More Matrix Stuff
 (Multiplication, Outer product, Transpose, Identity, Inverse)

Jonathan Pillow

Mathematical Tools for Neuroscience (NEU 314) Fall, 202I
lecture 5

Practice quiz

$$
v_{1}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

$$
\mathrm{V}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

1. Are v_{1} and v_{2} linearly independent?
2. Are v_{1} and v_{2} orthogonal?
3. Compute the component v_{1} in the direction of v_{2}
4. Compute the component of v_{1} that is orthogonal to v_{2}
5. Compute v_{1} times the matrix:

$$
\left[\begin{array}{llll}
5 & 3 & 2 & 6 \\
2 & 6 & 1 & 1
\end{array}\right]
$$

Quick Recap:

matrix-vector multiplication

matrix-vector multiplication

$$
\vec{u}=W \vec{v}
$$

One perspective: dot product with each row:

matrix-vector multiplication

another perspective: linear combination of columns
$\overrightarrow{\mathbf{u}} \quad \mathbf{W} \quad \overrightarrow{\mathbf{v}}$
$\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]=\left[\begin{array}{ccc}\mid & & \mid \\ \overrightarrow{\mathrm{c}_{1}} & \ldots & \overrightarrow{c_{m}} \\ \mid & & \mid\end{array}\right]\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{m}\end{array}\right]$

$$
\left.=v_{1} \cdot \overrightarrow{\overrightarrow{c_{1}}}+v_{2} \cdot \frac{\mid}{\overrightarrow{c_{2}}}+\ldots+v_{\mathrm{m}} \cdot \overrightarrow{\vec{c}_{\mathrm{m}}} \right\rvert\,
$$

Matrix-Matrix Multiplication

AB

A times each column of B

Matrix-Matrix Multiplication

AB

$\left[\begin{array}{c}-\overrightarrow{a_{1}}-\overrightarrow{a_{2}}- \\ \vdots \\ \overrightarrow{a_{m}}\end{array}\right]\left[\begin{array}{llll}\mid & & \\ \overrightarrow{b_{1}} & \overrightarrow{b_{2}} & \cdots & \overrightarrow{b_{k}} \\ \mid & & \end{array}\right]=\left[\begin{array}{cccc}a_{1} \cdot b_{1} & a_{1} \cdot b_{2} & \cdots & a_{1} \cdot b_{k} \\ a_{2} \cdot b_{1} & a_{2} \cdot b_{2} & & \\ \vdots & & \ddots & \\ a_{m} \cdot b_{1} & & & a_{m} \cdot b_{k}\end{array}\right]$
dot products of rows of A with columns of B

Matrix-Matrix Multiplication

- \# columns of A must match \# of rows of B

"Matrix Multiplication"

matrix times a vector: this is just a special case where $\mathrm{k}=1$

Matrix Multiplication

short-fat matrix times a vector: short vector!

Matrix Multiplication

short-fat matrix times tall-skinny matrix: short-skinny matrix

Matrix Multiplication

$$
\vec{a}^{\top} \vec{b}
$$

$$
1 \times n \quad n \times 1
$$

$$
1\left[\begin{array}{ll}
\mathrm{n} & \\
& \\
& \\
\\
& \\
\end{array}\right]
$$

what's this one called?

Matrix Multiplication

what shape?

Matrix Multiplication

$$
\vec{a} \vec{b}^{\top}
$$

=

$$
\mathrm{m} \times 1 \quad(1 \times \mathrm{k}
$$

called the outer product of two vectors

Test yourself: matrix multiplication

1) $\left[\begin{array}{ll}5 & 3 \\ 2 & 6\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
2) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}3 & 5 \\ 11 & -2\end{array}\right]$
3) $\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{cc}1 & 4 \\ 1 & 3 \\ 1 & 10\end{array}\right]$
4) $\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 5\end{array}\right]$
5) $\left[\begin{array}{c}2 \\ -1 \\ 5\end{array}\right]\left[\begin{array}{lll}1 & 3 & 5\end{array}\right] \begin{aligned} & \text { (outer } \\ & \text { product) }\end{aligned}$

Matrix Multiplication

1. Associative

$$
\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}
$$

2. Not (in general) commutative

$\mathrm{AB} \neq \mathrm{BA}$

(One way in which matrix multiplication is unlike scalar multiplication!)

transpose A^{T}

- flipping around the diagonal
- rows become columns; columns become rows

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad \begin{array}{l}
\text { square } \\
\text { matrix }
\end{array} \\
& \left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad \text { non-square }
\end{aligned}
$$

the identity matrix I

- special matrix of all zeros except for 1 on the diagonal

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(3×3 identity matrix)

Q: what happens if we multiply a vector by the identity matrix?

inverse A^{-1}

- If A is a square matrix, its inverse A^{-1} satisfies:

$$
A A^{-1}=A^{-1} A=I
$$

- however: not all matrices are invertible (ie "have an inverse") (for starters, A must be square...)
- in python: np.linalg.inv(A)

(Square) Matrix Equation

assume square
and invertible

$$
A \vec{x}=\vec{b}
$$

left-multiply both sides by inverse of A :

$$
\begin{aligned}
A^{-1} A \vec{x} & =A^{-1} \vec{b} \\
I \vec{x} & =A^{-1} \vec{b} \\
\vec{x} & =A^{-1} \vec{b}
\end{aligned}
$$

Summary

- Matrix multiplication
- outer product
- transpose
- identity matrix
- inverse of a matrix

