SVD Applications 2:
low-rank matrix approximation
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quick review: outer product
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quick review: outer product
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another view of SVD:a sum of outer-products
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SVD as a sum of outer-products

A=USV'
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SVD as a sum of outer-products
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matrix approximation

- the best rank-K approximation to A (in terms of squared error)
IS given by truncating the SVD after K terms.
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matrix approximation

- the best rank-K approximation to A (in terms of squared error)
IS given by truncating the SVD after K terms.
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Fraction of variance accounted for
(by the rank-K approximation):

sum of squared first K

" singular values
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applications to neural data

_ trial 1 _ _ trial k _ _ trial K _
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neurons
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applications to neural data
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(adapted from Williams et al, Neuron 2018)

11



my (admittedly poor) attempt: rank 2 approximation
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Frobenius norm

(the Euclidean norm for matrices)
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Frobenius norm

(the Euclidean norm for matrices)
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(see notes for proof)
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Thus we can also write the “fraction of variance”
accounted for by the rank-K approximation as:

sum of squared first K
K 5 “~ singular values
D ie1 S;
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singular values
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Summary

* SVD as a sum of (weighted) outer products
* optimal low-rank matrix approximation

* Frobenius norm
(Euclidean norm for matrices)
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