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linear projection (review)

Note that the result is a scalar.

This operation has an equivalent geometric
definition (general proof a bit tricky):

!v · !w ≡ ||!v|| ||!w|| cos (φvw),

where φvw is the angle between the two vec-
tors. Thus, the inner product of two perpen-
dicular vectors is 0, the inner product of two
parallel vectors is the product of their norms,
and the inner product of a vector with itself
is the square of its norm.
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The inner product is distributive over addition: !v · (!w + !y) = !v · !w +!v · !y. The symmetry of the
definitionmeans that the operation is also commutative (i.e., order doesn’t matter): !v· !w = !w·!v.

Despite this symmetry, it is often useful to think of one of the vectors in an inner product as
an operator, and the other as an input. For example, the inner product of any vector !v with the
vector:

!w = ( 1

N

1

N
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· · · 1
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)

gives the average of the components of !v. The inner product of vector !v with the vector

!w = ( 1 0 0 · · · 0 )

is the first component, v1.

Furthermore, the inner product of a vector
!v with a unit vector û has a nice geometric
interpretation. The cosine equation implies
that the inner product is the length of the
component of !v lying along the line in the di-
rection of û. This component, which is writ-
ten as (!v · û)û, is referred to as the projection
of the vector onto the line. The difference (or
residual) vector, !v − (!v · û)û, is the compo-
nent of !v perpendicular to the line. Note that
the residual vector is always perpendicular
to the projection vector, and that their sum is
!v [prove].
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• intuitively, dropping a vector down onto a linear surface 
at a right angle


• if u is a unit vector,

length of projection is 

• for non-unit vector, length of projection = 

}

component of v 
in direction of u
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orthogonality (review)
• two vectors are orthogonal (or “perpendicular”) if their 

dot product is zero:

Note that the result is a scalar.

This operation has an equivalent geometric
definition (general proof a bit tricky):

!v · !w ≡ ||!v|| ||!w|| cos (φvw),

where φvw is the angle between the two vec-
tors. Thus, the inner product of two perpen-
dicular vectors is 0, the inner product of two
parallel vectors is the product of their norms,
and the inner product of a vector with itself
is the square of its norm.
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The inner product is distributive over addition: !v · (!w + !y) = !v · !w +!v · !y. The symmetry of the
definitionmeans that the operation is also commutative (i.e., order doesn’t matter): !v· !w = !w·!v.

Despite this symmetry, it is often useful to think of one of the vectors in an inner product as
an operator, and the other as an input. For example, the inner product of any vector !v with the
vector:

!w = ( 1

N

1

N

1

N
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N
)

gives the average of the components of !v. The inner product of vector !v with the vector

!w = ( 1 0 0 · · · 0 )

is the first component, v1.

Furthermore, the inner product of a vector
!v with a unit vector û has a nice geometric
interpretation. The cosine equation implies
that the inner product is the length of the
component of !v lying along the line in the di-
rection of û. This component, which is writ-
ten as (!v · û)û, is referred to as the projection
of the vector onto the line. The difference (or
residual) vector, !v − (!v · û)û, is the compo-
nent of !v perpendicular to the line. Note that
the residual vector is always perpendicular
to the projection vector, and that their sum is
!v [prove].
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}

component of v 
in direction of u

component of v 
orthogonal to u

• Can decompose any vector into its component along 
u and its residual (orthogonal) component. 
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linear combination
is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).

1v

2v  

3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:
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• scaling and summing applied to a group of vectors
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is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).
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3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:

ê1 =
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• a group of vectors is linearly dependent 
if one can be written as a linear 
combination of the others

linear dependence & independence
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linear dependence & independence
is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).
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A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:

ê1 =
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• a group of vectors is linearly dependent 
if one can be written as a linear 
combination of the others

The vectors v1, v2, and v3 and linearly 
dependent because v3 can be written as 
a linear combination of v1 and v2:
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is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).

1v

2v  

3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:

ê1 =


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• a group of vectors is linearly independent if 
none of them can be written as a linear 
combination of the others 
 
(ie, is not linearly dependent).

linear dependence & independence
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Question:

• if I have two vectors that are linearly dependent, 
what does that imply about them?
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• 2 vectors not in the same line: 
linearly independent

• 2 vectors in the same line: 
linearly dependent

• 3 vectors not in the same plane: 
linearly independent

• 3 vectors in the same (2D) plane: 
linearly dependent

is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).
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3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:

ê1 =















1
0
0
...
0















, ê2 =















0
1
0
...
0















, . . . êN =
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• 4 vectors not in the same 3D volume: 
linearly independent

• 4 vectors in the same (3D) volume: 
linearly dependent
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Test yourself: linearly dependent or independent?

1
21) 1

2
3
6

3
42) 

3) -2
1
-5

6
-3
15

4) 1
2

3
4

7
-1

5) 6) 0
1
0

2
0
0

0
0
7

1
2
3
4
5

0
0
0
0
0

(note: any set 
including the “0” 
vector is linearly 
dependent!)
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from linear combinations: vector space

is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).

1v

2v  

3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:

ê1 =
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• set of all points that can be obtained by linear 
combinations of some set of basis vectors

2D vector space formed by 
all linear combinations 
ofbasis vectors v1 and v2

1D vector space generated by 
scalar multiples of a single 

basis vector

is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).
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3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:

ê1 =
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basis & span
• basis - set of vectors that can form (via linear combination) 

all points in a vector space

• span (noun) - the vector space that results from all linear 
combinations of a set of vectors

So we would say:
• V1 and V2 form a basis for the vector space R2

• V1 and V2 span the vector space R2
          or 
• The span of V1 and V2 is the vector space R2

is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).

1v

2v  

3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:

ê1 =
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R2 = fancy name for “the 2D Euclidean plane”

• span (verb) - to form (via linear combination) all points in 
a vector space.

R2
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orthonormal basis
• basis composed of orthogonal unit vectors

is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).

1v

2v  

3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:
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
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• Two different orthonormal bases for 
the same vector space

V1 • V1 = 1

V2 • V2 = 1

V1 • V2 = 0
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subspace

is clearly a vector space [verify].

Working backwards, a set of vectors is said
to span a vector space if one can write any
vector in the vector space as a linear com-
bination of the set. A spanning set can be
redundant: For example, if two of the vec-
tors are identical, or are scaled copies of each
other. This redundancy is formalized by
defining linear independence. A set of vec-
tors {!v1,!v2, . . .!vM} is linearly independent if
(and only if) the only solution to the equation

∑

n

αn!vn = 0

is αn = 0 (for all n).

1v

2v  

3v

A basis for a vector space is a linearly in-
dependent spanning set. For example, con-
sider the plane of this page. One vector is
not enough to span the plane. Scalar multi-
ples of this vector will trace out a line (which
is a subspace), but cannot “get off the line”
to cover the rest of the plane. But two vec-
tors are sufficient to span the entire plane.
Bases are not unique: any two vectors will
do, as long as they don’t lie along the same
line. Three vectors are redundant: one can
always be written as a linear combination of
the other two. In general, the vector space
RN requires a basis of size N .
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Geometrically, the basis vectors define a set
of coordinate axes for the space (although
they need not be perpendicular). The stan-
dard basis is the set of unit vectors that lie
along the axes of the space:

ê1 =


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
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• subspace - a vector space contained inside 
another vector space

The 1D vector space spanned by 
v1 is a subspace of the vector 
space R2 (the full 2D plane).

R2
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• “The vector v1 spans a 1D 
vector space”.


• “The vector v1 provides a basis 
for a 1D vector space”.


• “That 1D vector space is a 
subspace of R2, the 2D plane.”

so we’d say, for example:

the vector space
(aka “the span of v1”)

R2
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summary so far
• linear projection & orthogonality (review)

• linear combination
• linear independence / dependence
• vector space
• subspace
• basis
• span 
• orthonormal basis
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matrix
• a rectangular array of numbers
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matrix

n × m matrix 

• a rectangular array of numbers

# make a 3 x 4 matrix
W = np.array([[1, 7, 3, 0], [2, -1, 2, -1], [1, 1, 1, 1]])

in python:
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matrix

m column vectors

can think of it as:

c1 cm…
 r1 

 rn 

…

or 

n row vectors

• a rectangular array of numbers

n × m matrix 

19



we will often refer to a matrix as

“tall and skinny”

(but it’s not a value judgment, obv!)

n

m A

n

m A

or “short and fat”
# rows > # columns # rows < # columns

20



One perspective: dot product with each row:

matrix-vector multiplication
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another perspective: linear combination of columns

…

v1

vm

• 
• 

•c1 cm

u1

un

• 
• 

•

c1 c2 cmv1• +  v2• + … + vm•=

matrix-vector multiplication
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Test yourself: matrix-vector multiplication

5
2

1) 0
1

3
6

1
0

2) 

3) -2
1
-5

6
-3
15

4) 1
2

3
4

7
-1

5) 6) 

Q1: What do you notice about the relationship between the size of 
the matrix and the size of the vector?

1
1

3
11

2
1

0
0
7

diagonal matrix

3
0
0

0
-2
0

0
0
5

1
1
1

3
0
0

0
-2
0

0
0
5

x1
x2
x3

Q2: what does multiplying by a diagonal matrix do to a vector?
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matrix-vector multiplication
you will never (or rarely) need to do this by hand!

# make a 3 x 4 matrix
W = np.array([[1, 7, 3, 0], [2, -1, 2, -1], [1, 1, 1, 1]])

in python:

# make a 4 x 1 matrix (ie, a vector)
v = np.array([[1], [2], [-3], [0]])

# Compute W times v (matrix-vector product)
u = W @ v

note special symbol ‘@‘ 
for matrix multiply!

Q: what size is u?
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summary

• linear combination
• linear dependence / linear independence
• vector space
• subspace
• basis
• orthonormal basis
• span 
• matrix-vector multiplication
• diagonal matrix (matrix with entries only along the diagonal)
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