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reminder: orthonormal basis
• basis composed of orthogonal unit vectors

is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).
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A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:
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• Two different orthonormal bases for 
the same vector space
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Orthogonal matrix
• Square matrix whose columns (and rows) form an 

orthonormal basis (i.e., are orthogonal unit vectors)

Properties:

length-preserving

3



• 2D example: rotation matrix

nothing. This matrix is called the identity, denoted I .

If an element of the diagonal is zero, then
the associated axis is annihilated. The set
of vectors that are annihilated by the matrix
form a vector space [prove], which is called
the row nullspace, or simply the nullspace
of the matrix.
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Another implication of a zero diagonal element is that the matrix cannot “reach” the entire
output space, but only a proper subspace. This space is called the column space of the matrix,
since it is spanned by the matrix columns. The rank of a matrix is just the dimensionality of
the column space. A matrix is said to have full rank if its rank is equal to the smaller of its two
dimensions.

An orthogonal matrix is a square matrix
whose columns are pairwise orthogonal unit
vectors. Remember that the columns of a
matrix describe the response of the system to
the standard basis. Thus an orthogonal ma-
trix maps the standard basis onto a new set
of N orthogonal axes, which form an alter-
native basis for the space. This operation is
a generalized rotation, since it corresponds to
a physical rotation of the space and possibly
negation of some axes. Thus, the product of
two orthogonal matrices is also orthogonal.
Note that an orthogonal is full rank (it has no
nullspace), since a rotation cannot annihilate
any non-zero vector.
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Linear Systems of Equations

The classic motivation for the study of linear algebra is the solution of sets of linear equations
such as

a11v1 + a12v2 + . . . + a1NvN = b1

a21v1 + a22v2 + . . . + a2NvN = b2

...

aM1v1 + aM2v2 + . . . + aMNvN = bM
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[flesh out on board]
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Rank
• the rank of a matrix is equal to

• # of linearly independent columns
• # of linearly independent rows

(remarkably, these are always the same)

• the rank of a matrix is the dimensionality of the vector space 
spanned by its rows or its columns

equivalent definition:

for an m x n matrix A: rank(A) ≤ min(m,n)

(can’t be greater than # of rows or # of columns)
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Rank

Q: what is the rank of the outer product of 
two vectors?
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One way to see this:

every column is a scaled copy of a

= a a…• b1  bn

and every row is a scaled copy of b

in an outer product, 

=
 b 

 b 

…

a1•

am•
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Column space, Row Space &  Null Space

• 3 vector spaces associated with any  matrix
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column space of a matrix W:

n × m matrix 

vector space spanned by the 
columns of W c1 cm…

• these vectors live in an n-dimensional space, so the column 
space is a subspace of Rn   
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row space of a matrix W:

n × m matrix 

vector space spanned by the rows 
of W

• these vectors live in an m-dimensional space, so the column 
space is a subspace of Rm   

 r1 

 rn 

…
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null space of a matrix W:

• the vector space consisting 
of all vectors that are 

orthogonal to the rows of W

 r1 

 rn 

…

n × m matrix 
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null space of a matrix W:

 r1 

 rn 

…

• equivalently: the null space of W is the vector space 
of all vectors x such that Wx = 0.

n × m matrix 

Q: is it obvious that the span of vectors orthogonal to 
to the rows of W is a vector space?

Answer:  on board

• the vector space consisting 
of all vectors that are 

orthogonal to the rows of W
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null space of a matrix W:
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is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation
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is αn = 0 (for all n).
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A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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null space of a matrix W:
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null space

basis for the
null space

is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation
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αn!vn = 0

is αn = 0 (for all n).
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A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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ê1 =















1
0
0
...
0















, ê2 =
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null space of a matrix W:

• the null space is therefore entirely orthogonal to 
the row space of a matrix.

 r1 

 rn 

…

• equivalently: the null space of W is the vector space 
of all vectors x such that Wx = 0.

n × m matrix 

• Together, row space & null space  make up all of Rm

• the vector space consisting 
of all vectors that are 

orthogonal to the rows of W
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Linearity and Linear Systems

1. homogeneity (“scalar multiplication”)

Mathematical Tools for Neuroscience (NEU 314)

Princeton University, Fall 2016

Jonathan Pillow

Lecture 8 notes:
Linear systems & SVD

First topic: null space. (See slides from previous lecture).

1 Linearity and Linear Systems

Linear system is a kind of mapping f(~x) �! ~y that has the following two properties:

1. homogeneity (“scalar multiplication”):

f(ax) = af(x)

2. additivity:

f(~x1 + ~x2) = f(~x1) + f(~x2)

Of course we can combine these two properties into a single requirement and say: f is a linear

function if and only if it obeys the principal of superposition:

f(a~x+ 1 + b~x2) = af(~x) + 1 + bf(~x2)

.

General rule: we can write any linear function in terms of a matrix operation:

f(~x) = A~x

for some matrix A.

Question: is the function f(x) = ax+ b a linear function? Why or why not?

2 Singular Value Decomposition

The singular vector decomposition allows us to write any matrix A as

A = USV >,

1

2. additivity
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A linear system is a kind of mapping from vectors x to vectors y
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Linear system is a kind of mapping f(~x) �! ~y that has the following two properties:

1. homogeneity (“scalar multiplication”):

f(ax) = af(x)

2. additivity:

f(~x1 + ~x2) = f(~x1) + f(~x2)

Of course we can combine these two properties into a single requirement and say: f is a linear

function if and only if it obeys the principal of superposition:
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2 Singular Value Decomposition

The singular vector decomposition allows us to write any matrix A as

A = USV >,

1

such that the following two properties hold: 
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(equivalent definition)

Linearity and Linear Systems

that obeys the principle of linear superposition:

for all scalars (a, b) and vectors ( x1, x2 )

in other words: “the function of a linear combination is a 
linear combination of the function values”

A linear system is a kind of mapping from vectors x to vectors y
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First topic: null space. (See slides from previous lecture).

1 Linearity and Linear Systems

Linear system is a kind of mapping f(~x) �! ~y that has the following two properties:

1. homogeneity (“scalar multiplication”):

f(ax) = af(x)

2. additivity:

f(~x1 + ~x2) = f(~x1) + f(~x2)

Of course we can combine these two properties into a single requirement and say: f is a linear

function if and only if it obeys the principal of superposition:

f(a~x+ 1 + b~x2) = af(~x) + 1 + bf(~x2)

.

General rule: we can write any linear function in terms of a matrix operation:

f(~x) = A~x

for some matrix A.

Question: is the function f(x) = ax+ b a linear function? Why or why not?

2 Singular Value Decomposition

The singular vector decomposition allows us to write any matrix A as

A = USV >,

1

17



Linearity and Linear Systems

Question: 

Mathematical Tools for Neuroscience (NEU 314)

Princeton University, Fall 2016

Jonathan Pillow

Lecture 8 notes:
Linear systems & SVD

First topic: null space. (See slides from previous lecture).

1 Linearity and Linear Systems

Linear system is a kind of mapping f(~x) �! ~y that has the following two properties:

1. homogeneity (“scalar multiplication”):

f(ax) = af(x)

2. additivity:

f(~x1 + ~x2) = f(~x1) + f(~x2)

Of course we can combine these two properties into a single requirement and say: f is a linear

function if and only if it obeys the principal of superposition:

f(a~x+ 1 + b~x2) = af(~x) + 1 + bf(~x2)

.

General rule: we can write any linear function in terms of a matrix operation:

f(~x) = A~x

for some matrix A.
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why or why not?
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Linearity and Linear Systems

FUN FACT:

Any linear system can be written as a matrix equation:
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1. homogeneity (“scalar multiplication”):

f(ax) = af(x)
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function if and only if it obeys the principal of superposition:

f(a~x+ 1 + b~x2) = af(~x) + 1 + bf(~x2)

.

General rule: we can write any linear function in terms of a matrix operation:

f(~x) = A~x

for some matrix A.

Question: is the function f(x) = ax+ b a linear function? Why or why not?

2 Singular Value Decomposition

The singular vector decomposition allows us to write any matrix A as

A = USV >,

1

for some matrix A.

Excercise: let’s check that Ax satistfies the definition of a linear function.
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Summary

• orthogonal matrix
• rotation matrix
• rank
• column & row spaces
• null space
• linear systems
• linear superposition
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