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Expectations (OaveragesO)

(on board)

Expectation is the weighted average of a function (of some random variable) according
to the distribution (of that random variable)

| pdf cdf
Blf(@)] = [ f@)P@ds BIf ()] = X () Pla)

Corresponds to taking weighted average of f(X), weighted by how probable they are under F

Our two most important expectations (also known as OmomentsO):

¥ Mean: E[x] (average value of RV)
¥Variance: E[(x - E[X]) (average squared dist between X and its mean).

P(x1) f(x1)
Note that itOs really just a dot productE[f(x)] = P.f P = : = :
| P(zm) | f(zm)_
Thus a linear function:  E[af(z) + b] = aE[f(z)] + b
~ 1
Note: expectations donOt always existle.g. CauchyP(z) = has no mean!

(14 x?)



Monte Carlo integration

¥ We can compute expectation of a function f(x) with respect
to a distribution p(x) by sampling from p, and taking the
average value of f over these samples

sample X; ! p(x)

1
then average - f(xij) ! p(x)f (x)dx



Recap of last time

¥ marginal & conditional probabillity
¥ BayesO rule (prior, likelihood, posterior)
¥ Independence



Joint Distribution

P(z,y)




iIndependence

DebPnition X,y are indepepdent Iff
P(:E, y) (Oif and only ifO)
P(x,y) = P(x)P(y)




iIndependence

DebPnition X,y are indepepdent Iff
P(:E, y) (Oif and only ifO)
P(x,y) = P(x)P(y)

In linear algebra terms:

P(:z:,y) — ﬁyﬁg

(outer product)




iIndependence

P(gg7 y) Original depPnition:
P(x,y) = P(z)P(y)

Equivalent depPnition:
P(ylx) = P(y) foraix

All conditionals are the same!




Independence
P(y|x) Original debnition:
P(a,y) = P(x)P(y)

Equivalent depPnition:
P(y|$) — P(y) for all x

All conditionals are the same!




Correlation vs. Dependence

. positive correlation negative correlation
1. Correlation

corr(x,y) = El(z —2)(y — 9)] / \

\/Var(x)var(y)

Linear relationship
between x and y



Correlation vs. Dependence

. positive correlation negative correlation
1. Correlation

o Ela— 5y )
(,9) \/Var(x)var(y) / \

Linear relationship
between x and y

2. Dependence
¥ arises whenever P(x,y) # P(x)P(y)

¥ gquantiPed by
mutual information: MI(z,y) = Dxr(P(x,y), P(z)P(y))

h KL divergence
¥ MI=0<zindependence



Correlation vs. Dependence

Q: Can you draw a distribution that is
uncorrelated but dependent?



Correlation vs. Dependence

Q: Can you draw a distribution that is
uncorrelated but dependent?

P(filter 2 output | filter 1 output)

OBowtieO dependencies
In natural scenes:

(uncorrelated but dependent)

filter 2 output

[Schwartz &
Simoncelli 2001]

filter 1 output



Is this distribution independent?

P(z,y)
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Is this distribution independent?

P(y|x)
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Is this distribution independent?

P(y|x)

No! Conditionals over y are different for different x!



FUN FACT:

Gaussian is the only distribution that can be both:

 Independent (equal to the product of its marginals)
» spherically symmetric: P(Z) = P(UZT)

orthogonal matrix

Corollary: circular scatter / contour plot
not sufficient to show independence!



the amazing Gaussian

What else about Gaussians is awesome?

Gaussian family closed under many operations:

1. scaling: X ~ Gaussian —  aX Iis Gaussian
2. sums: XY ~ Gaussian — X +Y is Gaussian

(thus, any linear function Gaussian RVs is Gaussian)

3. products of Gaussian distributions GdaUSSfitan
ensity

X,Y ~ Gaussian — P(X)P(Y) x P(Z)




the amazing Gaussian

4. Average of many (non-Gaussian) RVs is Gaussian!

X X,
Central Limit Theorem: S,, = = +n
standard
n(S, — u) — .
Vil ) Gaussian
=1 - explains why many things

(approximately) Gaussian distributed

coin flipping: n =10

b Akl




the amazing Gaussian

mean cov

\ / (The random variable X is

Multivariate Gaussians: X ~ N(ji, () distributed according o a
Gaussian distribution)

P(X =) = —L_ 2@ D @

\/|27‘(‘C|6

5. Marginals and conditionals (“slices”) are Gaussian

6. Linear projections: ¥ = AX =— Y ~ N(AG, ACA")



multivariate Gaussian

P(X =) = —L_ 2@ D @




covariance

E[(x — E[x])(x — E[xD"] “

/

after mean correction: (/

- E(x7) E(x1x2)-
E(x1x3)  E(x3)




700 samples

Measurement
(sampling)
\./
Inference
true mean: [0 0.8] sample mean: [-0.05 0.83]
true cov: [1.0 -0.25 sample cov: [0.95 -0.23

-0.25 0.3] -0.23 0.29]



Summary

¥ Expectation

¥ Moments (mean & variance)
¥ Monte Carlo Integration

¥ Independence vs. Correlation
¥ Gaussians

¥ Central limit theorem

¥ Multivariate Gaussians

¥ Covariance



