Linear Combinations & Vector Spaces

Lecture 3 Thursday (9/9) Math Tools for Neurosience (NEU 314)

Jonathan Pillow Princeton Neuroscience Institute

linear projection (review)

 intuitively, dropping a vector down onto a linear surface at a right angle

orthogonality (review)

• two vectors are orthogonal (or "perpendicular") if their dot product is zero: $\vec{v} \cdot \vec{w} = 0$

 Can decompose any vector into its component along u and its residual (orthogonal) component.

linear combination

scaling and summing applied to a group of vectors

linear dependence & independence

 a group of vectors is *linearly dependent* if one can be written as a linear combination of the others

linear dependence & independence

 a group of vectors is *linearly dependent* if one can be written as a linear combination of the others

The vectors v_1 , v_2 , and v_3 and linearly dependent because v_3 can be written as a linear combination of v_1 and $v_{2:}$

$$\left[a\vec{v}_1 + b\vec{v}_2\right] = \vec{v}_3$$

linear dependence & independence

 a group of vectors is *linearly independent* if none of them can be written as a linear combination of the others

(ie, is *not* linearly dependent).

Question:

• if I have two vectors that are linearly *dependent*, what does that imply about them?

- 2 vectors in the same line: linearly dependent
- 2 vectors *not* in the same line: linearly independent

- 3 vectors in the same (2D) plane: linearly dependent
- 3 vectors *not* in the same plane: linearly independent
- 4 vectors in the same (3D) volume:
 linearly dependent
- 4 vectors not in the same 3D volume linearly independent

9

Test yourself: linearly dependent or independent?

1)
$$\begin{bmatrix} 1\\2 \end{bmatrix} \begin{bmatrix} 3\\6 \end{bmatrix}$$

2) $\begin{bmatrix} 1\\2 \end{bmatrix} \begin{bmatrix} 3\\4 \end{bmatrix}$
3) $\begin{bmatrix} -2\\1\\-3 \\ 1-5 \end{bmatrix} \begin{bmatrix} 6\\-3\\15 \end{bmatrix}$
4) $\begin{bmatrix} 1\\2 \end{bmatrix} \begin{bmatrix} 3\\4 \end{bmatrix} \begin{bmatrix} 7\\-1 \end{bmatrix}$
5) $\begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} 2\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\7 \end{bmatrix}$
6) $\begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix} \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$ (note: any set including the "0" vector is linearly dependent!)

from linear combinations: vector space

 set of all points that can be obtained by linear combinations of some set of **basis** vectors

1D vector space generated by scalar multiples of a single basis vector 2D vector space formed by all linear combinations of basis vectors v_1 and v_2

basis & span

- basis set of vectors that can form (via linear combination) all points in a vector space
- span (verb) to form (via linear combination) all points in a vector space.
- span (noun) the vector space that results from all linear combinations of a set of vectors

So we would say: V_1 and V_2 form a <u>pasis</u> for the vector space R^2

V₁ and V₂ <u>span</u> the vector space R² or

The span of V₁ and V₂ is the vector space \mathbb{R}^2

R² = fancy name for "the 2D Euclidean plane"

 \mathcal{V}_2

 \mathbb{R}^2

V

subspace

 subspace - a vector space contained inside another vector space

so we'd say, for example:

- "The vector v₁ spans a 1D vector space".
- "The vector v₁ provides a basis for a 1D vector space".
- "That 1D vector space is a subspace of R², the 2D plane."

summary so far

- linear projection & orthogonality (review)
- linear combination
- linear independence / dependence
- vector space
- subspace
- basis
- span
- orthonormal basis

matrix

• a rectangular array of numbers

matrix

• a rectangular array of numbers

$$W = \begin{pmatrix} w_{11} & \cdots & w_{1m} \\ \vdots & & \vdots \\ w_{n1} & \cdots & w_{nm} \end{pmatrix} \xrightarrow{n \times m \text{ matrix}}$$

in python:

```
# make a 3 x 4 matrix
W = np.array([[1, 7, 3, 0], [2, -1, 2, -1], [1, 1, 1, 1]])
```

matrix

• a rectangular array of numbers

$$W = \begin{pmatrix} w_{11} & \cdots & w_{1m} \\ \vdots & & \vdots \\ w_{n1} & \cdots & w_{nm} \end{pmatrix} \xrightarrow{n \times m \text{ matrix}}$$

can think of it as:

we will often refer to a matrix as

(but it's not a value judgment, obv!)

matrix-vector multiplication

$$\vec{u} = W \vec{v}$$

One perspective: dot product with each row:

matrix-vector multiplication

another perspective: linear combination of columns

Test yourself: matrix-vector multiplication

Q1: What do you notice about the relationship between the size of the matrix and the size of the vector?

Q2: what does multiplying by a diagonal matrix do to a vector?

matrix-vector multiplication

you will never (or rarely) need to do this by hand!

in python:

```
# make a 3 x 4 matrix
   W = np.array([[1, 7, 3, 0], [2, -1, 2, -1], [1, 1, 1]])
   # make a 4 x 1 matrix (ie, a vector)
   v = np.array([[1], [2], [-3], [0]])
   # Compute W times v (matrix-vector product)
   u = W @ v
note special symbol '@'
                                             Q: what size is u?
  for matrix multiply!
```

summary

- linear combination
- linear dependence / linear independence
- vector space
- subspace
- basis
- orthonormal basis
- span
- matrix-vector multiplication
- diagonal matrix (matrix with entries only along the diagonal)