SVD Applications 2: low-rank matrix approximation

Mathematical Tools for Neuroscience (NEU 314) Fall, 2021

lecture 10 (online only)

Jonathan Pillow

quick review: outer product

$\vec{a} \ \vec{b}^{\top} = \mathbf{C}$

quick review: outer product

• produces a rank-1 matrix

another view of SVD: a sum of outer-products

matrix approximation

 the <u>best</u> rank-K approximation to A (in terms of squared error) is given by truncating the SVD after K terms.

matrix approximation

 the <u>best</u> rank-K approximation to A (in terms of squared error) is given by truncating the SVD after K terms.

Fraction of variance accounted for (by the rank-K approximation):

applications to neural data

applications to neural data

(adapted from Williams et al, Neuron 2018)

my (admittedly poor) attempt: rank 2 approximation

Frobenius Norm

Frobenius norm

(the Euclidean norm for matrices)

Frobenius norm

(the Euclidean norm for matrices)

15

Thus we can also write the "fraction of variance" accounted for by the rank-K approximation as:

Summary

- SVD as a sum of (weighted) outer products
- optimal low-rank matrix approximation
- Frobenius norm (Euclidean norm for matrices)