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Information Theory

A mathematical theory of communication,
Claude Shannon 1948

Entropy

Conditional Entropy
Mutual Information

Data Processing Inequality

Efficient Coding Hypothesis (Barlow 1961)



averaged “surprise”
over p(x) of x

* average “surprise” of viewing a sample from p(x)
* number of “yes/no” questions needed to identify x (on average)

for distribution on K bins,
- maximum entropy = log K (achieved by uniform dist)
- minimum entropy = 0 (achieved by all probability in 1 bin)



Entropy

= — > p(x)logp(x)

= —Ellog p(z)]



aside: log-likelihood and entropy
model: P(.CU|(9)
entropy H: —[E|log P(x|0)

How would we compute a Monte Carlo estimate of this?

draw samples: XI; ~~ P(:E‘@) fori=1,..., N

compute average: H = —% .
H—J

log-likelihood

* Neg Log likelihood = Monte Carlo estimate for entropy!
» maximizing likelihood = minimizing entropy of P(xI 0)



Conditional Entropy

H(zly) — — WS plaly 1ogp<@

averaged  entropy of x given
over p(y) some fixed value of y




Conditional Entropy

H(zly) — — WS plaly 1ogp<@

averaged entropy of x given
over p(y) some fixed value of y

= =) pla,y)logp(zly)

LY

= H(z) it P(z,y) = P(z)P(y)

“On average, how uncertain are you about x if you know y?”



Mutual Information

[(.CI’), y) — H(.CI’)) _ H(xly) total entropy in X minus

conditional entropy of X given Y

— H(y) _ H(y‘ZE) total entropy in Y minus

conditional entropy of Y given X

— H(ZIZ‘) + H(y) L H(CIZ‘,y) sum of entropies

minus joint entropy

*How much does X tell me about Y (or vice versa)?”

“How much is your uncertainty about X reduced from knowing Y?”



Venn diagram of entropy and information



Data Processing Inequality

Suppose S — Ry — R> form a Markov chain, that is

P(Ry, R2|S) = P(R2|R1)P(R41]5)

Then necessarily:  1(.S, Ry) < I(S, Ry)

- in other words, we can only lose information during processing



Barlow 1961
Atick & Redlich 1990

Efficient Coding Hypothesis:

* goal of nervous system: maximize information about environment
(one of the core “big ideas” in theoretical neuroscience)

T « mutual information

redundancy: R =1 — —
4 C

¥ channel capacity



Barlow 1961
Atick & Redlich 1990

Efficient Coding Hypothesis:

* goal of nervous system: maximize information about environment
(one of the core “big ideas” in theoretical neuroscience)

T « mutual information
redundancy: K =1 — o

¥ channel capacity

mutual information:

](CC, y) — H(y) — H(y‘gj) * avg # yes/no questions you can

response entropy  “noise” entropy answer about x given 'y (“bits”)

channel capacity:

C' = sup ](g; y) * upper bound on mutual information
P, 7 e determined by physical properties of encoder



Barlow 1961
Atick & Redlich 1990

Barlow’s original version:

T« mutual information

redundancy: R =1 — —
4 C

mutual information:

](33, y) — H(y) — Eég"@ if responses are noiseless

response entropy “noise” entropy



Barlow 1961
Atick & Redlich 1990

Barlow’s original version:

» Fesponse entropy

H(Y)
C

redundancy: R =1

mutual information:

](CC, y) = H(y) — Eég"@ noiseless system

response entropy “noise” entropy

——> brain should maximize response entropy
* use full dynamic range
* decorrelate (“‘reduce redundancy”)

* mega impact: huge number of theory and experimental papers focused
on decorrelation / information-maximizing codes in the brain



IC INntuition
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Example: single neuron encoding stimuli from a distribution P(x)
stimulus prior L P(CE)

noiseless, discrete Yy = f (QE) (with constraint on range of y values)
encoding



Application Example: single neuron encoding stimuli from a distribution P(x)

stimulus prior L P(ZIZ‘)

noiseless, discrete Yy = f (x) (with constraint on range of y values)
encoding
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Laughlin 1981: blowfly light response

- first major validation of Barlow’s theory

10mV
I cdf of light level
1.0

50ms / :
i ft

T response
data

0.5

cumulative
probabilih

-1.0 0 - +1.0
contrast  al/l



summary

entropy

negative log-likelihood / N
conditional entropy
mutual information

data processing inequality

efficient coding hypothesis (Barlow)
- neurons should “maximize their dynamic range”
- multiple neurons: marginally independent responses

direct method for estimating mutual information from
data



