Singular Value Decomposition (SVD) applications

Mathematical Tools for Neuroscience (NEU 314) Fall, 202I
lecture 9

Jonathan Pillow

Notes:

1) No in-person class on Thursday (5/7)
2) Labs will be optional during midterms week (Oct 11-15)

Recap of SVD

Singular Value Decomposition (SVD)

$$
\begin{aligned}
& A=U S V^{\top} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
u_{1} & u_{2} & u_{n} \\
1 & 1 & \\
1
\end{array}\right]} \\
& \text { left singlar vedors } \\
& \text { (orthogonal/minitirs) } \\
& u^{\top} u=u u^{\top}=I
\end{aligned}
$$

Singular Value Decomposition (SVD)

$$
\begin{gathered}
A=U S V^{\top} \\
{\left[\begin{array}{lll}
1 & 1 & 1 \\
u_{1} & 1 \\
1 & x_{1} & -n_{1} \\
1 & s_{1}
\end{array}\right]\left[\begin{array}{lll}
s_{1} & s_{2} \\
& & \\
& & s_{n}
\end{array}\right]}
\end{gathered}
$$

left singalar vedoes singalar
(orthoganal/unitiris) values

$$
\begin{aligned}
& u^{\top} u=u u^{\top}=I \quad(\text { all } \geqslant 0) \\
& s_{1} \geqslant s_{2} \geq \ldots \geqslant s_{n}
\end{aligned}
$$

(b) convention)

Singular Value Decomposition (SVD)

$$
\begin{aligned}
& A=U S V^{\top} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
u_{1} & h_{2} & u_{n} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
s_{1} & & \\
s_{1} & & \\
s_{2} & \\
& a_{s}
\end{array}\right]\left[\begin{array}{l}
-v_{v} \\
-v_{2} \\
- \\
-v_{n}
\end{array}\right]}
\end{aligned}
$$

left singular vedors singular (orthogonal/uniburs) values

$$
\begin{aligned}
& u^{\top} u=u u^{\top}=I \quad(\text { all } \geqslant 0) \\
& s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{n} \\
&(b, \text { convention })
\end{aligned}
$$

conceptual picture

This means we can think of the linear map, $\vec{x} \longrightarrow A \vec{x}$ in terms of the following three steps:

1. rotation (multiplication by V^{\top}, which doesn't change vector length of \vec{x}).
2. stretching along the cardinal axes (where the $i^{\prime} t h$ component is stretched by s_{i}).
3. another rotation (multipication by U).

inverse

$$
A=U S V^{\top}
$$

inverse: $\quad A^{-1}=V S^{-1} U^{\top}$

inverse

let's check: $\quad A^{-1} A=\left(V S^{-1} U^{\top}\right)\left(U S V^{\top}\right)$

$$
\begin{aligned}
& =V S^{-1}\left(U^{\top} U\right) S V^{\top} \\
& =V\left(S^{-1} S\right) V^{\top} \\
& =V V^{\top} \\
& =I
\end{aligned}
$$

inverse: $\quad A^{-1}=V S^{-1} U^{\top}$

mapping by A and its inverse

$$
A=U S V^{\top}
$$

$$
\vec{y}=A \vec{x}
$$

$$
1 \rightarrow \vec{e} \rightarrow \vec{a}
$$

inverse:

$$
A^{-1}=V S^{-1} U^{\top}
$$

Rank

$\operatorname{rank}(A)=\#$ non-zero singular values

Pseudo-inverse

$$
A=U S V^{\top}
$$

If A has k non-zero singular values,
pseudo-inverse: $A^{\dagger}=V S^{\dagger} U{ }^{\top}$

Start Lecture 09: Applications of SVD

- row/column/null spaces
- non-square matrices
- condition \#
- eigenvectors / spectral theorem

Warmup Problems

Someone hands you the SVD of a matrix A: $\quad A=U S V^{\top}$

1. What is $A \vec{v}_{1}$?
where $\vec{v}_{1}=1$ st right singular vector (i.e., the first row vector in V^{T})
2. What is the SVD of A times its transpose?

$$
A A^{\top}=?
$$

3. What is the SVD of A-transpose times A?

$$
A^{\top} A=?
$$

Answers

Someone hands you the SVD of a matrix A: $\quad A=U S V^{\top}$

1. What is $A \vec{v}_{1}$?
where $\vec{v}_{1}=1$ st right singular vector (i.e., the first row vector in V^{T})

$$
\left(U S V^{T}\right) \vec{v}_{1}=s_{1} \vec{u}_{1}
$$

2. What is the SVD of A times its transpose?

$$
\begin{array}{|ll}
\hline \text { - } & \text { same } L \& R \text { singular vectors } \\
\text { - } & \text { singular values }=\mathrm{si}^{2} \\
\hline
\end{array}
$$

Recall:
$(A B)^{\top}=B^{\top} A^{\top}$

$$
\begin{aligned}
A A^{\top} & =\left(U S V^{\top}\right)\left(V S U^{\top}\right) \\
& =U S^{2} U^{\top}
\end{aligned}
$$

3. What is the SVD of A-transpose times A?

$$
\begin{aligned}
A^{\top} A & =\left(V S U^{\top}\right)\left(U S V^{\top}\right) \\
& =V S^{2} V^{\top}
\end{aligned}
$$

More Questions (group discussion)

How could you use SVD to:

1. determine whether a matrix is invertible?
2. find the rank of a matrix?
3. find an orthonormal basis for the row space?
4. find an orthonormal basis for the column space?
5. find an orthonormal basis for the null space?

Answers:

1. determine whether a matrix is invertible?

Invertible if all singular values are >0.
2. find the rank of a matrix?
rank = \# of non-zero singular values

Answers:

3. find an orthonormal basis for the row space?
4. find an orthonormal basis for the column space?
5. find an orthonormal basis for the null space?

- note that any linear combination of $\left(v_{k+1}, \ldots v_{n}\right)$ has zero dot product with $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{k}}$, hence gives zero when multiplied by A (and is thus in null space!)

SVD of non-square matrices

SVD of non-square matrices

tall, skinny A:

short, fat A :

Condition number

true vs. practical non-invertibility

true vs. practical non-invertibility

- matrix is not practically invertible if condition \# too big (>1012)
- such a matrix called "ill-conditioned" or "singular"
- compute with: numpy.linalg.cond

eigenvectors / spectral theorem

eigenvectors

Q1: what is an eigenvector?
Q2: when is an eigenvector equal to a singular vector?

eigenvectors

Q1: what is an eigenvector?

- for a (square) matrix A, a vector \vec{x} such that

that is, $A \vec{x}$ is a scaled version of \vec{x}.

positive semi-definite matrix

- matrix for which: $\vec{x}^{\top} A \vec{x} \geq 0$ for any vector \vec{x}
equivalent definition:
- a matrix for which all eigenvalues are ≥ 0

spectral theorem

If a matrix A is

- symmetric
- positive semi-definite
the singular value decomposition is also an eigen-decomposition:

$$
A=U S U^{\top}
$$

matrix of (orthogonal) eigenvectors

- singular vectors = eigenvectors
- singular values = eigenvalues
- Note that left and right singular vectors are the same!

If a matrix A is

- symmetric
- positive semi-definite

recall:

$$
\begin{aligned}
A^{\top} A & =\left(V S U^{\top}\right)\left(U S V^{\top}\right) \\
& =V S^{2} V^{\top}
\end{aligned}
$$

- V is matrix of orthogonal eigenvectors
- si^{2} are eigenvalues

Summary

- condition number
- ill-conditioned / singular matrix
- eigenvectors \& eigenvalues
- positive semi-definite matrices
- low-rank matrix approximation
- Frobenius norm (Euclidean norm for matrices)
- spectral theorem

