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1 Setup

Suppose someone hands you a stack of N vectors, {Z1,...Zxn}, each of dimension d, and an scalar
observation associated with each one, {y1,...,yn}. In other words, the data now come in pairs
(Zi,vi), where each pair has one vector (known as the input, the regressor, or the predictor) and a
scalar (known as the output or dependent variable).

Suppose we would like to estimate a linear function that allows us to predict y from & as well as
possible: in other words, we’d like a weight vector @ such that

Yi =W Ty

Specifically, we’d like to minimize the squared prediction error, so we’d like to find the « that
minimizes N

squared error = Z(yz — & - )’ (1)
i=1

We're going to write this as a vector equation to make it easier to derive the solution. Let Y be
a vector composed of the stacked observations {y;}, and let X be the vector whose rows are the
vectors {Z;} (which is known as the design matriz):

n — 1 —
yn — IN —

Then we can rewrite the squared error given above as the squared vector norm of the residual error
between Y and X:
squared error = ||Y — Xj||? (2)

The solution (stated here without proof): the vector that minimizes the above squared error (which
we equip with a hat @ to denote the fact that it is an estimate recovered from data) is:

= (X"X)"HXTY).



2 Derivation #1: using orthogonality

I will provide two derivations of the above formula, though we will only have time to discuss the
first one (which is a little bit easier) in class. It has the added advantage that it gives us some
insight into the geometry of the problem.

Let’s think about the design matrix X in terms of its d columns instead of its N rows. Let {X;}
denote the j'th column, i.e.,

X=X - X4 (3)

The columns of X span a d-dimensional subspace within the larger N-dimensional vector space
that contains the vector Y. Generally Y does not lie exactly within this subspace. Least squares
regression is therefore trying to find the linear combination of these vectors, X, that gets as close
to possible to Y.

What we know about the optimal linear combination is that it corresponds to dropping a line down
from Y to the subspace spanned by {Xi,... Xp} at a right angle. In other words, the error vector
(Y — X)) (also known as the residual error) should be orthogonal to every column of X:

(Y = Xu)- X; =0, (4)
for all columns j =1 up to j = d. Written as a matrix equation this means:
Y - X)X =0 (5)

where 0 is d-component vector of zeros.

We should quickly be able to see that solving this for @ gives us the solution we were looking for:

XY —Xw)=X"Y —X"Xw=0 (6)
— X' X)i=X'Y (7)
— d=X'X)'XTy (8)

So to summarize: the requirement that the residual errors Y — X be orthogonal to the columns
of X was all we needed to derive the optimal weight vector . (Hooray!)

3 Derivation #2: Calculus

3.1 Calculus with Vectors and Matrices

Here are two rules that will help us out for the second derivation of least-squares regression. First
of all, let’s define what we mean by the gradient of a function f(&) that takes a vector (¥) as



its input. This is just a vector whose components are the derivatives with respect to each of the

components of I:
of

dx1
ViE |
of
8md

Where V (the “nabla” symbol) is what we use to denote gradient, though in practice I will often

be lazy and write simply % or maybe % f.

(Also, in case you didn’t know it, £ is the symbol denoting “is defined as”).

Ok, here are the two useful identities we’ll need:

1. Derivative of a linear function:

0 0 1. 0 1.

a—f(i-:ﬁ:%aw:%xa:(i 9)
(If you think back to calculus, this is just like % ar = a).
2. Derivative of a quadratic function: if A is symmetric, then
0
— 7TAT = 2A7 (10)

ox
(Again, thinking back to calculus this is just like % ar? = 2ar).
If you ever need it, the more general rule (for non-symmetric A) is:
9 az = (A+ANZ
ox ’

which of course is the same thing as 2AZ when A is symmetric.

3.2 Calculus Derivation

We can call this derivation (i.e., the @ vector that minimizes the squared error defined above) the
“straightforward calculus” derivation. We will differentiate the error with respect to , set it equal
to zero (i.e., implying we have a local optimum of the error), and solve for . All we’re going to
need is some algebra for pushing around terms in the error, and the vector calculus identities we
put at the top.

Let’s go!
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— 2X'Y+2X' X% = O. (13)



We can then solve this for @ as follows:

X'Xw=X"Yy (14)
— W= (X"X)'XTY (15)

Easy, right?

(Note: we’re assuming that X ' X is full rank so that its inverse exists, implying that N > d and
the rows are not all linearly dependent with each other. )



