Singular Value Decomposition (SVD)

Mathematical Tools for Neuroscience (NEU 314) Fall, 202I
lecture 8

Jonathan Pillow

Quiz

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right] \quad V_{1}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

(1) Is v_{1} in the column space of A ?
(2) Is v_{1} in the row space of A ?
(3) Is v_{1} in the null space of A ?
(4) What is the rank of A ?

1/2 point each $\left\{\begin{array}{l}(5 a) \text { Is this a linear function: } f(\vec{x})=3 \vec{x}+1 \\ (5 b) \text { Is this a linear function: } f(\vec{x})=\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right] \vec{x}\end{array}\right.$

Next up: the amazing SVD!

Daniela Witten @daniela_witten. Jul 5
Everybody knows that the \#SVD is the \#bestmatrixdecomposition !!!
\#UDVt \#minimumreconstructionerror \#maximalvariance
\#nonconvexbutstillsolvable
\#nothanksQR
\#seeyoulaterEigenDecomp
\#blessed

Women in Statistics and Data Science @WomenInStat • Jul 21
So a lot of people think of the SVD as "just another matrix decomposition".
But today I will argue that if you are in statistics or data science, it is the \#1 matrix decomposition, and likely the only one you will ever need.

And believe me: you are going to need it.

Women in Statistics and Data Science @WomenInStat • Jul 21
And please don't troll me with your comments about how you prefer the QR or LU decompositions.

I'm a working mom with 3 kids at home in the midst of a pandemic, I know you don't mean it, and I literally don't have time for this.

Next up: the amazing SVD!

Dr. Daniela Witten @daniela_witten• Sep 14
It's that time of year \quad : crisp fall air , leaves starting to change campus beginning to fill with undergrads , which means a whole new cohort of grad students who haven't yet heard me talk about how great the SVD is \#blessed \#bestmatrixdecomposition \#teamSVD
11
$\uparrow \downarrow$
16

- 313
ث

quick recap:

1. What is an orthogonal matrix?
2. compute the transpose of the following two matrices

$$
\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right)^{\top} \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)^{\top}
$$

quick recap:

1. What is an orthogonal matrix?
also known as "unitary" matrix

- square matrix whose rows \& columns are orthogonal unit vectors

$$
B=\left(\begin{array}{cccc}
\left\lvert\, \begin{array}{ccc}
\vec{b}_{1} & \mid \vec{b}_{2} & \ldots
\end{array}\right. & \vec{b}_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad \begin{aligned}
& \vec{b}_{i} \cdot \vec{b}_{i}=1 \\
& \vec{b}_{i} \cdot \vec{b}_{j}=0, i \neq j
\end{aligned}
$$

Properties:

$$
\begin{array}{ll}
B B^{T}=B^{T} B=I & \text { transpose is its } \\
B^{-1}=B^{T} & \text { inverse } \\
\|B \vec{v}\|=\left\|B^{T} \vec{v}\right\|=\|\vec{v}\| & \text { length-preserving }
\end{array}
$$

2. compute the transpose of the following two matrices

$$
\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right)^{\top} \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)^{\top}
$$

quick recap:

1. What is an orthogonal matrix?
also known as "unitary" matrix

- square matrix whose rows \& columns are orthogonal unit vectors

$$
B=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{b}_{1} & \overrightarrow{b_{2}} & \cdots & \overrightarrow{b_{n}} \\
\mid & \mid & & \mid
\end{array}\right)
$$

$$
\begin{array}{ll}
B B^{T}=B^{T} B=I & \text { transpose is its } \\
B^{-1}=B^{T} & \text { inverse }
\end{array}
$$

$$
\|B \vec{v}\|=\left\|B^{T} \vec{v}\right\|=\|\vec{v}\| \text { length-preserving }
$$

2. compute the transpose of the following two matrices

$$
\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right)^{\top}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)^{\top}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

one weird fact about transposes \& inverses

- transpose of a product:

$$
(A B)^{T}=B^{T} A^{T}
$$

(we can verify this with
a simple example)

one weird fact about transposes \& inverses

- transpose of a product:

$$
(A B)^{T}=B^{T} A^{T}
$$

(we can verify this with
a simple example)

- inverse of a product:

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Singular Value Decomposition (SVD)

$$
\begin{aligned}
& A=U S V^{\top} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
u_{1} & u_{2} & u_{n} \\
1 & 1 & \\
1
\end{array}\right]} \\
& \text { left singlar vedors } \\
& \text { (orthogonal/minitirs) } \\
& u^{\top} u=u u^{\top}=I
\end{aligned}
$$

Singular Value Decomposition (SVD)

$$
\begin{gathered}
A=U S V^{\top} \\
{\left[\begin{array}{lll}
1 & 1 & 1 \\
u_{1} & 1 \\
1 & x_{1} & -n_{1} \\
1 & s_{1}
\end{array}\right]\left[\begin{array}{lll}
s_{1} & s_{2} \\
& & \\
& & s_{n}
\end{array}\right]}
\end{gathered}
$$

left singalar vedoes singalar
(orthoganal/unitiris) values

$$
\begin{aligned}
& u^{\top} u=u u^{\top}=I \quad(\text { all } \geqslant 0) \\
& s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{n}
\end{aligned}
$$

(b) convention)

Singular Value Decomposition (SVD)

$$
\begin{aligned}
& A=U S V^{\top}
\end{aligned}
$$

left singular vedors singular (orthogonal/uniburg) values

$$
\begin{aligned}
& u^{\top} u=u u^{\top}=I \quad(\text { all } \geqslant 0) \\
& s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{n} \\
&(b, \text { convention })
\end{aligned}
$$

conceptual picture

This means we can think of the linear map, $\vec{x} \longrightarrow A \vec{x}$ in terms of the following three steps:

1. rotation (multiplication by V^{\top}, which doesn't change vector length of \vec{x}).
2. stretching along the cardinal axes (where the $i^{\prime} t h$ component is stretched by s_{i}).
3. another rotation (multipication by U).

inverse

$$
A=U S V^{\top}
$$

inverse: $\quad A^{-1}=V S^{-1} U^{\top}$

inverse

let's check: $\quad A^{-1} A=\left(V S^{-1} U^{\top}\right)\left(U S V^{\top}\right)$

$$
\begin{aligned}
& =V S^{-1}\left(U^{\top} U\right) S V^{\top} \\
& =V\left(S^{-1} S\right) V^{\top} \\
& =V V^{\top} \\
& =I
\end{aligned}
$$

inverse: $\quad A^{-1}=V S^{-1} U^{\top}$
can you check: $A A^{-1}$
mapping by A and its inverse

$$
\vec{y}=A \vec{x}
$$

$$
A^{-1} \vec{y}=\vec{x}
$$

Pseudo-inverse

$$
A=U S V^{\top}
$$

If we have k non-zero singular values,
pseudo-inverse: $A^{\dagger}=V S^{\dagger} U{ }^{\top}$

Rank

$\operatorname{rank}(A)=\#$ non-zero singular values

$$
\begin{gathered}
\text { if } s_{1}, \ldots, s_{k}>0 \\
\text { and } s_{k+1}, \ldots, s_{n}=0 \\
\text { rank }=k
\end{gathered}
$$

Summary

- transpose of a product
- inverse of a product
- singular value decomposition (SVD)
- inverse
- pseudo-inverse
- rank

