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Notes: 

1) No in-person class on Thursday (5/7)
2) Labs will be optional during midterms 

week (Oct 11-15)

2



Recap of SVD
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Statistical Modeling and Analysis of Neural Data (NEU 560)
Princeton University, Fall 2020

Jonathan Pillow

Lecture 3 notes: SVD

1 Singular Value Decomposition

The singular vector decomposition allows us to write any matrix A as

A = USV >,

where U and V are orthogonal matrices (square matrices whose columns form an orthonormal
basis), and S is a diagonal matrix (a matrix whose only non-zero entries lie along the diagonal):

S =

2

6664

s1
s2

. . .

sn

3

7775

The columns of U and V are called the left singular vectors and right singular vectors, respectively.

The diagonal entires {si} are called singular values. The singular values are always � 0.

The SVD tells us that we can think of the action of A upon any vector ~x in terms of three steps
(Fig. 1):

1. rotation (multiplication by V >, which doesn’t change vector length of ~x).

2. stretching along the cardinal axes (where the i0th component is stretched by si).

3. another rotation (multipication by U).

rotate stretch rotate

Figure 1: Schematic illustration of SVD in terms of three linear transformations.
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conceptual picture
This means we can think of the linear map, 
in terms of the following three steps:
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inverse:

inverse
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2 Inverses

The SVD makes it easy to compute (and understand) the inverse of a matrix. We exploit the fact
that U and V are orthogonal, meaning their transposes are their inverses, i.e., U>U = UU> = I
and V >V = V V > = I.

The inverse of A (if it exists) can be determined easily from the SVD, namely:

A�1 = V S�1UT , (1)

where

S�1 =

2

6664

1
s1

1
s2

. . .
1
sn

3

7775
(2)

The logic is that we can find the inverse mapping by undoing each of the three operations we did
when multiplying A: first, undo the last rotation by multiplying by U>; second, un-stretch by
multiplying by 1/si along each axis, third, un-rotate by multiplying by V . (See Fig 2).

Figure 2: Illustrating the inverse of a matrix in terms of its SVD.

Another way to see that this definition of the inverse is correct is via:

A�1A = (V S�1U>)(USV >)

= V S�1(U>U)SV >

= V (S�1S)V >

= V V >

= I

We can do a similar analysis of AA�1.

2

inverse

inverse:

let’s check:
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mapping by A and its inverse
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2

inverse:
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Rank

rank(A) = # non-zero singular 
values
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Pseudo-inverse

pseudo-inverse: 

If A has k non-zero 
singular values,
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• row/column/null spaces
• non-square matrices
• condition #
• eigenvectors / spectral theorem

Start Lecture 09:  
Applications of SVD 
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2.  What is the SVD of A times its transpose?

3.  What is the SVD of A-transpose times A?

Someone hands you the SVD of a matrix A: 

?

?

1.  What is ? 

where  = 1st right singular vector (i.e., the first row vector in  ) 

A ⃗v 1⃗v 1 VT

Warmup Problems
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2.  What is the SVD of A times its transpose?

3.  What is the SVD of A-transpose times A?

Someone hands you the SVD of a matrix A: 

1.  What is ? 

where  = 1st right singular vector (i.e., the first row vector in  ) 

A ⃗v 1⃗v 1 VT

Answers

(USVT) ⃗v 1 = s1 ⃗u 1

Recall:  

• same L & R singular vectors

• singular values = si2
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More Questions (group discussion)

How could you use SVD to: 

1. determine whether a matrix is invertible?

2. find the rank of a matrix?

3. find an orthonormal basis for the row space?

4. find an orthonormal basis for the column space?

5. find an orthonormal basis for the null space? 
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Answers:

1. determine whether a matrix is invertible?


2. find the rank of a matrix?


Invertible if all singular values are > 0.

rank = # of non-zero singular values
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Answers:

3. find an orthonormal basis for the row space?

4. find an orthonormal basis for the column space?

5. find an orthonormal basis for the null space? 

• note that any linear 
combination of (vk+1, … vn) 
has zero dot product with 
v1…vk, hence gives zero 
when multiplied by A (and is 
thus in null space!)
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SVD of non-square matrices
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SVD of non-square matrices

tall, skinny A:

The degree to which ill-conditioning prevents a matrix from being inverted accurately depends on
the ratio of its largest to smallest singular value, a quantity known as the condition number:

condition number =
s1
sn

.

The larger the condition number, the more practically non-invertible it is. When using double
floating point precision, matrices with condition numbers greater than ⇡ 1014 cannot be stably
inverted.

You can compute the condition number yourself from the SVD, or using the built-in Matlab com-
mand cond, or the numpy command numpy.linalg.cond.

5 SVD of non-square matrix

If Am⇥n is a non-square matrix, then U is m ⇥ m and V is n ⇥ n, and Sm⇥n is non-square (and
therefore has only min(m, n) non-zero singular values. Such matrices are (obviously) non-intertible,
though we can compute their pseudo-inverses using the formula above.

=

=

tall, skinny matrix

short, fat matrix

Figure 3: SVD of non-square matrices. The gray regions of the matrices are not needed, since they
consist of all zeros in the S matrix, and are only hit by zeros in those portions of the U or V >

matrices. Dropping them results in the more compact “reduced” SVD for tall, skinny (above) or
short, fat (below) matrices.
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Condition number
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true vs. practical non-invertibility
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true vs. practical non-invertibility

condition number:

• matrix is not practically invertible if condition # too big (>1012)
• such a matrix called “ill-conditioned” or “singular” 

largest sing. value

smallest sing. value

• compute with: numpy.linalg.cond
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eigenvectors / spectral theorem
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eigenvectors

Q1: what is an eigenvector?

Q2: when is an eigenvector equal to a singular vector?
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eigenvectors

Q1: what is an eigenvector?

A~x = A

 
nX

i=k+1

wi~vi

!
(by definition of ~x) (1)

=

nX

i=k+1

wi (A~vi) . (by definition of linearity) (2)

Now let’s look at any one of the terms in this sum:

A~vi = (USV >
)~vi = US(V >~vi) = US ~ei, (3)

where ~ei is the “identity” basis vector consisting of all 0’s except for a single 1 in the i’th row.

This follows from the fact that ~vi is orthogonal to every row of V >
except the i’th row, which gives

~vi · ~vi = 1 because ~vi is a unit vector.

Now, because i in the sum only ranged over k+ 1 to n, then when we multiply ~ei by S (which has

non-zeros along the diagonal only up to the k’th row / column), we get zero:

S~ei = 0 for i > k.

Thus

US~ei = 0

which means that the entire sum
nX

i=k+1

US~ei = 0.

So this shows that A~x = 0 for any vector ~x that lives in the subspace spanned by the last n � k
columns of V , meaning it lies in the null space. This is of course equivalent to showing that the

last n� k columns of V provide an (orthonormal) basis for the null space!

2 Positive semidefinite matrix

Positive semi-definite (PSD) matrix is a matrix that has all eignevalues � 0, or equivalently,

a matrix A for which ~x>A~x � 0 for any vector ~x.

To generate an n⇥ n positive semi-definite matrix, we can take any matrix X that has n columns

and let A = X>X.

3 Relationship between SVD and eigenvector decomposition

Definition: An eigenvector of a square matrix A is defined as a vector satisfying the equation

A~x = �~x,

2

• for a (square) matrix A, a vector     such that

A~x = A

 
nX

i=k+1

wi~vi

!
(by definition of ~x) (1)

=

nX

i=k+1

wi (A~vi) . (by definition of linearity) (2)

Now let’s look at any one of the terms in this sum:

A~vi = (USV >
)~vi = US(V >~vi) = US ~ei, (3)

where ~ei is the “identity” basis vector consisting of all 0’s except for a single 1 in the i’th row.

This follows from the fact that ~vi is orthogonal to every row of V >
except the i’th row, which gives

~vi · ~vi = 1 because ~vi is a unit vector.

Now, because i in the sum only ranged over k+ 1 to n, then when we multiply ~ei by S (which has

non-zeros along the diagonal only up to the k’th row / column), we get zero:

S~ei = 0 for i > k.

Thus

US~ei = 0

which means that the entire sum
nX

i=k+1

US~ei = 0.

So this shows that A~x = 0 for any vector ~x that lives in the subspace spanned by the last n � k
columns of V , meaning it lies in the null space. This is of course equivalent to showing that the

last n� k columns of V provide an (orthonormal) basis for the null space!

2 Positive semidefinite matrix

Positive semi-definite (PSD) matrix is a matrix that has all eignevalues � 0, or equivalently,

a matrix A for which ~x>A~x � 0 for any vector ~x.

To generate an n⇥ n positive semi-definite matrix, we can take any matrix X that has n columns

and let A = X>X.

3 Relationship between SVD and eigenvector decomposition

Definition: An eigenvector of a square matrix A is defined as a vector satisfying the equation

A~x = �~x,

2

that is, Ax is a scaled version of x.

eigenvectoreigenvalue
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positive semi-definite matrix

• a matrix for which all eigenvalues are

A~x = A

 
nX

i=k+1

wi~vi

!
(by definition of ~x) (1)

=

nX

i=k+1

wi (A~vi) . (by definition of linearity) (2)
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nX

i=k+1

wi~vi

!
(by definition of ~x) (1)

=

nX

i=k+1

wi (A~vi) . (by definition of linearity) (2)
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Thus
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columns of V , meaning it lies in the null space. This is of course equivalent to showing that the

last n� k columns of V provide an (orthonormal) basis for the null space!

2 Positive semidefinite matrix

Positive semi-definite (PSD) matrix is a matrix that has all eignevalues � 0, or equivalently,

a matrix A for which ~x>A~x � 0 for any vector ~x.

To generate an n⇥ n positive semi-definite matrix, we can take any matrix X that has n columns

and let A = X>X.

3 Relationship between SVD and eigenvector decomposition

Definition: An eigenvector of a square matrix A is defined as a vector satisfying the equation

A~x = �~x,

2

• matrix for which: 

equivalent definition:
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spectral theorem

the singular value decomposition is also an eigen-decomposition:

and � is the corresponding eigenvalue. In other words, an eigenvector of A is any vector that, when

multiplied by A, comes back as itself scaled by �.

Spectral theorem: If a matrix A is symmetric and positive semi-definite, then the SVD also an

eigendecomposition, that is, a decomposition in terms of an orthonormal basis of eigenvectors:

A = USU>,

where the columns of U are eigenvectors and the diagonal entries {si} of S are the eigenvalues.

Note that for such matrices, U = V , meaning the left and right singular vectors are identical.

Exercise: prove to yourself that: A~ui = si~ui

SVD of matrix times its transpose. In class we showed that if A = USV >
, then A>A

(which it turns out, is symmetric and PSD) has the singular value decomposition (which is also an

eigendecomposition): A>A = V S2V >
. Test yourself by deriving the SVD of AA>

.

4 Linearity and Linear Systems

Linear system is a kind of mapping f(~x) �! ~y that has the following two properties:

1. homogeneity (“scalar multiplication”):

f(ax) = af(x)

2. additivity:

f(~x1 + ~x2) = f(~x1) + f(~x2)

Of course we can combine these two properties into a single requirement and say: f is a linear

function if and only if it obeys the principal of superposition:

f(a~x1 + b~x2) = af(~x1) + bf(~x2)

.

General rule: we can write any linear function in terms of a matrix operation:

f(~x) = A~x

for some matrix A.

Question: is the function f(x) = ax+ b a linear function? Why or why not?

3

matrix of (orthogonal)

eigenvectors

eigenvalues along 

diagonal

• singular vectors = eigenvectors

• singular values = eigenvalues 

• Note that left and right singular vectors are the same!

If a matrix A is 

• symmetric

• positive semi-definite
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If a matrix A is 

• symmetric

• positive semi-definite

recall:

• V is matrix of orthogonal eigenvectors

• si2 are eigenvalues

29



Summary

• condition number
• ill-conditioned / singular matrix
• eigenvectors & eigenvalues
• positive semi-definite matrices
• low-rank matrix approximation
• Frobenius norm (Euclidean norm for matrices)
• spectral theorem
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