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1 Setup

Suppose someone hands you a stack of N vectors, {~x1, . . . ~xN}, each of dimension d, and an scalar
observation associated with each one, {y1, . . . , yN}. In other words, the data now come in pairs
(~xi, yi), where each pair has one vector (known as the input, the regressor, or the predictor) and a
scalar (known as the output or dependent variable).

Suppose we would like to estimate a linear function that allows us to predict y from ~x as well as
possible: in other words, we’d like a weight vector ~w such that

yi ≈ ~w>~xi.

Specifically, we’d like to minimize the squared prediction error, so we’d like to find the ~w that
minimizes

squared error =
N∑
i=1

(yi − ~xi · ~w)2 (1)

We’re going to write this as a vector equation to make it easier to derive the solution. Let Y be
a vector composed of the stacked observations {yi}, and let X be the vector whose rows are the
vectors {~xi} (which is known as the design matrix):

Y =

 y1...
yN

 X =

— ~x1 —
...

— ~xN —


Then we can rewrite the squared error given above as the squared vector norm of the residual error
between Y and X ~w:

squared error = ||Y −X ~w||2 (2)

The solution (stated here without proof): the vector that minimizes the above squared error (which
we equip with a hat ~̂w to denote the fact that it is an estimate recovered from data) is:

~w = (X>X)−1(X>Y ).
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2 Derivation #1: using orthogonality

I will provide two derivations of the above formula, though we will only have time to discuss the
first one (which is a little bit easier) in class. It has the added advantage that it gives us some
insight into the geometry of the problem.

Let’s think about the design matrix X in terms of its d columns instead of its N rows. Let {Xj}
denote the j′th column, i.e.,

X =

X1 · · · Xd

 (3)

The columns of X span a d-dimensional subspace within the larger N -dimensional vector space
that contains the vector Y . Generally Y does not lie exactly within this subspace. Least squares
regression is therefore trying to find the linear combination of these vectors, X ~w, that gets as close
to possible to Y .

What we know about the optimal linear combination is that it corresponds to dropping a line down
from Y to the subspace spanned by {X1, . . . XD} at a right angle. In other words, the error vector
(Y −X ~w) (also known as the residual error) should be orthogonal to every column of X:

(Y −X ~w) ·Xj = 0, (4)

for all columns j = 1 up to j = d. Written as a matrix equation this means:

(Y −X ~w)>X = ~0 (5)

where ~0 is d-component vector of zeros.

We should quickly be able to see that solving this for ~w gives us the solution we were looking for:

X>(Y −X ~w) = X>Y −X>X ~w = 0 (6)

=⇒ (X>X)~w = X>Y (7)

=⇒ ~w = (X>X)−1X>Y. (8)

So to summarize: the requirement that the residual errors Y −X ~w be orthogonal to the columns
of X was all we needed to derive the optimal weight vector ~w. (Hooray!)

3 Derivation #2: Calculus

3.1 Calculus with Vectors and Matrices

Here are two rules that will help us out for the second derivation of least-squares regression. First
of all, let’s define what we mean by the gradient of a function f(~x) that takes a vector (~x) as
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its input. This is just a vector whose components are the derivatives with respect to each of the
components of ~x:

∇f ,


∂f
∂x1
...
∂f
∂xd


Where ∇ (the “nabla” symbol) is what we use to denote gradient, though in practice I will often
be lazy and write simply df

d~x or maybe ∂
∂~xf .

(Also, in case you didn’t know it, , is the symbol denoting “is defined as”).

Ok, here are the two useful identities we’ll need:

1. Derivative of a linear function:

∂

∂~x
~a · ~x =

∂

∂~x
~a>~x =

∂

∂~x
~x>~a = ~a (9)

(If you think back to calculus, this is just like d
dx ax = a).

2. Derivative of a quadratic function: if A is symmetric, then

∂

∂~x
~x>A~x = 2A~x (10)

(Again, thinking back to calculus this is just like d
dx ax

2 = 2ax).

If you ever need it, the more general rule (for non-symmetric A) is:

∂

∂~x
~x>A~x = (A + A>)~x,

which of course is the same thing as 2A~x when A is symmetric.

3.2 Calculus Derivation

We can call this derivation (i.e., the ~w vector that minimizes the squared error defined above) the
“straightforward calculus” derivation. We will differentiate the error with respect to ~w, set it equal
to zero (i.e., implying we have a local optimum of the error), and solve for ~w. All we’re going to
need is some algebra for pushing around terms in the error, and the vector calculus identities we
put at the top.

Let’s go!

∂

∂ ~w
SE =

∂

∂ ~w
(Y −X ~w)>(Y −X ~w) (11)

=
∂

∂ ~w

(
Y >Y − 2~w>X> + ~w>X>XY

)
(12)

= −2X>Y + 2X>X ~w = 0. (13)
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We can then solve this for ~w as follows:

X>X ~w = X>Y (14)

=⇒ ~w = (X>X)−1X>Y (15)

Easy, right?

(Note: we’re assuming that X>X is full rank so that its inverse exists, implying that N > d and
the rows are not all linearly dependent with each other. )
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