Linear Algebra I:
 vectors and linear projection

NEU 314: Math Tools for Neurosience

Lecture 2 - Tuesday (9/7)

Jonathan Pillow
course website

http://pillowlab.princeton.edu/teaching/mathtools21fall/

1st quiz Thursday

(but no quiz next week)
Linear algebra

“Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier.”

- Glibert Strang, *Linear algebra and its applications*
today’s topics

• vectors (geometric picture)
 • vector addition
 • scalar multiplication
• vector norm (“L2 norm”)
• unit vectors
• dot product (“inner product”)
• linear projection
• orthogonality
• linear combination
• linear independence / dependence
A Geometric Review of Linear Algebra

The following is a compact review of the primary concepts of linear algebra. The order of presentation is unconventional, with emphasis on geometric intuition rather than mathematical formalism. For more thorough coverage, I recommend Linear Algebra and Its Applications by Gilbert Strang, Academic Press, 1980.

Vectors (Finite-Dimensional)

A vector is an ordered collection of N numbers. The numbers are called the components of the vector, and N is the dimensionality of the vector. We typically imagine that these components are arranged vertically (a "column" vector):

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix}$$

Vectors of dimension 2 or 3 can be graphically depicted as arrows. Vectors of higher dimension can be illustrated using a "spike plot".

The norm (or magnitude) of a vector is defined as:

$$||\vec{v}|| = \sqrt{\sum v_n^2}.$$ Geometrically, this corresponds to the length of the vector. A vector containing all zero components has zero norm,

• Author: Eero Simoncelli, Center for Neural Science, and Courant Institute of Mathematical Sciences.
• Send corrections or comments to eero.simoncelli@nyu.edu
The following is a compact review of the primary concepts of linear algebra. The order of presentation is unconventional, with emphasis on geometric intuition rather than mathematical formalism. For more thorough coverage, I recommend "Linear Algebra and Its Applications" by Gilbert Strang, Academic Press, 1980.

Vectors (Finite-Dimensional)

A vector is an ordered collection of \(N\) numbers. The numbers are called the components of the vector, and \(N\) is the dimensionality of the vector. We typically imagine that these components are arranged vertically (a "column" vector):

\[
\vec{v} = \begin{pmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_N
\end{pmatrix}
\]

Vectors of dimension 2 or 3 can be graphically depicted as arrows. Vectors of higher dimension can be illustrated using a "spike plot".

The norm (or magnitude) of a vector is defined as:

\[
||\vec{v}|| = \sqrt{\sum_{n} v_n^2}
\]

Geometrically, this corresponds to the length of the vector. A vector containing all zero components has zero norm.

\[\begin{align*}
\text{transpose} & \quad \vec{v}^T = (v_1 \quad v_2 \quad \cdots \quad v_N) \\
\text{row vector} & \quad \text{# create row vector directly} \\
& \quad \text{# or} \\
& \quad \text{v = np.array([[3,1,-7]])} \\
& \quad \text{v = np.array([[3,1,-7]])} \\
& \quad \text{v = np.array([3,1,-7])} \\
& \quad \text{# 1D vector}
\end{align*}\]
addition of vectors

\[\vec{v} + \vec{w} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \end{pmatrix} \]
scalar multiplication

\[a\vec{v} = a \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} av_1 \\ av_2 \end{pmatrix} \]
vector norm ("L2 norm")

- vector length in Euclidean space

In 2-D:

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2}$$

In n-D:

$$\|\vec{v}\| = \sqrt{v_1^2 + \cdots + v_n^2}$$
vector norm ("L2 norm")

Exercises compute the vector length (norm of each of the following vectors):

a) [7, 7]
b) [5,5,5,5]
c) [10, 1]
d) [5,5,7]
vector norm ("L2 norm")
in python

make a vector
v = np.array([1, 7, 3, 0, 1])

many equivalent ways to compute norm
np.linalg.norm(v) # built-in function
np.sqrt(np.dot(v,v)) # sqrt of dot product
np.sqrt(v.T @ v) # sqrt of v-tranpose times v
np.sqrt(sum(v * v)) # sqrt of sum of elementwise product
np.sqrt(sum(v ** 2)) # sqrt of v elementwise-squared

note use of @ and * and **
@ - gives matrix multiply
* - gives elementwise multiply
** - gives exponentiation ("raising to a power")
unit vector

- vector such that $||\vec{v}|| = 1$

- in 2 dimensions

$\vec{v} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$

$\cos^2 \theta + \sin^2 \theta = 1$
unit vector

• vector such that $||\vec{v}|| = 1$

• in n dimensions

$$v_1^2 + v_2^2 + \ldots + v_n^2 = 1$$

• sits on the surface of an n-dimensional hypersphere
unit vector

• vector such that $\| \vec{u} \| = 1$

• make any vector into a unit vector via

$$\frac{1}{\| \vec{u} \|} \vec{u}$$
inner product (aka “dot product”)

• produces a scalar from two vectors

\[\vec{v} \cdot \vec{w} \]
\[\langle \vec{v}, \vec{w} \rangle \]
\[v_1 w_1 + v_2 w_2 + \cdots + v_n w_n \]
\[\|v\| \|w\| \cos \theta \]
\[\vec{v}^T \vec{w} = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \]
inner product (aka “dot product”)

Exercises:

\[v_1 = [1,2,3] \]
\[v_2 = [3,2,-1] \]
\[v_3 = [10,0,5] \]

Compute:
\[v_1 \cdot v_2, v_1 \cdot v_3, v_2 \cdot v_3 \]
linear projection

- intuitively, dropping a vector down onto a linear surface at a right angle
- if \(u \) is a unit vector, length of projection is \(\vec{v} \cdot \hat{u} \)
- for non-unit vector, length of projection = \(\vec{v} \cdot \left(\frac{1}{||\hat{u}||} \hat{u} \right) \)
linear projection

- intuitively, dropping a vector down onto a linear surface at a right angle
- if u is a unit vector, length of projection is $\vec{v} \cdot \hat{u}$

$\vec{v} \cdot \hat{u}$

- for non-unit vector, length of projection = $\vec{v} \cdot \left(\frac{1}{||\hat{u}||} \hat{u} \right)$

component of \vec{v} in direction of u
Linear Projection Exercise

\[w = [2,2] \]
\[v_1 = [2,1] \]
\[v_2 = [5,0] \]

Compute:
Linear projection of \(w \) onto lines defined by \(v_1 \) and \(v_2 \)
orthogonality

• two vectors are orthogonal (or “perpendicular”) if their dot product is zero: \(\vec{v} \cdot \vec{w} = 0 \)
orthogonality

- two vectors are orthogonal (or “perpendicular”) if their dot product is zero: \(\vec{v} \cdot \vec{w} = 0 \)

\[\vec{v} - (\vec{v} \cdot \hat{u}) \hat{u} \]

component of \(\vec{v} \) orthogonal to \(\vec{u} \)

component of \(\vec{v} \) in direction of \(\vec{u} \)