be cumbersome in experiments
consisting of thousands of trials.
Our proposal is to perform dimensionality reduction directly on

the original neural data tensor (Figure 1C), rather than first con-
verting it to a matrix. This TCAmethod then yields the decompo-
sition (Harshman, 1970; Carroll and Chang, 1970; Kolda and
Bader, 2009)
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In analogy to PCA, we can think of wr as a prototypical firing
rate pattern across neurons, andwe can think of br as a temporal
basis function across timewithin trials. These neuron factors and
temporal factors constitute structure that is common across all
trials. We call the third set of factors, ar , ‘‘trial factors’’ (green
vectors in Figure 1), which are new to TCA and not present in
PCA. The trial factors can be thought of as trial-specific ampli-
tudes for the within-trial activity patterns identified by the neuron
and temporal factors. Thus, in TCA, the trial-to-trial fluctuations
in neural activity are also embedded in R-dimensional space.
TCA achieves a dramatic reduction of the original data tensor,
reducing NTK data points to RðN+T +KÞ values, while still
capturing trial-to-trial variability.
An important feature of PCA is that it requires both the neuron

ðwrÞ and temporal ðbrÞ factors to be orthogonal sets of vectors to

yield a unique solution. This assumption is, however, motivated
by mathematical convenience rather than biological principles.
In real biological circuits, cell ensembles may overlap and tem-
poral firing patterns may be correlated, producing non-orthog-
onal structure that cannot be recovered by PCA. An important
advantage of TCA is that it does not require orthogonality con-
straints to yield a unique solution (Kruskal, 1977; Qi et al.,
2016) (STARMethods). Below, we demonstrate that this theoret-
ical advantage enables TCA to demix neural data in addition to
reducing its dimensionality. In particular, on a range of datasets,
TCA can recover non-orthogonal cell ensembles and firing pat-
terns that map onto interpretable task variables, such as trial
conditions, decisions, and rewards, while PCA recovers features
that encode complex mixtures of these variables (Kobak
et al., 2016).

TCA as a Generalized Cortical Gain Control Model
Although TCA was originally developed as a statistical method
(Harshman, 1970; Carroll and Chang, 1970), here we show that
it concretely relates to a prominent theory of neural computation
when applied to multi-trial datasets. In particular, performing
TCA is equivalent to fitting a gain-modulated linear network
model to neural data. In this networkmodel,N observed neurons
(light gray circles, Figure 2A) are driven by a much smaller num-
ber of R unobserved, or latent, inputs (dark gray circles, Fig-
ure 2A) that have a fixed temporal profile but have varying
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Frobenius norm
(the Euclidean norm for matrices)
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sum of squared 
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(see notes for proof)
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PCA summary

Statistical Modeling and Analysis of Neural Data (NEU 560)
Princeton University, Fall 2020

Jonathan Pillow

Lecture 5: Principal Components Analysis

1 The raw data

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d. For example,
we might imagine we have made a simultaneous recording from d neurons, so each vector represents
the spike counts of all recorded neurons in a single time bin, and we have N time bins total in the
experiment.

Let’s think of the data arranged in an N ⇥ d matrix that we’ll call X. Each row of this matrix is
a data vector representing the response from d neurons to a single stimulus:

X =

2

6664

— ~x1 —
— ~x2 —

...
— ~xN —

3

7775

We suspect that these vectors not “fill” out the entire d-dimensional space, but instead be confined
to a lower-dimensional subspace. (For example, if two neurons always emit the same number of
spikes, then their responses live entirely along the 1D subspace corresponding to the xi = xj line).

Can we make a mathematically rigorous theory of dimensionality reduction that captures how much
of the “variance” in the data is captured by a low-dimensional projection? (Yes: it turns out the
tool we are looking for is PCA!)

2 Finding the best 1D subspace (first PC)

Let’s suppose we wish to find the best 1D subspace, i.e., the one-dimensional projection of the data
that captures the largest amount of variability. We can formalize this as the problem of finding the
unit vector ~v that maximizes the sum of squared linear projections of the data vectors:

Sum of squared linear projections =
NX

i=1

(~xi · ~v)2 = ||X~v||2

= (X~v)>(X~v)

= ~v>X>X~v

= ~v>(X>X)~v

= ~v>C~v,

1

the data

d

N}
}

2nd moment matrix

SVD

first k PCs:

sum of squares of

data within subspace:
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1 The raw data

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d. For example,
we might imagine we have made a simultaneous recording from d neurons, so each vector represents
the spike counts of all recorded neurons in a single time bin, and we have N time bins total in the
experiment.

Let’s think of the data arranged in an N ⇥ d matrix that we’ll call X. Each row of this matrix is
a data vector representing the response from d neurons to a single stimulus:

X =

2

6664

— ~x1 —
— ~x2 —

...
— ~xN —

3

7775

We suspect that these vectors not “fill” out the entire d-dimensional space, but instead be confined
to a lower-dimensional subspace. (For example, if two neurons always emit the same number of
spikes, then their responses live entirely along the 1D subspace corresponding to the xi = xj line).

Can we make a mathematically rigorous theory of dimensionality reduction that captures how much
of the “variance” in the data is captured by a low-dimensional projection? (Yes: it turns out the
tool we are looking for is PCA!)

2 Finding the best 1D subspace (first PC)

Let’s suppose we wish to find the best 1D subspace, i.e., the one-dimensional projection of the data
that captures the largest amount of variability. We can formalize this as the problem of finding the
unit vector ~v that maximizes the sum of squared linear projections of the data vectors:

Sum of squared linear projections =
NX

i=1

(~xi · ~v)2 = ||X~v||2

= (X~v)>(X~v)

= ~v>X>X~v

= ~v>(X>X)~v

= ~v>C~v,

1

the data

d

N}
}

2nd moment matrix

SVD

first k PCs:

fraction of sum of squares:

PCA summary

11



PCA summary

Statistical Modeling and Analysis of Neural Data (NEU 560)
Princeton University, Fall 2020

Jonathan Pillow

Lecture 5: Principal Components Analysis

1 The raw data

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d. For example,
we might imagine we have made a simultaneous recording from d neurons, so each vector represents
the spike counts of all recorded neurons in a single time bin, and we have N time bins total in the
experiment.

Let’s think of the data arranged in an N ⇥ d matrix that we’ll call X. Each row of this matrix is
a data vector representing the response from d neurons to a single stimulus:

X =

2

6664

— ~x1 —
— ~x2 —

...
— ~xN —

3

7775

We suspect that these vectors not “fill” out the entire d-dimensional space, but instead be confined
to a lower-dimensional subspace. (For example, if two neurons always emit the same number of
spikes, then their responses live entirely along the 1D subspace corresponding to the xi = xj line).

Can we make a mathematically rigorous theory of dimensionality reduction that captures how much
of the “variance” in the data is captured by a low-dimensional projection? (Yes: it turns out the
tool we are looking for is PCA!)

2 Finding the best 1D subspace (first PC)

Let’s suppose we wish to find the best 1D subspace, i.e., the one-dimensional projection of the data
that captures the largest amount of variability. We can formalize this as the problem of finding the
unit vector ~v that maximizes the sum of squared linear projections of the data vectors:

Sum of squared linear projections =
NX

i=1

(~xi · ~v)2 = ||X~v||2

= (X~v)>(X~v)

= ~v>X>X~v

= ~v>(X>X)~v

= ~v>C~v,

1

the data

d

N}
}

2nd moment matrix

SVD

first k PCs:

sum of squares of all data

12



Full derivation of PCA: see notes

which implies
C~v = ��~v. (5)

What is this? It’s the eigenvector equation! This implies that the derivative of the Lagrangian
is zero when ~v is an eigenvector of C. So this establishes, combined with the argument from last
week, that the unit vector that captures the greatest squared projection of the raw data is the top
eigenvector of C.

4.1 Objective functions for PCA

Formally, we can write the principal components as the columns of a d⇥k matrix B that maximizes
the Frobenious norm of the data projected onto B:

B̂pca = argmax
B

||XB||2F

such that B>B = I.

An equivalent definition is
B̂pca = argmin

B
||X �XBB>||2F

such that B>B = I. This objective function says that the principal components define an or-
thonormal basis such that the distance between the original data and the data projected onto that
subspace is minimal. It shouldn’t take to much e↵ort to see that that the rows of XBB> correspond
to the rows of X reconstructed in the basis defined by columns of B.
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find subspace that preserves 
maximal sum-of-squares

minimize sum-of-squares of 
orthogonal component}

reconstruction of X in 
subspace spanned by B
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