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Quiz

v1 = 3
0

(5a) Is this a linear function:

(1) Is v1 in the column space of A?

(2) Is v1 in the row space of A?

(3) Is v1 in the null space of A?

(4) What is the rank of A?

1
2A = 0

0

(5b) Is this a linear function:
1/2 point each
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Next up: the amazing SVD!
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Next up: the amazing SVD!
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quick recap:

1 4 7 
2 5 8 
3 6 9

T
T

1 2 3 
4 5 6

1.  What is an orthogonal matrix?

2.  compute the transpose of the following two matrices
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quick recap:
1.  What is an orthogonal matrix?

2.  compute the transpose of the following two matrices

1 4 7 
2 5 8 
3 6 9

T
T

1 2 3 
4 5 6

• square matrix whose 
rows & columns are 
orthogonal unit vectors

length-preserving

also known as 
“unitary” matrix

Properties: transpose is its 
inverse
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quick recap:
1.  What is an orthogonal matrix?

2.  compute the transpose of the following two matrices

1 4 7 
2 5 8 
3 6 9

T
T

1 2 3 
4 5 6

1 4 7 
2 5 8 
3 6 9

T
= 

1 2 3 
4 5 6 
7 8 9

1 4 
2 5 
3 6

= 1 2 3 
4 5 6

• square matrix whose 
rows & columns are 
orthogonal unit vectors

length-preserving

Properties: transpose is its 
inverse

also known as 
“unitary” matrix
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one weird fact about transposes & inverses

• transpose of a product:
(we can verify this with 

a simple example)
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one weird fact about transposes & inverses

• transpose of a product:

• inverse of a product:

(we can verify this with 
a simple example)
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Statistical Modeling and Analysis of Neural Data (NEU 560)
Princeton University, Fall 2020

Jonathan Pillow

Lecture 3 notes: SVD

1 Singular Value Decomposition

The singular vector decomposition allows us to write any matrix A as

A = USV >,

where U and V are orthogonal matrices (square matrices whose columns form an orthonormal
basis), and S is a diagonal matrix (a matrix whose only non-zero entries lie along the diagonal):

S =

2

6664

s1
s2

. . .

sn

3

7775

The columns of U and V are called the left singular vectors and right singular vectors, respectively.

The diagonal entires {si} are called singular values. The singular values are always � 0.

The SVD tells us that we can think of the action of A upon any vector ~x in terms of three steps
(Fig. 1):

1. rotation (multiplication by V >, which doesn’t change vector length of ~x).

2. stretching along the cardinal axes (where the i0th component is stretched by si).

3. another rotation (multipication by U).

rotate stretch rotate

Figure 1: Schematic illustration of SVD in terms of three linear transformations.
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conceptual picture
This means we can think of the linear map, 
in terms of the following three steps:
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inverse:

inverse
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2 Inverses

The SVD makes it easy to compute (and understand) the inverse of a matrix. We exploit the fact
that U and V are orthogonal, meaning their transposes are their inverses, i.e., U>U = UU> = I
and V >V = V V > = I.

The inverse of A (if it exists) can be determined easily from the SVD, namely:

A�1 = V S�1UT , (1)

where

S�1 =

2

6664

1
s1

1
s2

. . .
1
sn

3

7775
(2)

The logic is that we can find the inverse mapping by undoing each of the three operations we did
when multiplying A: first, undo the last rotation by multiplying by U>; second, un-stretch by
multiplying by 1/si along each axis, third, un-rotate by multiplying by V . (See Fig 2).

Figure 2: Illustrating the inverse of a matrix in terms of its SVD.

Another way to see that this definition of the inverse is correct is via:

A�1A = (V S�1U>)(USV >)

= V S�1(U>U)SV >

= V (S�1S)V >

= V V >

= I

We can do a similar analysis of AA�1.

2

inverse

inverse:

let’s check:

can you check: 
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mapping by A and its inverse

2 Inverses
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Another way to see that this definition of the inverse is correct is via:
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= V S�1(U>U)SV >

= V (S�1S)V >

= V V >

= I
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2
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Pseudo-inverse

pseudo-inverse: 

If we have k non-zero 
singular values,
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Rank

if s1, …, sk > 0

and sk+1, …, sn = 0


rank = k

rank(A) = # non-zero singular 
values
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Summary
• transpose of a product
• inverse of a product
• singular value decomposition (SVD)
• inverse
• pseudo-inverse
• rank
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