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Information Theory

• Entropy

• Conditional Entropy

• Mutual Information

• Data Processing Inequality

• Efficient Coding Hypothesis (Barlow 1961)

A mathematical theory of communication,
Claude Shannon 1948



Entropy

“surprise” 
of x

averaged 
over p(x)

• average “surprise” of viewing a sample from p(x)
• number of “yes/no” questions needed to identify x (on average)

for distribution on K bins, 
• maximum entropy = log K  (achieved by uniform dist)
• minimum entropy = 0   (achieved by all probability in 1 bin)



Entropy



aside: log-likelihood and entropy

How would we compute a Monte Carlo estimate of this?

model:

entropy H:

for i = 1,…,Ndraw samples:

compute average:

log-likelihood

• Neg Log likelihood = Monte Carlo estimate for entropy!
• maximizing likelihood ⇒ minimizing entropy of P(x| θ)



Conditional Entropy

identity of a random variable with distribution P (x). As a simple example, if a fair coin is
flipped with p(H) = p(T ) = 1

2 , the entropy is

H(x) = �1
2 log

1
2 �

1
2 log

1
2 = 1 bit.

A completely biased coin with P (H) = 1 has entropy

H(x) = �1 log 1� 0 log 0 = 0 bits,

where we have used 0 log 0 = 0 (which is true in the limit limp�0 p log p = 0).

2 Di�erential Entropy

Not a “real” entropy, since it can be negative and a deterministic transformation (e.g.,
y = ax) can change it. But we can define di�erential entropy as

H(x) =

⇥
p(x) log p(x)dx

3 Conditional Entropy

Conditional entropy H(x|y) is the average entropy in x given the value of y.

H(x|y) = �
�

y

p(y)
�

x

p(x|y) log p(x|y)

= �
�

x,y

p(x, y) log p(x|y)

4 Mutual Information

Mutual information is a (symmetric) function two random variables x and y that quantifies
how many bits of information x conveys about y (and vice-versa). It can be written as the

2

entropy of x given 
some fixed value of y

averaged 
over p(y)
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“On average, how uncertain are you about x if you know y?”



Mutual Information

sum of entropies 
minus joint entropy

total entropy in X minus 
conditional entropy of X given Y

total entropy in Y minus 
conditional entropy of Y given X

“How much does X tell me about Y (or vice versa)?”

“How much is your uncertainty about X reduced from knowing Y?”



Venn diagram of entropy and information



Data Processing Inequality

Suppose                                           form a Markov chain, that is

Then necessarily: 

• in other words, we can only lose information during processing



Efficient Coding Hypothesis: 

mutual information

channel capacity
redundancy:

• goal of nervous system: maximize information about environment
   (one of the core “big ideas” in theoretical neuroscience)

Barlow 1961 
Atick & Redlich 1990



Efficient Coding Hypothesis: 
Barlow 1961 

Atick & Redlich 1990

mutual information

channel capacity
redundancy:

channel capacity: 
• upper bound on mutual information
• determined by physical properties of encoder

mutual information:
• avg # yes/no questions you can 

answer about x given y  (“bits”)“noise” entropyresponse entropy

• goal of nervous system: maximize information about environment
   (one of the core “big ideas” in theoretical neuroscience)



Barlow’s original version:

mutual information
redundancy:

mutual information:

response entropy “noise” entropy
if responses are noiseless

Barlow 1961 
Atick & Redlich 1990



Barlow’s original version:

response entropy
redundancy:

mutual information:

“noise” entropy
noiseless system

brain should maximize response entropy
•  use full dynamic range
•  decorrelate (“reduce redundancy”)

• mega impact: huge number of theory and experimental papers focused 
on decorrelation / information-maximizing codes in the brain

Barlow 1961 
Atick & Redlich 1990

response entropy



basic intuition
natural image

nearby pixels exhibit 
strong dependencies
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Example: single neuron encoding stimuli from a distribution P(x)

stimulus prior

noiseless, discrete
encoding

(with constraint on range of y values)
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Application Example: single neuron encoding stimuli from a distribution P(x)

(with constraint on range of y values)



response
data

Laughlin 1981:  blowfly light response

cdf of light level

• first major validation of Barlow’s theory



• entropy

• negative log-likelihood / N 

• conditional entropy

• mutual information

• data processing inequality

• efficient coding hypothesis (Barlow)  
- neurons should “maximize their dynamic range” 
- multiple neurons: marginally independent responses

• direct method for estimating mutual information from 
data

summary


