Linear Algebra I: vectors and linear projection

NEU 314: Math Tools for Neurosience
Lecture 2 - Tuesday (9/7)

Jonathan Pillow

course website

http://pillowlab.princeton.edu/teaching/mathtools21fall/

1st quiz Thursday

(but no quiz next week)

Linear algebra

"Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier."

- Glibert Strang, Linear algebra and its applications

today's topics

- vectors (geometric picture)
- vector addition
- scalar multiplication
- vector norm ("L2 norm’)
- unit vectors
- dot product ("inner product")
- linear projection
- orthogonality
- linear combination
- linear independence / dependence

vectors

$$
\vec{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right)
$$

column vector

in python

$$
\vec{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right)
$$

```
# make a 3-component column vector
v = np.array([[3], [1], [-7]])
```

transpose

$$
\begin{aligned}
& \text { \# transpose } \\
& \text { v.T }
\end{aligned}
$$

$$
\vec{v}^{T}=\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{N}
\end{array}\right)
$$

row vector

```
# create row vector directly
v = np.array([[3,1,-7]]) # row vector
# or
v = np.array([3,1,-7]) # 1D vector
```


addition of vectors

$$
\vec{v}+\vec{w}=\binom{v_{1}}{v_{2}}+\binom{w_{1}}{w_{2}}=\binom{v_{1}+w_{1}}{v_{2}+w_{2}}
$$

scalar multiplication

$$
a \vec{v}=a\binom{v_{1}}{v_{2}}=\binom{a v_{1}}{a v_{2}}
$$

vector norm ("L2 norm")

- vector length in Euclidean space

vector norm ("L2 norm")

Exercises compute the vector length (norm of each of the following vectors):
a) $[7,7]$
b) $[5,5,5,5]$
c) $[10,1]$
d) $[5,5,7]$

vector norm ("L2 norm") in python

```
# make a vector
v = np.array([1, 7, 3, 0, 1])
# many equivalent ways to compute norm
np.linalg.norm(v) # built-in function
np.sqrt(np.dot(v,v)) # sqrt of dot product
np.sqrt(v.T @ v) # sqrt of v-tranpose times v
np.sqrt(sum(v * v)) # sqrt of sum of elementwise product
np.sqrt(sum(v ** 2)) # sqrt of v elementwise-squared
# note use of @ and * and **
# @ - gives matrix multiply
# * - gives elementwise multiply
# ** - gives exponentiation ("raising to a power")
```


unit vector

- vector such that $\|\vec{v}\|=1$
- in 2 dimensions

$$
\vec{v}=\binom{\cos \theta}{\sin \theta}
$$

unit circle

unit vector

- vector such that $\|\vec{v}\|=1$
- in n dimensions
$v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}=1$

- sits on the surface of an n-dimensional hypersphere

unit vector

- vector such that $\|\vec{v}\|=1$
- make any vector into a unit vector via

$$
\frac{1}{\|\vec{v}\|} \vec{v}
$$

inner product (aka "dot product")

- produces a scalar from two vectors

$$
\begin{aligned}
& \vec{v} \cdot \vec{w} \\
& \langle\vec{v}, \vec{w}\rangle \\
& v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n} \\
& \|v\|\|w\| \cos \theta \\
& \vec{v}^{T} \vec{w}=\left(\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)
\end{aligned}
$$

inner product (aka "dot product")

Exercises:

$$
\begin{aligned}
\mathrm{v} 1 & =[1,2,3] \\
\mathrm{v} 2 & =[3,2,-1] \\
\mathrm{v} 3 & =[10,0,5]
\end{aligned}
$$

Compute: $\mathrm{v} 1 \cdot \mathrm{v} 2, \mathrm{v} 1 \cdot \mathrm{v} 3, \mathrm{v} 2 \cdot \mathrm{v} 3$

linear projection

- intuitively, dropping a vector down onto a linear surface at a right angle
- if u is a unit vector, length of projection is $\vec{v} \cdot \vec{u}$

linear projection

- intuitively, dropping a vector down onto a linear surface at a right angle
- if u is a unit vector, length of projection is $\vec{v} \cdot \vec{u}$

- for non-unit vector, length of projection $=\vec{v} \cdot\left(\frac{1}{\|\vec{u}\|} \vec{u}\right)$

Linear Projection Exercise

$$
\begin{aligned}
& \mathrm{w}=[2,2] \\
& \mathrm{v} 1=[2,1] \\
& \mathrm{v} 2=[5,0]
\end{aligned}
$$

Compute:
Linear projection of w onto lines defined by v1 and v2

orthogonality

- two vectors are orthogonal (or "perpendicular") if their dot product is zero: $\vec{v} \cdot \vec{w}=0$

orthogonality

- two vectors are orthogonal (or "perpendicular") if their dot product is zero: $\vec{v} \cdot \vec{w}=0$

