Notes: Least Squares Regression
(Lecture 12)

1 Setup

Suppose someone hands you a stack of N vectors, $\{\vec{x}_1, \ldots, \vec{x}_N\}$, each of dimension d, and an scalar observation associated with each one, $\{y_1, \ldots, y_N\}$. In other words, the data now come in pairs (\vec{x}_i, y_i), where each pair has one vector (known as the input, the regressor, or the predictor) and a scalar (known as the output or dependent variable).

Suppose we would like to estimate a linear function that allows us to predict y from \vec{x} as well as possible: in other words, we’d like a weight vector \vec{w} such that

$$y_i \approx \vec{w}^\top \vec{x}_i.$$

Specifically, we’d like to minimize the squared prediction error, so we’d like to find the \vec{w} that minimizes

$$\text{squared error} = \sum_{i=1}^{N} (y_i - \vec{x}_i \cdot \vec{w})^2. \tag{1}$$

We’re going to write this as a vector equation to make it easier to derive the solution. Let Y be a vector composed of the stacked observations $\{y_i\}$, and let X be the vector whose rows are the vectors $\{\vec{x}_i\}$ (which is known as the design matrix):

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \quad \quad X = \begin{bmatrix} \vec{x}_1 \\ \vdots \\ \vec{x}_N \end{bmatrix}$$

Then we can rewrite the squared error given above as the squared vector norm of the residual error between Y and $X\vec{w}$:

$$\text{squared error} = ||Y - X\vec{w}||^2. \tag{2}$$

The solution (stated here without proof): the vector that minimizes the above squared error (which we equip with a hat $\hat{\vec{w}}$ to denote the fact that it is an estimate recovered from data) is:

$$\hat{\vec{w}} = (X^\top X)^{-1}(X^\top Y).$$
2 Derivation #1: using orthogonality

I will provide two derivations of the above formula, though we will only have time to discuss the first one (which is a little bit easier) in class. It has the added advantage that it gives us some insight into the geometry of the problem.

Let’s think about the design matrix X in terms of its d columns instead of its N rows. Let $\{X_j\}$ denote the j^{th} column, i.e.,

$$X = \begin{bmatrix} X_1 & \cdots & X_d \end{bmatrix}$$ \hspace{1cm} (3)

The columns of X span a d-dimensional subspace within the larger N-dimensional vector space that contains the vector Y. Generally Y does not lie exactly within this subspace. Least squares regression is therefore trying to find the linear combination of these vectors, $X \vec{w}$, that gets as close to possible to Y.

What we know about the optimal linear combination is that it corresponds to dropping a line down from Y to the subspace spanned by $\{X_1, \ldots X_d\}$ at a right angle. In other words, the error vector $(Y - X \vec{w})$ (also known as the residual error) should be orthogonal to every column of X:

$$(Y - X \vec{w}) \cdot X_j = 0,$$ \hspace{1cm} (4)

for all columns $j = 1$ up to $j = d$. Written as a matrix equation this means:

$$(Y - X \vec{w})^\top X = \vec{0},$$ \hspace{1cm} (5)

where $\vec{0}$ is d-component vector of zeros.

We should quickly be able to see that solving this for \vec{w} gives us the solution we were looking for:

$$X^\top (Y - X \vec{w}) = X^\top Y - X^\top X \vec{w} = 0$$ \hspace{1cm} (6)

$$\implies (X^\top X) \vec{w} = X^\top Y$$ \hspace{1cm} (7)

$$\implies \vec{w} = (X^\top X)^{-1} X^\top Y.$$ \hspace{1cm} (8)

So to summarize: the requirement that the residual errors $Y - X \vec{w}$ be orthogonal to the columns of X was all we needed to derive the optimal weight vector \vec{w}. (Hooray!)

3 Derivation #2: Calculus

3.1 Calculus with Vectors and Matrices

Here are two rules that will help us out for the second derivation of least-squares regression. First of all, let’s define what we mean by the gradient of a function $f(\vec{x})$ that takes a vector (\vec{x}) as
its input. This is just a vector whose components are the derivatives with respect to each of the
components of \vec{x}:

$$\nabla f \triangleq \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}$$

Where ∇ (the “nabla” symbol) is what we use to denote gradient, though in practice I will often
be lazy and write simply $\frac{df}{d\vec{x}}$ or maybe $\frac{\partial f}{\partial \vec{x}}$.

(Also, in case you didn’t know it, \triangleq is the symbol denoting “is defined as”).

Ok, here are the two useful identities we’ll need:

1. Derivative of a linear function:

$$\frac{\partial}{\partial \vec{x}} \vec{a} \cdot \vec{x} = \frac{\partial}{\partial \vec{x}} \vec{a}^\top \vec{x} = \frac{\partial}{\partial \vec{x}} \vec{x}^\top \vec{a} = \vec{a} \tag{9}$$

(If you think back to calculus, this is just like $\frac{d}{dx} ax = a$).

2. Derivative of a quadratic function: if A is symmetric, then

$$\frac{\partial}{\partial \vec{x}} \vec{x}^\top A \vec{x} = 2A \vec{x} \tag{10}$$

(Again, thinking back to calculus this is just like $\frac{d}{dx} ax^2 = 2ax$).

If you ever need it, the more general rule (for non-symmetric A) is:

$$\frac{\partial}{\partial \vec{x}} \vec{x}^\top A \vec{x} = (A + A^\top) \vec{x},$$

which of course is the same thing as $2A \vec{x}$ when A is symmetric.

3.2 Calculus Derivation

We can call this derivation (i.e., the \vec{w} vector that minimizes the squared error defined above) the
“straightforward calculus” derivation. We will differentiate the error with respect to \vec{w}, set it equal
to zero (i.e., implying we have a local optimum of the error), and solve for \vec{w}. All we’re going to
need is some algebra for pushing around terms in the error, and the vector calculus identities we
put at the top.

Let’s go!

$$\frac{\partial}{\partial \vec{w}} SE = \frac{\partial}{\partial \vec{w}} (Y - X \vec{w})^\top (Y - X \vec{w}) \tag{11}$$

$$= \frac{\partial}{\partial \vec{w}} \left(Y^\top Y - 2\vec{w}^\top X^\top + \vec{w}^\top X^\top XY \right) \tag{12}$$

$$= -2X^\top Y + 2X^\top \vec{w} \vec{w} = 0. \tag{13}$$
We can then solve this for \vec{w} as follows:

\[X^\top X \vec{w} = X^\top Y \]
\[\implies \vec{w} = (X^\top X)^{-1} X^\top Y \]

(14)
(15)

Easy, right?

(Note: we’re assuming that $X^\top X$ is full rank so that its inverse exists, implying that $N > d$ and the rows are not all linearly dependent with each other.)