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Notes:

1) No in-person class on Thursday (5/7)
2) Labs will be optional during midterms
week (Oct 11-15)



Recap of SVD



Singular Value Decomposition (SVD)
_ 1
A=USV

(Dr kl’\oyml /‘«'\Aﬂj)
W2 Ul =T



Singular Value Decomposition (SVD)
A= USVT

(Dr X(L‘oﬂ?/’ml /‘leﬂﬁ VogluQS
K=l =T (&l = O\
25 7 T
(GB Co\/\l/(—/\.({—';ol/l)



Singular Value Decomposition (SVD)
A= USVT

(Dr X(L‘oﬂ?/’ml /‘leﬂﬁ VogluQS
K=l =T (&l = O\
25 7 T
(GB Co\/\l/(—/\.({—';ol/l)



conceptual picture

This means we can think of the linear map, ¥ — AZ
in terms of the following three steps:

1. rotation (multiplication by V', which doesn’t change vector length of ).
2. stretching along the cardinal axes (where the i'th component is stretched by s;).

3. another rotation (multipication by U).

j=AZ = (USV ") &
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Inverse

A=USV'
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inverse: A_l — VS_lUT




Inverse

let’s check: A71A = (VS_lUT)(USVT)
=vsYwru)sv’
=V(sisyw'
=Vvv'
— 1

inverse: A_l — VS_lUT



mapping by A and its inverse

A = USVT

inverse: A—l — VS_lUT



Rank

rank(A) = # non-zero singular
values
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Pseudo-inverse

A=USV"'

Cl

L
pseudo-inverse: AT — VST UT

If A has k non-zero
singular values,
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Start Lecture 09:
Applications of SVD

row/column/null spaces
non-square matrices

condition #

eigenvectors / spectral theorem
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Warmup Problems
Someone hands you the SVD of a matrix A: A = USVT

1. Whatis AV |?
where 71 = 1st right singular vector (i.e., the first row vector in VT)

2. What is the SVD of A times its transpose?

AA' = 9

3. What is the SVD of A-transpose times A?

AlA= 7
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Answers

Someone hands you the SVD of a matrix A: A=US VT

1. Whatis AV |?
where 71 = 1st right singular vector (i.e., the first row vector in VT)

(USVHYV | = s,

* same L & R singular vectors

2. What is the SVD of A times its transpose?

e singular values = si2

| fecalt AA" = (USV " (VSU ")
AR — US2UT

3. What is the SVD of A-transpose times A?
A'A= (VSU"YUSV ")
= VsV
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More Questions (group discussion)

How could you use SVD to:

determine whether a matrix is invertible?
find the rank of a matrix?
find an orthonormal basis for the row space?

find an orthonormal basis for the column space?

find an orthonormal basis for the null space?
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Answers:

1. determine whether a matrix is invertible?
Invertible if all singular values are > 0.

2. find the rank of a matrix?
rank = # of non-zero singular values
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3. find an ort
4. find an ort

5. find an ort

—

A

Answers:

nonorma

nonorma

nonorma

)

basis for t

ne row space?

basis for the column space?
basis for the null space?
S v
. :
'(oa — VK—
N — Vf§+|—/
] — V=
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* note that any linear
combination of (Vk+1, ... Vn)
has zero dot product with
V1...Vk, hence gives zero
when multiplied by A (and is
thus in null space!)






tall, skinny A:

short, fat A:

SVD of non-square matrices

irrelevant

Zeros

Zeros

T
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true vs. practical non-invertibility

S :.nj u\qr Vq'l.

2 23945 77"
S inqular Jalue
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true vs. practical non-invertibility

S I.V\J k\td‘ Vql.

condition number: —

N

smallest sing. value

« matrix is not practically invertible if condition # too big (>1012)
* such a matrix called “ill-conditioned” or “singular”
- compute with: numpy.linalg.cond
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eigenvectors

Q1: what is an eigenvector?

Q2: when is an eigenvector equal to a singular vector?
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eigenvectors

Q1: what is an eigenvector?

- for a (square) matrix A, a vector x such that

eigenvalue elgenvector

that is, Ax is a scaled version of x.
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positive semi-definite matrix

» matrix for which: ' A# > 0 for any vector &

equivalent definition:

» a matrix for which all eigenvalues are > ()
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spectral theorem

If a matrix A is
* symmetric
e positive semi-definite

the singular value decomposition is also an eigen-decomposition:

A=USU"
/N
) eigenvalues along

matrix of (orthogonal diagonal

eigenvectors

* singular vectors = eigenvectors
e singular values = eigenvalues
* Note that left and right singular vectors are the same!
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If a matrix A is

e symmetric Coval ol e
* positive semi-definite ribices |
recal: A" A= (VSU'"WUSV")
= VsV

e \ is matrix of orthogonal eigenvectors
e 52 are eigenvalues
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Summary

* condition nhumber

* ill-conditioned / singular matrix

* eigenvectors & eigenvalues

* positive semi-definite matrices

* low-rank matrix approximation

* Frobenius norm (Euclidean norm for matrices)
* spectral theorem
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