Row / Column / Null Spaces

Jonathan Pillow

Mathematical Tools for Neuroscience (NEU 314) Fall, 202I
lecture 6

reminder: orthonormal basis

- basis composed of orthogonal unit vectors

- Two different orthonormal bases for the same vector space

Orthogonal matrix

- Square matrix whose columns (and rows) form an orthonormal basis (i.e., are orthogonal unit vectors)
$B=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ \vec{b}_{1} & \vec{b}_{2} & \cdots & \vec{b}_{n} \\ \mid & \mid & & \mid\end{array}\right) \quad \begin{aligned} & \vec{b}_{i} \cdot \vec{b}_{i}=1 \\ & \vec{b}_{i} \cdot \vec{b}_{j}=0, i \neq j\end{aligned}$

Properties: $\quad B B^{T}=B^{T} B=I$

$$
B^{-1}=B^{T}
$$

$\|B \vec{v}\|=\left\|B^{T} \vec{v}\right\|=\|\vec{v}\|$ length-preserving

- 2D example: rotation matrix

$e \mathrm{eg} \mathrm{O}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
[flesh out on board]

Rank

- the rank of a matrix is equal to
- \# of linearly independent columns
- \# of linearly independent rows
(remarkably, these are always the same)
equivalent definition:
- the rank of a matrix is the dimensionality of the vector space spanned by its rows or its columns
for an $m \times n$ matrix $A: \quad \operatorname{rank}(\mathrm{A}) \leq \min (\mathrm{m}, \mathrm{n})$
(can't be greater than \# of rows or \# of columns)

Rank

Q: what is the rank of the outer product of two vectors?

$$
\operatorname{rank}\left(\vec{a} \vec{b}^{\top}\right)
$$

One way to see this:

in an outer product, every column is a scaled copy of \vec{a}

$$
\begin{aligned}
& \vec{a} \vec{b}^{\top}=\left[\begin{array}{ccc}
\mid & \mid \\
\overrightarrow{\mathrm{a}} \cdot \mathrm{~b}_{1} & \cdots & \overrightarrow{\mathrm{a}} \mathrm{~b}_{n} \\
\mid & &
\end{array}\right] \\
& \text { and every row is a scaled copy of } \overrightarrow{\mathrm{b}} \\
& \vec{a} \vec{b}^{\top}=\left[\begin{array}{cc}
\mathrm{a}_{1} \cdot & \overrightarrow{\mathrm{~b}}- \\
\vdots \\
\mathrm{a}_{\mathrm{m}} \cdot & \overrightarrow{\mathrm{~b}}
\end{array}\right]
\end{aligned}
$$

Column space, Row Space \& Null Space

- 3 vector spaces associated with any matrix

column space of a matrix W:

vector space spanned by the columns of W

- these vectors live in an n-dimensional space, so the column space is a subspace of \mathbf{R}^{n}

row space of a matrix W:

- these vectors live in an m-dimensional space, so the column space is a subspace of \mathbf{R}^{m}

null space of a matrix W:

$n \times m$ matrix

- the vector space consisting
of all vectors that are
orthogonal to the rows of $W$$\binom{\square}{\square}$

null space of a matrix W:

$n \times m$ matrix

- the vector space consisting
of all vectors that are
orthogonal to the rows of $W$$\left(\begin{array}{c}r_{1} \\ \vdots \\ \\ r_{n}\end{array}\right)$
- equivalently: the null space of W is the vector space of all vectors x such that $W x=0$.

Q: is it obvious that the span of vectors orthogonal to to the rows of W is a vector space?

null space of a matrix W:

$$
\mathrm{W}=\left(\square \mathrm{v}_{1} \longrightarrow\right)
$$

null space of a matrix W :

$$
\mathrm{W}=\left(\square \mathrm{v}_{1} \longrightarrow\right)
$$

null space of a matrix W:

$$
n \times m \text { matrix }
$$

- equivalently: the null space of W is the vector space of all vectors x such that $W x=0$.
- the null space is therefore entirely orthogonal to the row space of a matrix.
- Together, row space \& null space make up all of \mathbf{R}^{m}

Linearity and Linear Systems

A linear system is a kind of mapping from vectors \vec{x} to vectors \vec{y}

$$
f(\vec{x}) \longrightarrow \vec{y}
$$

such that the following two properties hold:

1. homogeneity ("scalar multiplication")

$$
f(a x)=a f(x)
$$

2. additivity

$$
f\left(\vec{x}_{1}+\vec{x}_{2}\right)=f\left(\vec{x}_{1}\right)+f\left(\vec{x}_{2}\right)
$$

Linearity and Linear Systems

(equivalent definition)
A linear system is a kind of mapping from vectors \vec{x} to vectors \vec{y}

$$
f(\vec{x}) \longrightarrow \vec{y}
$$

that obeys the principle of linear superposition:

$$
f\left(a \vec{x}_{1}+b \vec{x}_{2}\right)=a f\left(\vec{x}_{1}\right)+b f\left(\vec{x}_{2}\right)
$$

for all scalars (a, b) and vectors ($\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}$)
in other words: "the function of a linear combination is a linear combination of the function values"

Linearity and Linear Systems

Question:

is the function $f(x)=a x+b$ a linear function?
why or why not?

Linearity and Linear Systems

FUN FACT:

Any linear system can be written as a matrix equation:

$$
f(\vec{x})=A \vec{x}
$$

for some matrix A.

Summary

- orthogonal matrix
- rotation matrix
- rank
- column \& row spaces
- null space
- linear systems
- linear superposition

