Linear Combinations \& Vector Spaces

Lecture 3
Thursday (9/9)
Math Tools for Neurosience (NEU 3I4)

Jonathan Pillow
Princeton Neuroscience Institute

linear projection (review)

- intuitively, dropping a vector down onto a linear surface at a right angle
- if u is a unit vector, length of projection is $\vec{v} \cdot \vec{u}$

- for non-unit vector, length of projection $=\vec{v} \cdot\left(\frac{1}{\|\vec{u}\|} \vec{u}\right)$

orthogonality (review)

- two vectors are orthogonal (or "perpendicular") if their dot product is zero: $\vec{v} \cdot \vec{w}=0$

- Can decompose any vector into its component along u and its residual (orthogonal) component.

linear combination

- scaling and summing applied to a group of vectors

$$
a \vec{v}_{1}+b \vec{v}_{2}=\vec{v}_{3}
$$

linear dependence \& independence

- a group of vectors is linearly dependent if one can be written as a linear combination of the others

linear dependence \& independence

- a group of vectors is linearly dependent if one can be written as a linear combination of the others

The vectors $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3} and linearly dependent because v_{3} can be written as a linear combination of v_{1} and v_{2} :

$$
a \vec{v}_{1}+b \vec{v}_{2}=\vec{v}_{3}
$$

linear dependence \& independence

- a group of vectors is linearly independent if none of them can be written as a linear combination of the others
(ie, is not linearly dependent).

Question:

- if I have two vectors that are linearly dependent, what does that imply about them?
- 2 vectors in the same line: linearly dependent
- 2 vectors not in the same line: linearly independent
- 3 vectors in the same (2D) plane: linearly dependent
- 3 vectors not in the same plane: linearly independent

- 4 vectors in the same (3D) volume: linearly dependent
- 4 vectors not in the same 3D volume: linearly independent

Test yourself: linearly dependent or independent?

1) $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}3 \\ 6\end{array}\right]$
2) $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}3 \\ 4\end{array}\right]$
3) $\left[\begin{array}{c}-2 \\ 1 \\ -5\end{array}\right]\left[\begin{array}{c}6 \\ -3 \\ 15\end{array}\right]$
4) $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}3 \\ 4\end{array}\right]\left[\begin{array}{c}7 \\ -1\end{array}\right]$
5) $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 7\end{array}\right]$
6) $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
(note: any set including the " 0 " vector is linearly dependent!)

from linear combinations: vector space

- set of all points that can be obtained by linear combinations of some set of basis vectors

1D vector space generated by scalar multiples of a single basis vector

2D vector space formed bs all linear combinations ofbasis vectors v_{1} and v_{2}

basis \& span

- basis - set of vectors that can form (via linear combination) all points in a vector space
- span (verb) - to form (via linear combination) all points in a vector space.
- span (noun) - the vector space that results from all linear combinations of a set of vectors

So we would say:

- V_{1} and V_{2} form a basis for the vector space R^{2}
- V_{1} and V_{2} span the vector space R^{2} or

$$
\mathrm{R}^{2}=\text { fancy name for "the 2D Euclidean plane" }
$$

orthonormal basis

- basis composed of orthogonal unit vectors

$$
\begin{aligned}
& V_{1} \cdot V_{1}=1 \\
& V_{2} \cdot V_{2}=1 \\
& V_{1} \cdot V_{2}=0
\end{aligned}
$$

- Two different orthonormal bases for the same vector space

subspace

- subspace - a vector space contained inside another vector space

so we'd say, for example:

- "The vector v_{1} spans a 1D vector space".
- "The vector v_{1} provides a basis for a 1D vector space".
- "That 1D vector space is a subspace of R², the 2D plane."

summary so far

- linear projection \& orthogonality (review)
- linear combination
- linear independence / dependence
- vector space
- subspace
- basis
- span
- orthonormal basis

matrix

- a rectangular array of numbers

matrix

- a rectangular array of numbers

$$
W=\left(\begin{array}{ccc}
w_{11} & \cdots & w_{1 m} \\
\vdots & & \vdots \\
w_{n 1} & \cdots & w_{n m}
\end{array}\right) n \times m \text { matrix }
$$

in python:

```
# make a 3 x 4 matrix
W = np.array([[1, 7, 3, 0], [2, -1, 2, -1], [1, 1, 1, 1]])
```


matrix

- a rectangular array of numbers

$$
W=\left(\begin{array}{ccc}
w_{11} & \cdots & w_{1 m} \\
\vdots & & \vdots \\
w_{n 1} & \cdots & w_{n m}
\end{array}\right){ }_{n \times m \text { matrix }}
$$

can think of it as:
m column vectors

we will often refer to a matrix as

\# rows > \# columns
or
"short and fat"
\# rows < \# columns

(but it's not a value judgment, obv!)

matrix-vector multiplication

$$
\vec{u}=W \vec{v}
$$

One perspective: dot product with each row:

matrix-vector multiplication

another perspective: linear combination of columns

Test yourself: matrix-vector multiplication

1) $\left[\begin{array}{ll}5 & 3 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]$
2) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}3 \\ 11\end{array}\right]$
3) $\left[\begin{array}{cc}-2 & 6 \\ 1 & -3 \\ -5 & 15\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]$
4) $\left[\begin{array}{ccc}1 & 3 & 7 \\ 2 & 4 & -1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 7\end{array}\right]$
5) $\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
6) $\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
diagonal matrix
Q1: What do you notice about the relationship between the size of the matrix and the size of the vector?

Q2: what does multiplying by a diagonal matrix do to a vector?

matrix-vector multiplication

you will never (or rarely) need to do this by hand!
in python:

```
# make a 3 x 4 matrix
W = np.array([[1, 7, 3, 0], [2, -1, 2, -1], [1, 1, 1, 1]])
# make a 4 x 1 matrix (ie, a vector)
v = np.array([[1], [2], [-3], [0]])
# Compute W times v (matrix-vector product)
u = W @ v
    \uparrow
note special symbol `@`
for matrix multiply!
Q: what size is \(u\) ?
```


summary

- linear combination
- linear dependence / linear independence
- vector space
- subspace
- basis
- orthonormal basis
- span
- matrix-vector multiplication
- diagonal matrix (matrix with entries only along the diagonal)

