
Jonathan Pillow
Princeton Neuroscience Institute

Statistical Models for Neural Data:
from Regression / GLMs to Latent Variables

Tutorial
Cosyne 2018

Retinal responses to white noise

 Shlens, Field, Gauthier, Greschner, Sher , Litke & Chichilnisky (2009).

(ON parasol cells)

stimulus

spikes

membrane
potential

imaging

neural activity

neural coding problem

• How are stimuli and actions encoded in neural activity?
• What aspects of neural activity carry information?

stimulus

spikes

membrane
potential

imaging

neural activity

neural coding problem

encoding models

• develop flexible statistical models of P(y|x)  
• quantify information carried in neural responses

Approach:

spikes

membrane
potential

imaging

neural activity
encoding models

“regression models”

NATURE NEUROSCIENCE VOLUME 17 | NUMBER 3 | MARCH 2014 441

A R T I C L E S

Columns correspond to the activities at different times and for differ-
ent movements. W contains the weights for the linear mapping from
neurons to muscles. That is, W specifies the weighted sum of neurons’
firing rates that drives each muscle.

To build intuition about this model, consider the following extreme,
unphysiologically simplified situation. Imagine that just two excitatory
neurons synapsed directly on a muscle, and this muscle produced force
proportional to the sum of its two inputs. As long as the sum of the
two inputs remained constant, the muscle would produce a constant
amount of force: no ‘gate’ or ‘switch’ is required. The activity of these
two neurons can be represented as a point in a two-dimensional firing
rate space. Their pattern of activity over time is a trajectory through
this space35–37. In the state space, the constant-sum line forms an
‘output-null’ dimension (Fig. 2). The muscle’s force output will change
only if there is a change in the sum of the neurons’ firing rates; we term
the direction in which that sum changes the ‘output-potent’ dimension
(Fig. 2). This idea also generalizes to more complex cases: if one of
these hypothetical neurons had a net inhibitory effect, the dimensions
would be switched. With many neurons, we would expect multiple
output-null dimensions. If there were multiple independent muscles,
we would need multiple output-potent dimensions. This is all to say
that activity in the output-potent dimensions would be read out by the
target muscle or brain area, whereas activity in output-null dimensions
would not be visible to the target. Formally, any activity changes in
output-null dimensions fall in the null space of W. Conversely, activity
changes in output-potent dimensions fall in the row space of W.

The existence of output-potent and output-null dimensions is likely
inevitable, as there are more neurons than muscles. The key question
is whether the brain exploits these dimensions to control when cir-
cuits communicate (as opposed to relying on nonlinear thresholds or
a time-varying gain). The hypothesis that output-null dimensions are
used to control communication leads to two predictions. First, if this
mechanism operates between cortex and muscles, then during motor
preparation changes in neural firing rates should occur in combina-
tions that produce changes in output-null dimensions but do not pro-
duce changes in dimensions that are output-potent with respect to the
muscles (Fig. 2). Second, if this same mechanism operates between
cortical areas, we would expect PMd preparatory activity to prefer-
entially occupy dimensions that are output-null with respect to M1.

If this latter prediction is correct, this could help produce the well-
known reduction in preparatory activity between PMd and M1.

Exploitation of output-null dimensions is unlikely to leave any par-
ticular signature at the level of single neurons. Changing state along
the output-null dimensions corresponds to activity changes in most
of the relevant neurons (Fig. 2). Such activity cancels out only at the
level of the population output. Intriguingly, though, this model tends
to produce neurons with mismatches in tuning between the prepara-
tory and movement periods, as has been observed previously25–28.
Thus, if one averages over neurons based on their preferred reach
condition during movement, their preparatory tuning largely aver-
ages away (Supplementary Fig. 1). This mismatch is suggestive, but
it forms only an indirect test and is neither necessary nor sufficient to
demonstrate that such a model is correct (Online Methods). Testing
this hypothesis requires both knowing the population response and
estimating the output-null and output-potent dimensions.

To test our hypothesis, we used a variant of a standard delayed-
reaching task with two monkeys, J and N (Fig. 1 and Online Methods).
We recorded the population response using both single- and multiunit
neural activity (using single moveable electrodes for data sets J and
N, and silicon electrode arrays for data sets JA and NA) and muscle
activity (using percutaneous electrodes). Trial-averaged data were
used except where noted: the primary goal of these analyses was to
explain how there can be preparatory tuning without movement, not
to explain trial-by-trial variability. Thus, all repeats of the same con-
dition were averaged to produce a single rate versus time. The same
reaches were required every day and monkeys were highly practiced.
Repeated reaches to the same targets were thus extremely similar to
one another over the course of months (Supplementary Fig. 2). Data
from different days were therefore combined.

As a basic test for the plausibility of exploiting output-null dimen-
sions, we can search for neuron pairs whose preparatory activity

0

10

cm

0

1 a.u.

0

110 spikes per s

200 ms

ba Vertical target position

Vertical cursor position
Central spot

Firing rate of one
PMd neuron

Deltoid EMG

Target Go Move

Figure 1 Task and typical data. (a) Layout of maze task. One typical
trial shown. The same mazes were repeated many times; each maze is
hereafter called a ‘condition’. (b) Top, task timeline. The monkey initially
touched a central spot with a cursor projected slightly above his fingertip;
then a target and (typically) barriers appeared. On some trials, two
inaccessible distractor ‘targets’ also appeared. After the Go cue (cessation
of slight target jitter, extinguishing of central spot), the monkey made a
curved reach around the barriers to touch the accessible target, leaving
a white trail on the screen. If no barriers were present, reaches were
straight. Middle, trial-averaged deltoid EMG; a.u., arbitrary units. Bottom,
firing rate of one PMd neuron. Target, target onset; Go, go cue; Move,
movement onset. Flanking traces show s.e.m. Maze identifier 100, neuron
J-PM48, EMG recording J-PD10.

Firing rate neuron 1

Fi
rin

g
ra

te
 n

eu
ro

n
2

Preparation

Baseline
Reach right

Go cue

FR
 n

eu
ro

n
1

FR
 n

eu
ro

n
2

O
ut

pu
t-p

ot
en

t p
ro

je
ct

io
n

O
ut

pu
t-n

ul
l p

ro
je

ct
io

n

TimeT G

TimeT G

TimeT GTimeT G

Reach left

Figure 2 Simplified output-null model. For illustration, assume a muscle
receives input from two neurons and produces a response that is the linear
sum of the inputs. If the sum is constant (output-null dimension), the
muscle cannot distinguish between input 1 being high and 2 low, and vice
versa. When the sum changes (output-potent dimension), muscle output
will change. If preparatory neural activity changes only within the output-
null dimension (two different reaches illustrated in darker and lighter
shades), then the muscle’s activity remains constant; when neural activity
changes in the output-potent dimension also, movement ensues. Insets:
PSTHs for the neurons and PSTH-like views of output-potent and output-
null dimensions. T, target onset; G, go cue; FR, firing rate.

hand position

[Kauffman et al 2014]

• not restricted to sensory variables

neural coding problem

spikes

membrane
potential

imaging

neural activity
encoding models

“external covariates”

[Hardcastle et al 2015]

“regression models”

• not restricted to sensory variables

neural coding problem

spikes

membrane
potential

imaging

neural activity

latent variable models

• capture hidden structure underlying neural activity

latent encoding
models

latent variable
(unobserved or

“hidden”)

(eg. low-dimensional or discrete states)

<latexit sha1_base64="W03iimHuVnRwoVFYpQGh0ykBtHs=">AAACM3icbZDLSgMxFIYz3q13XYoQLIKrMuNG3QkiuGzBqtCpkklPNTSXITlTW4Z5Arf6Kr6L4Erc+g6mdRZaPZDw83/nkJM/SaVwGIavwdT0zOzc/MJiZWl5ZXVtfWPz0pnMcmhyI429TpgDKTQ0UaCE69QCU4mEq6R3OuJXfbBOGH2BwxTait1p0RWcobcag9v1algLx0X/iqgUVVJW/XYj2Ik7hmcKNHLJnGtFYYrtnFkUXEJRiTMHKeM9dgctLzVT4Nr5eNOC7nmnQ7vG+qORjt2fEzlTzg1V4jsVw3s3yUbmf6yVYfeonQudZgiafz/UzSRFQ0ffph1hgaMcesG4FX5Xyu+ZZRx9OJVKrOGBG6WY7uRxv1f4CzjtFRNgUILBBECbFvlNjCYtfKDRZHx/RfOgdlyLGmH15KxMdoFsk12yTyJySE7IOamTJuEEyCN5Is/BS/AWvAcf361TQTmzRX5V8PkF+AGrsg==</latexit>

<latexit sha1_base64="Y1Rdd0vDJoDdlc8eOTZsZtbYSw8=">AAACgXicbVFdb9MwFHXDgK18rIXHvVhUSB1CldNRuoqXSRMSj0WibKgJlePcdlb9EdnO1irkp/DKfhP/BqfLA2RcydbROffI1+cmmeDWEfK7FTzYe/jo8f5B+8nTZ88PO90XX63ODYMZ00Kby4RaEFzBzHEn4DIzQGUi4CJZn1f6xTUYy7X64rYZxJKuFF9yRp2nFp3utL/9sTmOjIG0mPY3x+Wi0yMDsit8H4Q16KG6potu61uUapZLUI4Jau08JJmLC2ocZwLKdpRbyChb0xXMPVRUgo2L3ewlfu2ZFC+18Uc5vGP/dhRUWruVie+U1F3ZplaR/9PmuVuexgVXWe5AsbuHlrnATuMqCJxyA8yJrQeUGe5nxeyKGsqcj6vdjhTcMC0lVWkRXa9LfwHD67IhbGph0xCcycrie+R01hCqoL1n98+5WSVxQQbvJ6fkZPLWhzx+NwqJB+HJeDgaldUywmb098FsOJgMws+kd/ax3so+OkKvUB+FaIzO0Cc0RTPE0A36iX6h22AveBOQYHjXGrRqz0v0TwUf/gB49sGr</latexit>

spikes

membrane
potential

imaging

neural activity

latent variable models

latent variable

latent dynamics

latent dynamical
encoding models

• capture hidden dynamics underlying neural activity

(unobserved or
“hidden”)

<latexit sha1_base64="W03iimHuVnRwoVFYpQGh0ykBtHs=">AAACM3icbZDLSgMxFIYz3q13XYoQLIKrMuNG3QkiuGzBqtCpkklPNTSXITlTW4Z5Arf6Kr6L4Erc+g6mdRZaPZDw83/nkJM/SaVwGIavwdT0zOzc/MJiZWl5ZXVtfWPz0pnMcmhyI429TpgDKTQ0UaCE69QCU4mEq6R3OuJXfbBOGH2BwxTait1p0RWcobcag9v1algLx0X/iqgUVVJW/XYj2Ik7hmcKNHLJnGtFYYrtnFkUXEJRiTMHKeM9dgctLzVT4Nr5eNOC7nmnQ7vG+qORjt2fEzlTzg1V4jsVw3s3yUbmf6yVYfeonQudZgiafz/UzSRFQ0ffph1hgaMcesG4FX5Xyu+ZZRx9OJVKrOGBG6WY7uRxv1f4CzjtFRNgUILBBECbFvlNjCYtfKDRZHx/RfOgdlyLGmH15KxMdoFsk12yTyJySE7IOamTJuEEyCN5Is/BS/AWvAcf361TQTmzRX5V8PkF+AGrsg==</latexit>

<latexit sha1_base64="mlBhLlmzDrT6CPDWqx9CWJUwZR0=">AAACkXicbVFdb9MwFHXDx0b5WDd448VQIXUSVM62ritPFQgJiZciUTbUhMhx3M5qbEf2zWiV5Xm/Zq/wW/g3OF0eIONKto7OuUf2PTfOUmGBkN8t787de/e3th+0Hz56/GSns7v31ercMD5lOtXmLKaWp0LxKQhI+VlmOJVxyk/j5ftKP73gxgqtvsA646GkCyXmglFwVNR5MemtI7hcRbAfGMOTYtJzGF/iVVTAG7/cL6NOl/TJpvBt4Negi+qaRLutb0GiWS65ApZSa2c+ySAsqAHBUl62g9zyjLIlXfCZg4pKbsNiM0uJXzkmwXNt3FGAN+zfjoJKa9cydp2SwrltahX5P22Ww/wkLITKcuCK3Tw0z1MMGlfB4EQYziBdO0CZEe6vmJ1TQxm4+NrtQPEfTEtJVVIEF8vSXZzhZdkQVrWwaghgsrL4HoDOGkIVuvNs5pyZRRwWpH88OiGHo9cu5OHRwCcO+IfDg8GgrJbhN6O/DaYH/VHf/0y64w/1VrbRc/QS9ZCPhmiMPqIJmiKGrtA1+ol+ec+8t97Ye3fT6rVqz1P0T3mf/gBUUsgh</latexit>

model desiderata

fittability /
tractability

richness /
flexibility

(can be fit to data) (capture realistic neural
properties)

linear,
Gaussian

multi-
compartment

Hodgkin-Huxley

sweet
spotGLM

descriptive
statistical models What is the code?

Why does the code
take this form?

normative theories
(e.g. “efficient coding”)

How is it implemented?
anatomy,

biophysics

1. Spike count models & Maximum Likelihood

2. Spike train models (GLMs with spike history)

3. Multiple Spike Train Models (GLMs with coupling)

4. Regularization

5. Beyond GLM

6. Latent variable models

Outline

simple example #1: linear Poisson neuron

spike count

spike rate

encoding model:

stimulusparameter

important distributions

Gaussian
0 1 2 3 4 5 6 7 8 9 10

−3 −2 −1 0 1 2 3

Poisson

0 1 2 3 4 5 6 7 8 9 10

−3 −2 −1 0 1 2 3

others that may come up: Bernoulli, binomial, multinomial, exponential, gamma,

37

= mean = variance

0 20 40
0

20

40

60

(contrast)

(s
pi

ke
 c

ou
nt

)

0 20 40 60

conditional distributionP (y|x)
<latexit sha1_base64="XO6O7/dO3TkCBayCB27dyDpqB8U=">AAACOHicbZDPShxBEMZrNMbNqolrjkFoIoJellkvSW5CEDyukFVhZ5We3lptp/8M3TW6y2RAfAKv+ip5khxzCrnmCez9c0hWC7r5+H5VdPWX5kp6iuOf0cLiq6XXy7U39ZXVtbfv1hsbx94WTmBHWGXdaco9KmmwQ5IUnuYOuU4VnqTZ1zE/uUbnpTXfaJRjT/MLIwdScArWcXtn9H24e76+FTfjSbHnojUTW/vb2d0tALTPG9Fm0rei0GhIKO59txXn1Cu5IykUVvWk8JhzkfEL7AZpuEbfKyfrVmw7OH02sC4cQ2zi/jtRcu39SKehU3O69PNsbL7EugUNPvdKafKC0IjpQ4NCMbJs/HfWlw4FqVEQXDgZdmXikjsuKCRUrycGb4TVmpt+mVxnVbhQsKyaA8MZGM4BcnlVniVk8yoE2pqP77no7DW/NOOjEOwBTKsGH+Aj7EALPsE+HEIbOiDgCu7hAR6jH9Gv6Hf0Z9q6EM1m3sN/Ff19ApLpr0s=</latexit><latexit sha1_base64="vElakgQetGBJCA9/pD4i/DlUbZ8=">AAACOHicbZDPSltBFMbnqm1jtNXYpQhDRUg34aab2l2gCF2m0EQhNw1zJyfJ9M6fy8y5NuF6KfQJutWVPkcfwrVLV+LWJ3DyZ2FjD8zw8f3OYc58cSqFwzC8CVZW1168fFVaL29svn6ztV3ZaTuTWQ4tbqSxJzFzIIWGFgqUcJJaYCqWcBwnn6f8+BSsE0Z/w0kKXcWGWgwEZ+itdrM6ORu/723vh7VwVvS5qC/EfuMg+f3r6vK62asEe1Hf8EyBRi6Zc516mGI3ZxYFl1CUo8xBynjChtDxUjMFrpvP1i3ogXf6dGCsPxrpzH06kTPl3ETFvlMxHLllNjX/xzoZDg67udBphqD5/KFBJikaOv077QsLHOXEC8at8LtSPmKWcfQJlcuRhp/cKMV0P49Ok8JfwGlSLIHxAoyXANq0yL9HaNLCB1pfju+5aH2ofaqFX32wR2ReJbJL3pEqqZOPpEG+kCZpEU5+kD/knFwEf4Pb4C64n7euBIuZt+SfCh4eAe1VsVo=</latexit><latexit sha1_base64="vElakgQetGBJCA9/pD4i/DlUbZ8=">AAACOHicbZDPSltBFMbnqm1jtNXYpQhDRUg34aab2l2gCF2m0EQhNw1zJyfJ9M6fy8y5NuF6KfQJutWVPkcfwrVLV+LWJ3DyZ2FjD8zw8f3OYc58cSqFwzC8CVZW1168fFVaL29svn6ztV3ZaTuTWQ4tbqSxJzFzIIWGFgqUcJJaYCqWcBwnn6f8+BSsE0Z/w0kKXcWGWgwEZ+itdrM6ORu/723vh7VwVvS5qC/EfuMg+f3r6vK62asEe1Hf8EyBRi6Zc516mGI3ZxYFl1CUo8xBynjChtDxUjMFrpvP1i3ogXf6dGCsPxrpzH06kTPl3ETFvlMxHLllNjX/xzoZDg67udBphqD5/KFBJikaOv077QsLHOXEC8at8LtSPmKWcfQJlcuRhp/cKMV0P49Ok8JfwGlSLIHxAoyXANq0yL9HaNLCB1pfju+5aH2ofaqFX32wR2ReJbJL3pEqqZOPpEG+kCZpEU5+kD/knFwEf4Pb4C64n7euBIuZt+SfCh4eAe1VsVo=</latexit>

P (y|x)
<latexit sha1_base64="scq7+Qz0RAQOse9tfscCxr6dKAg=">AAACOHicjZC7ahtBFIbPOk7sKDc7KU1giAg4jVi5SVLZYIxTymBdQKuY2dGRNNFclpmztsR638Ft8ippUucNUroKbvMEHl0KWySQH2b4+b9zmDMnzZT0FMe/orUH6w8fbWw+rjx5+uz5i63tly1vcyewKayyrpNyj0oabJIkhZ3MIdepwnY6Ppzx9jk6L605pWmGPc2HRg6k4BSiVmN3ejl5d7ZVrdfiudi/TXX/5/XxDwBonG1Hr5O+FblGQ0Jx77v1OKNewR1JobCsJLnHjIsxH2I3WMM1+l4xH7dkb0PSZwPrwjHE5undjoJr76c6DZWa08ivsln4N9bNafChV0iT5YRGLB4a5IqRZbO/s750KEhNg+HCyTArEyPuuKCwoUolMXghrNbc9IvkfFyGCwUblytgsgSTFUAuK4vPCdms/L+FNvdqH2vxSVw9OIKFNmEH3sAu1OE9HMAnaEATBHyBK/gK36Lv0XX0O7pZlK5Fy55XcE/Rn1twprBt</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit>

0 20 40
0

20

40

60

(contrast)

(s
pi

ke
 c

ou
nt

)

0 20 40 60

conditional distribution
P (y|x)

<latexit sha1_base64="scq7+Qz0RAQOse9tfscCxr6dKAg=">AAACOHicjZC7ahtBFIbPOk7sKDc7KU1giAg4jVi5SVLZYIxTymBdQKuY2dGRNNFclpmztsR638Ft8ippUucNUroKbvMEHl0KWySQH2b4+b9zmDMnzZT0FMe/orUH6w8fbWw+rjx5+uz5i63tly1vcyewKayyrpNyj0oabJIkhZ3MIdepwnY6Ppzx9jk6L605pWmGPc2HRg6k4BSiVmN3ejl5d7ZVrdfiudi/TXX/5/XxDwBonG1Hr5O+FblGQ0Jx77v1OKNewR1JobCsJLnHjIsxH2I3WMM1+l4xH7dkb0PSZwPrwjHE5undjoJr76c6DZWa08ivsln4N9bNafChV0iT5YRGLB4a5IqRZbO/s750KEhNg+HCyTArEyPuuKCwoUolMXghrNbc9IvkfFyGCwUblytgsgSTFUAuK4vPCdms/L+FNvdqH2vxSVw9OIKFNmEH3sAu1OE9HMAnaEATBHyBK/gK36Lv0XX0O7pZlK5Fy55XcE/Rn1twprBt</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit>

0 20 40
0

20

40

60

(contrast)

(s
pi

ke
 c

ou
nt

)

0 20 40 60

conditional distribution
P (y|x)

<latexit sha1_base64="scq7+Qz0RAQOse9tfscCxr6dKAg=">AAACOHicjZC7ahtBFIbPOk7sKDc7KU1giAg4jVi5SVLZYIxTymBdQKuY2dGRNNFclpmztsR638Ft8ippUucNUroKbvMEHl0KWySQH2b4+b9zmDMnzZT0FMe/orUH6w8fbWw+rjx5+uz5i63tly1vcyewKayyrpNyj0oabJIkhZ3MIdepwnY6Ppzx9jk6L605pWmGPc2HRg6k4BSiVmN3ejl5d7ZVrdfiudi/TXX/5/XxDwBonG1Hr5O+FblGQ0Jx77v1OKNewR1JobCsJLnHjIsxH2I3WMM1+l4xH7dkb0PSZwPrwjHE5undjoJr76c6DZWa08ivsln4N9bNafChV0iT5YRGLB4a5IqRZbO/s750KEhNg+HCyTArEyPuuKCwoUolMXghrNbc9IvkfFyGCwUblytgsgSTFUAuK4vPCdms/L+FNvdqH2vxSVw9OIKFNmEH3sAu1OE9HMAnaEATBHyBK/gK36Lv0XX0O7pZlK5Fy55XcE/Rn1twprBt</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit>

Maximum Likelihood Estimation:

• given observed data , find that maximizes

all spike
counts

all
stimuli

parameters

}
single-trial probability

Q: what assumption are we making about the responses?
A: conditional independence across trials!

A: when considering it as a function of !

Maximum Likelihood Estimation:

• given observed data , find that maximizes

all spike
counts

all
stimuli

parameters

}
single-trial probability

Q: what assumption are we making about the responses?
A: conditional independence across trials!

Q: when do we call a likelihood?

0 20 40
0

20

40

60

(contrast)

(s
pi

ke
 c

ou
nt

)
Maximum Likelihood Estimation:

• given observed data , find that maximizes

• could in theory do this by turning a knob

P (y|x)
<latexit sha1_base64="scq7+Qz0RAQOse9tfscCxr6dKAg=">AAACOHicjZC7ahtBFIbPOk7sKDc7KU1giAg4jVi5SVLZYIxTymBdQKuY2dGRNNFclpmztsR638Ft8ippUucNUroKbvMEHl0KWySQH2b4+b9zmDMnzZT0FMe/orUH6w8fbWw+rjx5+uz5i63tly1vcyewKayyrpNyj0oabJIkhZ3MIdepwnY6Ppzx9jk6L605pWmGPc2HRg6k4BSiVmN3ejl5d7ZVrdfiudi/TXX/5/XxDwBonG1Hr5O+FblGQ0Jx77v1OKNewR1JobCsJLnHjIsxH2I3WMM1+l4xH7dkb0PSZwPrwjHE5undjoJr76c6DZWa08ivsln4N9bNafChV0iT5YRGLB4a5IqRZbO/s750KEhNg+HCyTArEyPuuKCwoUolMXghrNbc9IvkfFyGCwUblytgsgSTFUAuK4vPCdms/L+FNvdqH2vxSVw9OIKFNmEH3sAu1OE9HMAnaEATBHyBK/gK36Lv0XX0O7pZlK5Fy55XcE/Rn1twprBt</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit>

0 20 40
0

20

40

60

(contrast)

(s
pi

ke
 c

ou
nt

)
Maximum Likelihood Estimation:

• given observed data , find that maximizes

• could in theory do this by turning a knob

P (y|x)
<latexit sha1_base64="scq7+Qz0RAQOse9tfscCxr6dKAg=">AAACOHicjZC7ahtBFIbPOk7sKDc7KU1giAg4jVi5SVLZYIxTymBdQKuY2dGRNNFclpmztsR638Ft8ippUucNUroKbvMEHl0KWySQH2b4+b9zmDMnzZT0FMe/orUH6w8fbWw+rjx5+uz5i63tly1vcyewKayyrpNyj0oabJIkhZ3MIdepwnY6Ppzx9jk6L605pWmGPc2HRg6k4BSiVmN3ejl5d7ZVrdfiudi/TXX/5/XxDwBonG1Hr5O+FblGQ0Jx77v1OKNewR1JobCsJLnHjIsxH2I3WMM1+l4xH7dkb0PSZwPrwjHE5undjoJr76c6DZWa08ivsln4N9bNafChV0iT5YRGLB4a5IqRZbO/s750KEhNg+HCyTArEyPuuKCwoUolMXghrNbc9IvkfFyGCwUblytgsgSTFUAuK4vPCdms/L+FNvdqH2vxSVw9OIKFNmEH3sAu1OE9HMAnaEATBHyBK/gK36Lv0XX0O7pZlK5Fy55XcE/Rn1twprBt</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit>

0 20 40
0

20

40

60

(contrast)

(s
pi

ke
 c

ou
nt

)
Maximum Likelihood Estimation:

• given observed data , find that maximizes

• could in theory do this by turning a knob

P (y|x)
<latexit sha1_base64="scq7+Qz0RAQOse9tfscCxr6dKAg=">AAACOHicjZC7ahtBFIbPOk7sKDc7KU1giAg4jVi5SVLZYIxTymBdQKuY2dGRNNFclpmztsR638Ft8ippUucNUroKbvMEHl0KWySQH2b4+b9zmDMnzZT0FMe/orUH6w8fbWw+rjx5+uz5i63tly1vcyewKayyrpNyj0oabJIkhZ3MIdepwnY6Ppzx9jk6L605pWmGPc2HRg6k4BSiVmN3ejl5d7ZVrdfiudi/TXX/5/XxDwBonG1Hr5O+FblGQ0Jx77v1OKNewR1JobCsJLnHjIsxH2I3WMM1+l4xH7dkb0PSZwPrwjHE5undjoJr76c6DZWa08ivsln4N9bNafChV0iT5YRGLB4a5IqRZbO/s750KEhNg+HCyTArEyPuuKCwoUolMXghrNbc9IvkfFyGCwUblytgsgSTFUAuK4vPCdms/L+FNvdqH2vxSVw9OIKFNmEH3sAu1OE9HMAnaEATBHyBK/gK36Lv0XX0O7pZlK5Fy55XcE/Rn1twprBt</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit><latexit sha1_base64="0rYNxxjLoIixCeyBhLOxxQRH874=">AAACOHicjZDNThsxFIU9QFsIbfkpO1TJIqqUbqIJG+iqSAjRZZAIIGWGyOO5ATP+Gdl3aMIw78C2fYi+QN+gb9BlVqjbPkGdhAWNWokj2To6373y9U1yKRyG4c9gbn7h2fMXi0u15ZevXq+srq2fOFNYDh1upLFnCXMghYYOCpRwlltgKpFwmmT7Y356DdYJo49xmEOs2IUWfcEZ+uik3RjeDt73VuutZjgR/b+pf/wxOvy2cTNq99aCt1FqeKFAI5fMuW4rzDEumUXBJVS1qHCQM56xC+h6q5kCF5eTcSv6zicp7Rvrj0Y6SR93lEw5N1SJr1QML90sG4f/Yt0C+7txKXReIGg+fahfSIqGjv9OU2GBoxx6w7gVflbKL5llHP2GarVIw2dulGI6LaPrrPIXcJpVM2DwAAYzAG1elecRmrx62kI7280PzfAorO8dkKkWySbZIg3SIjtkj3wibdIhnFyRO/KFfA2+B6PgPvg1LZ0LHnrekL8U/P4DqFCxyg==</latexit>

likelihood

Likelihood function: as a function of

Because data are independent:

0 1 2

0 1 2

log-likelihood

log

Likelihood function: as a function of

Because data are independent:

0 1 2

likelihood

0 1 2

log-likelihood

Do it: solve for

•Closed-form solution when model in “exponential family”

0 1 2

log-likelihood

Properties of the MLE (maximum likelihood estimator)

• consistent
(converges to true in limit of infinite data)

• efficient  
(converges as quickly as possible,  
i.e., achieves minimum possible asymptotic error)

spike count

spike rate

encoding model:

stimulusparameter

simple example #2: linear Gaussian neuron

0 20 40

0

20

40

60

(contrast)

(s
pi

ke
 c

ou
nt

)

0 20 40 60

All slices have same width

encoding distribution

Log-Likelihood

Differentiate, set to zero, and solve for ✓
<latexit sha1_base64="1mL7mdCDWiAOaBCSidPGnhyZV6w=">AAACOHicbZC7ThtBFIbPQrjE3EwoI6QRViQqa00DVCChKJREigHJa9Ds+BgPnstq5ixgrfYd0sKr0FDzBimporR5AsaXIjEcaUa//u8czZk/zZT0FMe/opnZD3PzC4sfK0vLK6tr1fVPp97mTmBTWGXdeco9KmmwSZIUnmcOuU4VnqX9oyE/u0HnpTU/aJBhW/MrI7tScArWaUI9JH5ZrcX1eFTsrWhMRO3g+eXbEwCcXK5Hm0nHilyjIaG4961GnFG74I6kUFhWktxjxkWfX2ErSMM1+nYxWrdkX4LTYV3rwjHERu6/EwXX3g90Gjo1p56fZkPzPdbKqbvXLqTJckIjxg91c8XIsuHfWUc6FKQGQXDhZNiViR53XFBIqFJJDN4KqzU3nSK56ZfhQsH65RS4m4C7KUAuK4uLhGxWhkAb0/G9Fc2d+n49/h7XDr/CuBbhM2zBNjRgFw7hGE6gCQKu4Sfcw0P0GL1Ev6M/49aZaDKzAf9V9PcVIVKwzg==</latexit><latexit sha1_base64="08bW+NyMbCV5777Y3FTtWP++NHs=">AAACOHicbZDLThsxFIY9oVwa7tBdVckiQmIVTdgAK5AQossgNRcpE5DHOUlMfBnZZ4AwmndgSx+CF+gb9A1YZlV12yeoc1m0gSPZ+vV/58jHf5xI4TAMX4PCwofFpeWVj8XVtfWNza3tnbozqeVQ40Ya24yZAyk01FCghGZigalYQiMenI954w6sE0Z/w2ECbcV6WnQFZ+iteoR9QHazVQrL4aToW1GZidLpz9Hly6fHUfVmO/gSdQxPFWjkkjnXqoQJtjNmUXAJeTFKHSSMD1gPWl5qpsC1s8m6Od33Tod2jfVHI524/05kTDk3VLHvVAz7bp6NzfdYK8XucTsTOkkRNJ8+1E0lRUPHf6cdYYGjHHrBuBV+V8r7zDKOPqFiMdJwz41STHey6G6Q+ws4HeRz4GEGHuYA2iTPriM0Se4DrczH91bUDssn5fAqLJ1dkGmtkM9kjxyQCjkiZ+QrqZIa4eSWPJFn8j34EYyCX8HvaWshmM3skv8q+PMXWPyyKw==</latexit><latexit sha1_base64="08bW+NyMbCV5777Y3FTtWP++NHs=">AAACOHicbZDLThsxFIY9oVwa7tBdVckiQmIVTdgAK5AQossgNRcpE5DHOUlMfBnZZ4AwmndgSx+CF+gb9A1YZlV12yeoc1m0gSPZ+vV/58jHf5xI4TAMX4PCwofFpeWVj8XVtfWNza3tnbozqeVQ40Ya24yZAyk01FCghGZigalYQiMenI954w6sE0Z/w2ECbcV6WnQFZ+iteoR9QHazVQrL4aToW1GZidLpz9Hly6fHUfVmO/gSdQxPFWjkkjnXqoQJtjNmUXAJeTFKHSSMD1gPWl5qpsC1s8m6Od33Tod2jfVHI524/05kTDk3VLHvVAz7bp6NzfdYK8XucTsTOkkRNJ8+1E0lRUPHf6cdYYGjHHrBuBV+V8r7zDKOPqFiMdJwz41STHey6G6Q+ws4HeRz4GEGHuYA2iTPriM0Se4DrczH91bUDssn5fAqLJ1dkGmtkM9kjxyQCjkiZ+QrqZIa4eSWPJFn8j34EYyCX8HvaWshmM3skv8q+PMXWPyyKw==</latexit>

Log-Likelihood

Maximum-Likelihood Estimator:
(“Least squares regression” solution)

(Recall that for Poisson,)

example #3: unknown neuron

-25 0 25
0

25

50

75

100

(contrast)

(s
pi

ke
 c

ou
nt

)

Be the computational neuroscientist: what model would you use?

Example 3: unknown neuron

More general setup:

-25 0 25
0

25

50

75

100

(contrast)

(s
pi

ke
 c

ou
nt

)

firing rate is nonlinear

Poisson firingThis is a GLM!

stimulus filter Poisson
spiking

stimulus

f

λ(t)

exponential
nonlinearity

dimensionality
reduction

nonlinear
stretching

noise

“basic” Poisson generalized linear model (GLM)

Linear-Nonlinear-Poisson (LNP) model

spike rate
spike count

✓
<latexit sha1_base64="1mL7mdCDWiAOaBCSidPGnhyZV6w=">AAACOHicbZC7ThtBFIbPQrjE3EwoI6QRViQqa00DVCChKJREigHJa9Ds+BgPnstq5ixgrfYd0sKr0FDzBimporR5AsaXIjEcaUa//u8czZk/zZT0FMe/opnZD3PzC4sfK0vLK6tr1fVPp97mTmBTWGXdeco9KmmwSZIUnmcOuU4VnqX9oyE/u0HnpTU/aJBhW/MrI7tScArWaUI9JH5ZrcX1eFTsrWhMRO3g+eXbEwCcXK5Hm0nHilyjIaG4961GnFG74I6kUFhWktxjxkWfX2ErSMM1+nYxWrdkX4LTYV3rwjHERu6/EwXX3g90Gjo1p56fZkPzPdbKqbvXLqTJckIjxg91c8XIsuHfWUc6FKQGQXDhZNiViR53XFBIqFJJDN4KqzU3nSK56ZfhQsH65RS4m4C7KUAuK4uLhGxWhkAb0/G9Fc2d+n49/h7XDr/CuBbhM2zBNjRgFw7hGE6gCQKu4Sfcw0P0GL1Ev6M/49aZaDKzAf9V9PcVIVKwzg==</latexit><latexit sha1_base64="08bW+NyMbCV5777Y3FTtWP++NHs=">AAACOHicbZDLThsxFIY9oVwa7tBdVckiQmIVTdgAK5AQossgNRcpE5DHOUlMfBnZZ4AwmndgSx+CF+gb9A1YZlV12yeoc1m0gSPZ+vV/58jHf5xI4TAMX4PCwofFpeWVj8XVtfWNza3tnbozqeVQ40Ya24yZAyk01FCghGZigalYQiMenI954w6sE0Z/w2ECbcV6WnQFZ+iteoR9QHazVQrL4aToW1GZidLpz9Hly6fHUfVmO/gSdQxPFWjkkjnXqoQJtjNmUXAJeTFKHSSMD1gPWl5qpsC1s8m6Od33Tod2jfVHI524/05kTDk3VLHvVAz7bp6NzfdYK8XucTsTOkkRNJ8+1E0lRUPHf6cdYYGjHHrBuBV+V8r7zDKOPqFiMdJwz41STHey6G6Q+ws4HeRz4GEGHuYA2iTPriM0Se4DrczH91bUDssn5fAqLJ1dkGmtkM9kjxyQCjkiZ+QrqZIa4eSWPJFn8j34EYyCX8HvaWshmM3skv8q+PMXWPyyKw==</latexit><latexit sha1_base64="08bW+NyMbCV5777Y3FTtWP++NHs=">AAACOHicbZDLThsxFIY9oVwa7tBdVckiQmIVTdgAK5AQossgNRcpE5DHOUlMfBnZZ4AwmndgSx+CF+gb9A1YZlV12yeoc1m0gSPZ+vV/58jHf5xI4TAMX4PCwofFpeWVj8XVtfWNza3tnbozqeVQ40Ya24yZAyk01FCghGZigalYQiMenI954w6sE0Z/w2ECbcV6WnQFZ+iteoR9QHazVQrL4aToW1GZidLpz9Hly6fHUfVmO/gSdQxPFWjkkjnXqoQJtjNmUXAJeTFKHSSMD1gPWl5qpsC1s8m6Od33Tod2jfVHI524/05kTDk3VLHvVAz7bp6NzfdYK8XucTsTOkkRNJ8+1E0lRUPHf6cdYYGjHHrBuBV+V8r7zDKOPqFiMdJwz41STHey6G6Q+ws4HeRz4GEGHuYA2iTPriM0Se4DrczH91bUDssn5fAqLJ1dkGmtkM9kjxyQCjkiZ+QrqZIa4eSWPJFn8j34EYyCX8HvaWshmM3skv8q+PMXWPyyKw==</latexit>

• also known as a “cascade” model

What is a GLM?

Be careful about terminology:

Linear Linear

General Linear Model Generalized Linear Model

GLM GLM≠

(Nelder 1972)

Moral:
Be careful when naming your model!

Linear Noise

“Dimensionality
Reduction”

(exponential family)

Examples: 1. Gaussian

2. Poisson

y = ~✓ · ~x + ✏

1. General Linear Model

2. Generalized Linear Model

Linear

Examples: 1. Gaussian

2. Poisson

Noise
(exponential family)

Nonlinear

y = f(~✓ · ~x) + ✏

2. Generalized Linear Model

Linear Noise
(exponential family)

Nonlinear

Terminology:

“distribution
function”

“parameters”
= “link function”

f
<latexit sha1_base64="AI/t4M9ypbTplLN4BJ80y0xLxXQ=">AAACNHicbVBNSxxBEK0xJurmQzc5itAogZyW2VwSb0IIeFTJZhd2NtLTU6PN9sfQXaO7DPMPvCZ/Jdf8C/GQU/Dqb0jvx0FHH1TxeK+Krn5poaSnOL6JVp6tPn+xtr7Revnq9ZvNrfbb796WTmBPWGXdIOUelTTYI0kKB4VDrlOF/XT8Zeb3L9B5ac03mhY40vzMyFwKTkE6ydnp1l7ciedgj0l3SfYO2J9rCDg6bUc7SWZFqdGQUNz7YTcuaFRxR1IorFtJ6bHgYszPcBio4Rr9qJqfWrP3QclYbl0oQ2yu3t+ouPZ+qtMwqTmd+6Y3E5/yhiXln0eVNEVJaMTiobxUjCyb/Ztl0qEgNQ2ECyfDrUycc8cFhXRarcTgpbBac5NVycW4Dg0FG9cNY7I0Jg2DXFFXPxKyRR0C7Tbje0x6Hzv7nfg4BPsVFliHbdiFD9CFT3AAh3AEPRCQwxX8hF/R7+hv9C+6XYyuRMudd/AA0d1/cc6twA==</latexit><latexit sha1_base64="RQP4MU4syzl9VD9nDpZqDmBMilc=">AAACNHicbZC7SgQxFIYz3l3vWooQFMFqmbVRO0EFSxVXhZ1VMtkzGjaXITmjLsO8ga2+ioWNTyFYWImtnb3ZS6GrBxJ+/u8ccvLHqRQOw/A1GBgcGh4ZHRsvTUxOTc/Mzs2fOJNZDlVupLFnMXMghYYqCpRwllpgKpZwGjd32vz0GqwTRh9jK4W6YpdaJIIz9NZRQi9mV8Jy2Cn6V1R6YmWbPr987T4tHlzMBUtRw/BMgUYumXO1SphiPWcWBZdQlKLMQcp4k11CzUvNFLh63lm1oKveadDEWH800o77cyJnyrmWin2nYnjl+lnb/I/VMkw267nQaYagefehJJMUDW3/mzaEBY6y5QXjVvhdKb9ilnH06ZRKkYYbbpRiupFH183CX8Bps+gDtz1w2wfQpkV+HqFJCx9opT++v6K6Xt4qh4c+2D3SrTGySJbJGqmQDbJN9skBqRJOEnJH7slD8Bi8Be/BR7d1IOjNLJBfFXx+A8zZr84=</latexit><latexit sha1_base64="RQP4MU4syzl9VD9nDpZqDmBMilc=">AAACNHicbZC7SgQxFIYz3l3vWooQFMFqmbVRO0EFSxVXhZ1VMtkzGjaXITmjLsO8ga2+ioWNTyFYWImtnb3ZS6GrBxJ+/u8ccvLHqRQOw/A1GBgcGh4ZHRsvTUxOTc/Mzs2fOJNZDlVupLFnMXMghYYqCpRwllpgKpZwGjd32vz0GqwTRh9jK4W6YpdaJIIz9NZRQi9mV8Jy2Cn6V1R6YmWbPr987T4tHlzMBUtRw/BMgUYumXO1SphiPWcWBZdQlKLMQcp4k11CzUvNFLh63lm1oKveadDEWH800o77cyJnyrmWin2nYnjl+lnb/I/VMkw267nQaYagefehJJMUDW3/mzaEBY6y5QXjVvhdKb9ilnH06ZRKkYYbbpRiupFH183CX8Bps+gDtz1w2wfQpkV+HqFJCx9opT++v6K6Xt4qh4c+2D3SrTGySJbJGqmQDbJN9skBqRJOEnJH7slD8Bi8Be/BR7d1IOjNLJBfFXx+A8zZr84=</latexit>

= “the nonlinearity”

00 10 00 1 00 0 0 0 0 1 010 10 0 0 0 00 0 0 00 0 00 000 00 0

stimulus

response

Applying it to data

linear
filter

vector stimulus
at time t

yt = ~k · ~xt + noise

time

response
at time t

~xt

yt

00 10 00 1 00 0 0 0 0 1 010 10 0 0 0 00 0 0 00 0 00 000 00 0

stimulus

response

linear
filter

vector stimulus
at time t

yt = ~k · ~xt + noise

time

response
at time t

t = 1

walk through the data
one time bin at a time

~xt

yt

00 10 00 1 00 0 0 0 0 1 010 10 0 0 0 00 0 0 00 0 00 000 00 0

linear
filter

vector stimulus
at time t

yt = ~k · ~xt + noise

time

response
at time t

t = 2

walk through the data
one time bin at a time

stimulus

response

~xt

yt

00 10 00 1 00 0 0 0 0 1 010 10 0 0 0 00 0 0 00 0 00 000 00 0

linear
filter

vector stimulus
at time t

yt = ~k · ~xt + noise

time

response
at time t

t = 3

walk through the data
one time bin at a time

stimulus

response

~xt

yt

00 10 00 1 00 0 0 0 0 1 010 10 0 0 0 00 0 0 00 0 00 000 00 0

linear
filter

vector stimulus
at time t

yt = ~k · ~xt + noise

time

response
at time t

t = 4

walk through the data
one time bin at a time

stimulus

response

~xt

yt

00 10 00 1 00 0 0 0 0 1 010 10 0 0 0 00 0 0 00 0 00 000 00 0

linear
filter

vector stimulus
at time t

yt = ~k · ~xt + noise

time

response
at time t

t = 5

walk through the data
one time bin at a time

stimulus

response

~xt

yt

00 10 00 1 00 0 0 0 0 1 010 10 0 0 0 00 0 0 00 0 00 000 00 0

linear
filter

vector stimulus
at time t

yt = ~k · ~xt + noise

time

response
at time t

t = 6

walk through the data
one time bin at a time

stimulus

response

Build up to following matrix version:

0
0
1

…

Y X~k= + noise

…

~k=tim
e

design matrix

Computing maximum likelihood estimate

0
0
1

…

Y X~k= + noise

…
=tim

e

stimulus
covariance

spike-triggered avg
(STA)

k̂ = (XTX)�1XTY

~k

1. “Linear-Gaussian” GLM:

0
0
1

…

Y = + noise

…
=tim

e

2. Poisson GLM: k = glmfit(X,Y,‘Poisson’);

maximum likelihood fit
(assumes exponential nonlinearity by default)

~k

Computing maximum likelihood estimate

<latexit sha1_base64="CaRu3bohmMwwqXh5y9qIYwNjphg=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0m8qLeiF48VjC2koWy2k3bpZhN2J4VS+jO8eFDx6r/x5r9x2+agrQ8GHu/NMDMvyqQw6Lrfztr6xubWdmmnvLu3f3BYOTp+MmmuOfg8laluR8yAFAp8FCihnWlgSSShFQ3vZn5rBNqIVD3iOIMwYX0lYsEZWimIa23aGQGnw4tuperW3TnoKvEKUiUFmt3KV6eX8jwBhVwyYwLPzTCcMI2CS5iWO7mBjPEh60NgqWIJmHAyP3lKz63So3GqbSmkc/X3xIQlxoyTyHYmDAdm2ZuJ/3lBjvF1OBEqyxEUXyyKc0kxpbP/aU9o4CjHljCuhb2V8gHTjKNNqWxD8JZfXiX+Zf2m7j241cZtkUaJnJIzUiMeuSINck+axCecpOSZvJI3B50X5935WLSuOcXMCfkD5/MHKGeQDA==</latexit>

0
0
1

…

Y = + noise

…
=tim

e

3. Bernoulli GLM: k = glmfit(X,Y,’binomial’);
(assumes logistic nonlinearity by default)

~k

“logistic regression”

outputs 0 and 1

Computing maximum likelihood estimate

<latexit sha1_base64="CaRu3bohmMwwqXh5y9qIYwNjphg=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0m8qLeiF48VjC2koWy2k3bpZhN2J4VS+jO8eFDx6r/x5r9x2+agrQ8GHu/NMDMvyqQw6Lrfztr6xubWdmmnvLu3f3BYOTp+MmmuOfg8laluR8yAFAp8FCihnWlgSSShFQ3vZn5rBNqIVD3iOIMwYX0lYsEZWimIa23aGQGnw4tuperW3TnoKvEKUiUFmt3KV6eX8jwBhVwyYwLPzTCcMI2CS5iWO7mBjPEh60NgqWIJmHAyP3lKz63So3GqbSmkc/X3xIQlxoyTyHYmDAdm2ZuJ/3lBjvF1OBEqyxEUXyyKc0kxpbP/aU9o4CjHljCuhb2V8gHTjKNNqWxD8JZfXiX+Zf2m7j241cZtkUaJnJIzUiMeuSINck+axCecpOSZvJI3B50X5935WLSuOcXMCfkD5/MHKGeQDA==</latexit>

GLM summary

k̂ = (XTX)�1XTY

1. Linear-Gaussian GLM: Y |X,~k ⇠ N (X~k,�2I)

2. Poisson GLM:

3. Bernoulli GLM: yt|~xt,~k ⇠ Ber(f(~xt · ~k))

<latexit sha1_base64="UNt4lEq3y3m8KLk2pIT2tsWpp4c=">AAACbXicbZDNThsxFIWdofw0LRBA6qZQWY0QsCCaYdOyqITaTRcsqERKqkyIPM6dxIp/RvYdSjSaZ+Fpum3XfQseAWeYRQm9kq2j890rX58kk8JhGP5tBEsvlldW1142X71e39hsbW1/dya3HLrcSGN7CXMghYYuCpTQyywwlUi4SqZf5vzqBqwTRl/iLIOBYmMtUsEZemvYOo0Vwwlnsjgv6Sf6I0ab0ViaMU0Pe/HN9Ige06olSYuorGgNhq122Amros9FVIs2qetiuNXYi0eG5wo0csmc60dhhoOCWRRcQtmMcwcZ41M2hr6Xmilwg6L6Y0n3vTOiqbH+aKSV++9EwZRzM5X4zvm6bpHNzf+xfo7px0EhdJYjaP74UJpLiobOA6MjYYGjnHnBuBV+V8onzDKOPtZmM9bwkxulmB4VPpbSX8DptFwAtzW4XQA+0LK4jtFkpQ80WozvueiedE474bewffa5TnaNvCXvySGJyAdyRr6SC9IlnNyRX+Q3+dO4D94Eu8G7x9agUc/skCcVHDwAMYS9SQ==</latexit>

<latexit sha1_base64="HP+VfMMA0E+XGBPwmKdZYtaDvzk=">AAACcnicbZHLahsxFIbl6S11L7GTZSioNQUbGjPTTZJFSkg3WXThQl07eFyjkc84wroM0hknZpi3ydNkm2z6IN1HdgfaOj0g8ev/dJD0K8mkcBiGP2vBo8dPnj7bel5/8fLV6+1Gc+e7M7nl0OdGGjtMmAMpNPRRoIRhZoGpRMIgmX9e8cECrBNGf8NlBmPFZlqkgjP01qTxKVYMLziTxZeSHtPzGG1GY2lmNG0P48W8Q/dpO9o/7/wBflmxDp00WmE3XBd9KKJKtEhVvUmz9iaeGp4r0Mglc24UhRmOC2ZRcAllPc4dZIzP2QxGXmqmwI2L9UNL+t47U5oa64dGunb/7iiYcm6pEr9z9Sy3yVbm/9gox/RwXAid5Qia/z4ozSVFQ1ep0amwwFEuvWDcCn9Xyi+YZRx9tvV6rOGSG6WYnhY+mNJPwOm83ABXFbjaAD7asvgRo8lKH2i0Gd9D0f/YPeqGX8PWyWmV7BbZI+9Im0TkgJyQM9IjfcLJNbkht+Su9ivYC94G1TcEtapnl/xTwYd7gzC9GQ==</latexit>

log-likelihood:

<latexit sha1_base64="F3rP+XsnNYD2Mnh1h5tcub2kI7M=">AAACXXicbVBNb9NAEN2YUkpaSkoPHLisGiGlEorsXgD1UrUXjqlEaKVsFK3X43SV/bB2xyWR8f/h13Cl3PpTuk59gJSRdvT03hvNzksLJT3G8Z9O9Gzr+faLnZfd3b1X+697B2++eVs6AWNhlXXXKfegpIExSlRwXTjgOlVwlS4uGv3qFpyX1nzFVQFTzedG5lJwDNSsd76iPyi7XX4IbUHZKfNSs1NKmeZ443Q1stL7mqVyPqD5IBhnSJnILDb+44Y/nvX68TBeF30Kkhb0SVuj2UFni2VWlBoMCsW9nyRxgdOKO5RCQd1lpYeCiwWfwyRAwzX4abU+tqbvA5PR3LrwDNI1+/dExbX3K50GZ3OD39Qa8n/apMT807SSpigRjHhclJeKoqVNcjSTDgSqVQBcOBn+SsUNd1xgyLfbZQa+C6s1N1kVsqlDA0EX9YawbIVlHXJLNlN6CsYnw8/D5DLun523Ae6Qd+SIDEhCPpIz8oWMyJgI8pP8Ir/JXec+2o72ov1Ha9RpZw7JPxW9fQBidLYs</latexit>

<latexit sha1_base64="/eGfDfF6Yx5Ln/n5tPz6/Ht41Bw=">AAACZnicbZDNThsxFIWdaaEQ/gJVxQIhWURIVBXRTDaFHSqbLkEiJSgTIo9zJ1jxz8i+A0SjeY8+TbflFfoIfQucMEgQuJKt43Pule0vyaRwGIb/asGHjwuLn5aW6yura+sbjc2tX87klkOHG2lsN2EOpNDQQYESupkFphIJl8n4dJpf3oJ1wugLnGTQV2ykRSo4Q28NGu3DGFPLeBGVRTt2YqTYdbs8uDrsxrfjrzHajD4f6DfKjXY4aDTDVjgr+lZElWiSqs4Gm7XdeGh4rkAjl8y5XhRm2C+YRcEllPU4d5AxPmYj6HmpmQLXL2afK+m+d4Y0NdYvjXTmvpwomHJuohLfqRjeuPlsar6X9XJMj/qF0FmOoPnTRWkuKRo6JUWHwgJHOfGCcSv8Wym/YZ4Vep71eqzhjhulmB4WHk/pN+B0XM4F91VwPxd4smVxHaPJSg80msf3VnTareNWdB42T35UZJfIDtkjByQi38kJ+UnOSIdw8pv8IX/JQ+1/sBF8CbafWoNaNfOZvKqAPgIWdLp7</latexit>

log-likelihood:

MLE:

log-likelihood:

“logistic regression” if

integer counts

binary counts

continuous

<latexit sha1_base64="lp1eCGr0ThxpOBIdDQbd/kxVouE=">AAACTXicdZDfahNBFMZno7U1tTbVKxFhaBBaistOTU17USh642UFYwvZNMxOzrZD5s8yM1sThqVP09v6Kt76Il6V4mwaQYMemOHj+53DmfmyQnDrkuRH1HjwcOnR8srj5uqTtafrrY1nX6wuDYMe00Kb04xaEFxBz3En4LQwQGUm4CQbf6j5ySUYy7X67KYFDCQ9VzznjLpgDVsv8q3JNj7EaW4o86TyZAfO/JtJVQ1b7SQ+2O+8JR2cxAkh3Xd7tdjtdvYIJnEyqzaa1/FwI3qVjjQrJSjHBLW2T5LCDTw1jjMBVTMtLRSUjek59INUVIId+NkfKvw6OCOcaxOOcnjm/jnhqbR2KrPQKam7sIusNv/F+qXL9weeq6J0oNj9orwU2GlcB4JH3ABzYhoEZYaHt2J2QUMaLsTWbKYKvjItJVUjn16Oq3ABw+NqAUzmYLIAnCkqf5Y6XdSB/k4N/1/0duODmHxK2kfv58muoJdoE20hgrroCH1Ex6iHGLpC1+gGfYu+Rz+j2+juvrURzWeeo7+qsfwLVEK0Hg==</latexit>

yx
stimuli spike trains

NEXT:

GLMs with spike-history and coupling

stimulus filter Poisson
spiking

stimulus

k
λ(t)

spike rate

exponential
nonlinearity

f

• problem: assumes spiking depends only on stimulus!

Poisson GLM

Poisson GLM with spike-history dependence

post-spike filter

exponential
nonlinearity

probabilistic
spiking

stimulus

stimulus filter

+

(Truccolo et al 2004, Gerstner 2001)

• output: no longer a Poisson process
• interpretation: “soft-threshold” integrate-and-fire model

spike rate:

k
h

f

Poisson GLM with spike-history dependence

post-spike filter

exponential
nonlinearity

probabilistic
spiking

stimulus

stimulus filter

+

(Truccolo et al 2004, Gerstner 2001)

k
h

f

filter output

traditional IF

filter output

∞
“hard threshold”

“soft-threshold” IF

sp
ik

e
ra

te

• interpretation: “soft-threshold” integrate-and-fire model

<latexit sha1_base64="Foj+KEmVWEyBlwzgy1UK2SPlVfo=">AAACM3icbZDLSgMxFIYz3q13XYoQLIKrMuNG3RXduFSwKnSqZNLTNjSXITlTLcM8gVt9Fd9FcCVufQfTOgutHkj4+b9zyMmfpFI4DMPXYGp6ZnZufmGxsrS8srq2vrF55UxmOTS4kcbeJMyBFBoaKFDCTWqBqUTCddI/HfHrAVgnjL7EYQotxbpadARn6K2Lq7v1algLx0X/iqgUVVLW+d1GsBO3Dc8UaOSSOdeMwhRbObMouISiEmcOUsb7rAtNLzVT4Fr5eNOC7nmnTTvG+qORjt2fEzlTzg1V4jsVw56bZCPzP9bMsHPUyoVOMwTNvx/qZJKioaNv07awwFEOvWDcCr8r5T1mGUcfTqUSa7jnRimm23k86Bf+Ak77xQR4KMHDBECbFvltjCYtfKDRZHx/ReOgdlyLLsJq/aRMdoFsk12yTyJySOrkjJyTBuEEyCN5Is/BS/AWvAcf361TQTmzRX5V8PkFuZyrjQ==</latexit>

GLM dynamic behaviors

post-spike filter
h(t)

stimulus

p(spike)

• irregular spiking

filter outputs
(“currents”)

GLM dynamic behaviors

post-spike filter
h(t)

stimulus

p(spike)

• regular spiking

filter outputs
(“currents”)

GLM dynamic behaviors

post-spike filter
h(t)

stimulus

filter outputs
(“currents”)

p(spike)

• adaptation

GLM dynamic behaviors

post-spike filter
h(t)

• bursting

filter outputs
(“currents”)

p(spike)

stimulus

GLM dynamic behaviors (from Izhikevich)
A B C D

E F G H

I J K L

M N O P

tonic spiking phasic spiking tonic bursting phasic bursting

mixed mode type I type II

spike latency resonator integrator rebound spike

rebound burst variability
bistability I bistability II

50 ms

spike frequency
adaptation

threshold

Figure 6: Suite of dynamical behaviors of Izhikevich and GLM neurons. Each panel,

top to bottom: stimulus (blue), Izhikevich neuron response (black), GLM responses

on five trials (gray), stimulus filter (left, blue), and post-spike filter (right, red). Black

line in each plot indicates a 50 ms scale bar for the stimulus and spike response.

(Differing timescales reflect timescales used for each behavior in original Izhikevich

paper (Izhikevich, 2004)). Stimulus filter and post-spike filter plots all have 100 ms

duration.

19

(Weber &
Pillow 2017)

Izhikevich neuron

GLM spikes

stimulus

GLM parameters

multi-neuron GLM

exponential
nonlinearity

probabilistic
spiking

stimulus

neuron 1

neuron 2

post-spike filter

stimulus filter

+

+

multi-neuron GLM

exponential
nonlinearity

probabilistic
spiking

coupling
filters

stimulus

neuron 1

neuron 2

post-spike filter

stimulus filter

+

+

...

time t

GLM equivalent diagram:

spike rate

Uzzell et al (J Neurophys 04)

• stimulus = binary flicker 
• parasol retinal ganglion cell spike responses

Example dataset

Uzzell et al (J Neurophys 04)

• stimulus = binary flicker 
• parasol retinal ganglion cell spike responses

Example dataset

YX~k

tim
e

time lag

<latexit sha1_base64="T7110r2UjToEat5gBhsCYBUeHmw=">AAACOHicbZDLThsxFIY9XAqktFy6REhWI6SwiWbYADsEmy5TqSFBmTTyOCfBjS8j+0wgms47sIVX4Um67KpiyxPgJLOA0CPZ+vV/58jHf5JK4TAM/wRLyyurH9bWNyofNz993tre2b10JrMcmtxIY9sJcyCFhiYKlNBOLTCVSGglo4spb43BOmH0D5yk0FVsqMVAcIbeumzUrn63D3vb1bAezoq+F1EpqqSsRm8n2I/7hmcKNHLJnOtEYYrdnFkUXEJRiTMHKeMjNoSOl5opcN18tm5BD7zTpwNj/dFIZ+7riZwp5yYq8Z2K4bVbZFPzf6yT4eCkmwudZgiazx8aZJKiodO/076wwFFOvGDcCr8r5dfMMo4+oUol1nDDjVJM9/N4PCr8BZyOigVwW4LbBYA2LfKfMZq08IFGi/G9F82j+mk9+h5Wz87LZNfJHvlKaiQix+SMfCMN0iSc/CJ35J48BI/B3+Bf8DRvXQrKmS/kTQXPLyBqrTc=</latexit>

model

Stimulus-only GLM

spike responsedesign matrix

tim
e <latexit sha1_base64="T7110r2UjToEat5gBhsCYBUeHmw=">AAACOHicbZDLThsxFIY9XAqktFy6REhWI6SwiWbYADsEmy5TqSFBmTTyOCfBjS8j+0wgms47sIVX4Um67KpiyxPgJLOA0CPZ+vV/58jHf5JK4TAM/wRLyyurH9bWNyofNz993tre2b10JrMcmtxIY9sJcyCFhiYKlNBOLTCVSGglo4spb43BOmH0D5yk0FVsqMVAcIbeumzUrn63D3vb1bAezoq+F1EpqqSsRm8n2I/7hmcKNHLJnOtEYYrdnFkUXEJRiTMHKeMjNoSOl5opcN18tm5BD7zTpwNj/dFIZ+7riZwp5yYq8Z2K4bVbZFPzf6yT4eCkmwudZgiazx8aZJKiodO/076wwFFOvGDcCr8r5dfMMo4+oUol1nDDjVJM9/N4PCr8BZyOigVwW4LbBYA2LfKfMZq08IFGi/G9F82j+mk9+h5Wz87LZNfJHvlKaiQix+SMfCMN0iSc/CJ35J48BI/B3+Bf8DRvXQrKmS/kTQXPLyBqrTc=</latexit>

model model

stimulus
portion

spike-history
portion

Stimulus + SpikeHistory GLM

YX~k

spike responsedesign matrix

tim
e <latexit sha1_base64="T7110r2UjToEat5gBhsCYBUeHmw=">AAACOHicbZDLThsxFIY9XAqktFy6REhWI6SwiWbYADsEmy5TqSFBmTTyOCfBjS8j+0wgms47sIVX4Um67KpiyxPgJLOA0CPZ+vV/58jHf5JK4TAM/wRLyyurH9bWNyofNz993tre2b10JrMcmtxIY9sJcyCFhiYKlNBOLTCVSGglo4spb43BOmH0D5yk0FVsqMVAcIbeumzUrn63D3vb1bAezoq+F1EpqqSsRm8n2I/7hmcKNHLJnOtEYYrdnFkUXEJRiTMHKeMjNoSOl5opcN18tm5BD7zTpwNj/dFIZ+7riZwp5yYq8Z2K4bVbZFPzf6yT4eCkmwudZgiazx8aZJKiodO/076wwFFOvGDcCr8r5dfMMo4+oUol1nDDjVJM9/N4PCr8BZyOigVwW4LbBYA2LfKfMZq08IFGi/G9F82j+mk9+h5Wz87LZNfJHvlKaiQix+SMfCMN0iSc/CJ35J48BI/B3+Bf8DRvXQrKmS/kTQXPLyBqrTc=</latexit>

model model

stimulus
portion

neuron 1
spike-hist

neuron 2
spike-hist

neuron 3
spike-hist

neuron 4
spike-hist

YX~k

spike responsedesign matrix

Stimulus + History + 3 Neuron Coupling GLM

Fitting: Maximum Likelihood

• maximize log-likelihood for 
 filters {k, h1, h2, …hn}GLMData

• log-likelihood is concave
• no local maxima [Paninski 04]

logP (Y |X) =
X

t

yt log �t � �t

<latexit sha1_base64="6FqC25K3VDOCpK+hSgntuV0eIRs=">AAACVXicbVBNT9tAFFy7FGgoEOBYIW0bVaKXyO6lcKiE4MIRJAJIcYjW62dYZT+s3eeQyPK5v6ZX+Cv0z1RsEh/awEi7Gs3M09udtJDCYRT9CcJ3K+9X19Y/tDY+bm5tt3d2r5wpLYceN9LYm5Q5kEJDDwVKuCksMJVKuE5HpzP/egzWCaMvcVrAQLE7LXLBGXpp2P6cSB/O2BDpT5ofJOOJZwnPjL/HwOno27DdibrRHPQ1iRvSIQ3OhzvBfpIZXirQyCVzrh9HBQ4qZlFwCXUrKR0UjI/YHfQ91UyBG1Tzv9T0q1cymhvrj0Y6V/+dqJhybqpSn1QM792yNxPf8vol5oeDSuiiRNB8sSgvJUVDZ8XQTFjgKKeeMG6Ffyvl98wyjr6+VivR8MCNUkxnVTIe1dWinnrJmDTGZMlAW9TVbYKmqH2h8XJ9r0nve/eoG19EneOTptl18ol8IQckJj/IMTkj56RHOPlFfpNH8hQ8B3/DlXB1EQ2DZmaP/Idw+wUvX7T3</latexit>

firing rate:

convexity and concavity

concave convex

• everywhere downward
curvature

• everywhere upward
curvature

• maximizing concave function ⟺ minimizing a convex function

• preclude existence of non-global local optima

1 2 3 4 5 7 8 9 106

 2

11

10

9

8

6

5

4

 3

7

75 sp/s

50 ms

1

2

3

4

5

6 7

8

9

1 0

11

receptive fields

modeling correlation structure in neural spike trains

data
GLM
uncoupled GLM

Pillow et al 2008

37

[Pillow et al 2008]

cross-correlations
cell #

ce
ll

#

capturing dependencies in multi-neuron responses

retinal receptive fields

Decoding

y

x ?

• estimate stimuli from the observed spike times
• tool for comparing different encoding models

1 pixel

Frechette et al, 2005

Decode: response 1

Q: what was the stimulus?

Frechette et al, 2005

Decode: response 2

Q: what was the stimulus?

0

55

0 1 2 3

c
e
ll

time (s)

Responses to Moving Bar

Frechette et al, 2005

y

x ?

Bayes’ rule:

likelihoodposterior prior

Bayesian Decoding

y

x ?

Bayes’ rule:

likelihoodposterior prior

“independent”
(uncoupled GLM)

“joint encoding”
(coupled GLM)

vs.

Bayesian Decoding

Decoding Comparison

Bayesian
decoding

0

1 0

2 0

3 0

4 0
w/o coupling

with coupling

20% increase

linear
decoding

linear

[Pillow et al 2008]

Regularization

Modern statistics
• more dimensions than samples

= N
observations

D regressors

• fewer equations than unknowns!
• no unique solution

+ noise

Simulated Example

truetrue w maximum likelihood

• 100-element filter (D=100)
• 100 noisy samples (N=100)

maximize

“overfitting” - parameters fit to details in the training data
that are not useful for predicting new data

Simulated Example

truetrue w maximum likelihood

maximize

“ridge regression”

maximize

penalty on
big weights

• 100-element filter (D=100)
• 100 noisy samples (N=100)

true

maximum likelihood

ridge

Lasso

automatic relevance

automatic smoothness

“L2 shrinkage”

ARD
(sparse)

ASD

“L1 shrinkage”
(sparse)

 - biased, but gives improved performance for appropriate
choice of λ (James & Stein 1960)

Simulated Example

truetrue w maximum likelihood

maximize

“smoothed”

maximize

smoothness
penalty

• 100-element filter (D=100)
• 100 noisy samples (N=100)

Simplest answer: use cross-validation!
Q: how to set the regularization strength ? �

GLM tutorial (matlab):
code: https://github.com/pillowlab/GLMspiketraintutorial
data: available on request from pillow@princeton.edu

• tutorial1_PoissonGLM.m - fitting of a linear-Gaussian GLM and
Poisson GLM (aka LNP model) to RGC neurons stimulated with
temporal white noise stimulus. 

• tutorial2_spikehistcoupledGLM.m - fitting of a Poisson GLM with
spike-history and coupling between neurons. 

• tutorial3_regularization_linGauss.m - regularizing linear-Gaussian
model parameters using maximum a posteriori (MAP) estimation under
two kinds of priors:
◦ (1) ridge regression (aka "L2 penalty");
◦ (2) L2 smoothing prior (aka "graph Laplacian”).

• tutorial4_regularization_PoissonGLM.m - MAP estimation of Poisson-
GLM parameters using same two priors as in tutorial3.

GLM summary

• linear (“dim reduction”) + nonlinear + noise

• incorporate spike-history via “spike history” filter

• rich dynamical properties: refractoriness, bursting, adaptation

• incorporate correlations between neurons via “coupling”
filters

• flexible tool for encoding & decoding analyses

• regularize to reduce overfitting (essential w/ correlated
stimuli)

Beyond GLM

Taylor series expansion of a function f(x) in n dimensions

const

vector

matrix

3-tensor

1 n
(20)

n3

(8000)
n2

(400)
parameters:

polynomial models

Volterra / Wiener Kernels

Lee & Schetzen 1965
Marmarelis & Naka 1972
Korenberg & Hunter1986

• from “systems identification” literature (1960s-70s)
• white noise stimuli
• estimate kernels using moments of spike-triggered stimuli

Why are Volterra/Wiener models (generally) bad?

• no output nonlinearity
• polynomials give poor fit to neural nonlinearities (e.g.,

rectifying, saturating)

-3 -2 -1 0 1 2 3-50

0

50

100

150

ra
te

 (s
p/

s)

stimulus projection

true response
linear model
quad model

• responses may depend on more than one projection of stimulus!
• emphasis on dimensionality reduction

• no longer technically a GLM if fitting nonlinearity f

multi-filter LNP

multi-filter LNP

• Spike-triggered covariance (STC) [de Ruyter & Bialek 1998, Schwartz et al 2006]

• Generalized Quadratic Model (GQM) [Park & Pillow 2011; Park et al 2013; Rajan et al 2013]

• maximally informative dimensions (MID) / maximum likelihood

[Sharpee et al 2004] [Williamson et al 2015]

Estimators:

extending GLM to conductance-based model

Stimulus

nonlinearity

inh filter

exc filter

noise

post-spike filter
spikes

�(t) = f(V (t))

membrane
dynamics

dV

dt
= gl(El � V) + ge(Ee � V) + gi(Ei � V)

inst. spike rate

conductances
ge(t) = fc(ke · x(t))
gi(t) = fc(ki · x(t))

• shunting inhibition
• adaptive changes in dynamics

[Latimer et al 2014]

excitatory (from spikes)
inhibitory (from spikes)
excitatory (from conductance)
inhibitory (from conductance)

Linear filters

0 100 200

−0.1

0

0.1

time (ms)

ga
in

• intracellular recordings in macaque parasol RGCs (Fred Rieke)

250ms

10
nS

ex
ci

ta
to

ry
in

hi
bi

to
ry

measured conductances
fit to conductance (R2=0.83)
fit to spikes (R2 = 0.63)

(R2=0.63)
(R2 = 0.51)

extending GLM to conductance-based model

[Latimer et al 2014]

many other biophysically oriented extensions

other aspects of neuronal processing into the linear stimulus-
processing framework, and can be used to model nonlinear
stimulus processing through predefined nonlinear transformations
[31,32,58]. Importantly, this approach also provides a foundation
for parameter estimation for the NIM.

A principal motivation for the NIM structure is that if the
neuronal output at one level is well described by an LN model,
downstream neurons will receive inputs that are already rectified
(or otherwise nonlinearly transformed). Thus, we use LN models
to represent the inputs to the neuron in question, and the neuron’s
response is given by a summation over these LN inputs followed by
the neuron’s own spiking nonlinearity (Fig. 2B). Importantly, this
allows us to account for the rectification of a neuron’s inputs
imposed by the spike-generation process. The NIM can thus be
viewed as a ‘second-order’ generalization of the LN model, or an
LNLN cascade [59,60]. Previous work from our lab [45] cast this
model structure in a probabilistic form, and suggested several
statistical innovations in order to fit the models using neural data
[45,61,62]. Here, we present a general and detailed framework for
NIM parameter estimation that greatly extends the applicability of
the model. This model structure has also been suggested for
applications outside of neuroscience in the form of projection
pursuit regression [63], including generalizations to response
variables with distributions from the exponential family [64].

The processing of the NIM is comprised of three stages (Fig. 2C):
(a) the filters ki that define the stimulus selectivity of each input; (b)
the static ‘upstream’ nonlinearities fi(.) and corresponding linear
weights wi which determine how each input contributes to the
overall response; and (c) the spiking nonlinearity F[.] applied to the
linear sum over the neuron’s inputs. The predicted firing rate r(t) is
then given as:

r(t)~F
X

i

w ifi ki
:s(t)ð Þð Þzh:x(t)

" #

, ð1 Þ

where s(t) is the (vector-valued) stimulus at time t, x(t) represents
any additional covariates (such as the neuron’s own spike history),
and h is a linear filter operating on x. Note that equation (1)
reduces to a GLM when the fi(.) are linear functions. The wi can
also be extended to include temporal convolution of the subunit
contributions to model the time course of post-synaptic responses
associated with individual inputs [45], as well as ‘spatial’
convolutions to account for multiple spatially distributed inputs
with similar stimulus selectivity [65]. Since equivalent models can
be produced by rescaling the wi, and fi(.) (see Methods), we
constrain the subunit weights wi to be either +/21. Because we
generally assume the fi(.) are rectifying functions, the wi thus specify
whether each subunit will have an ‘excitatory’ or ‘inhibitory’
influence on the neuron.

Parameter estimation for the NIM is based on maximum
likelihood (or maximum a posteriori) methods similar to those used
with the GLM [6–8]. Assuming that the neuron’s spikes are
described in discrete time by a conditionally inhomogeneous
Poisson count process with rate function r(t), the log-likelihood (LL)
of the model parameters given an observed set of spike counts
Robs(t) is given (up to an overall constant) by:

LL~
X

t

Robs(t)log r(t){r(t)ð Þ: ð2 Þ

To find the set of parameters that maximize the likelihood (eq.
2), we adapt methods that allow for efficient parameter
optimization of the GLM [7]. First, we use a parametric spiking
nonlinearity given by F[x] = alog[1+exp(b(x-h))], with scale a,
shape b, and offset h. Other functions can be used, so long as they
satisfy conditions specified in [7]. This ensures that the likelihood
surface will be concave with respect to linear parameters inside the
spiking nonlinearity [7], and in practice will be well-behaved for
other model parameters (see Fig. S1; Methods).

Figure 2. Schematic of LN and NIM structures. A) Schematic diagram of an LN model, with multiple filters (k1, k2, …) that define the linear
stimulus subspace. The outputs of these linear filters (g1, g2, …) are then transformed into a firing rate prediction r(t) by the static nonlinear function
F[g1,g2,…], depicted at right for a two-dimensional subspace. Note that while the general LN model thus allows for a nonlinear dependence on
multiple stimulus dimensions, estimation of the function F[.] is typically only feasible for low (one- or two-) dimensional subspaces. B) Schematic
illustration of a generic neuron that receives input from a set of ‘upstream’ neurons that are themselves driven by the stimulus s. Each of the
upstream neurons provides input to the model neuron that is generally rectified due to spike generation (inset at left), and thus is either excitatory or
inhibitory. The model neuron then integrates its inputs and produces a spiking output. C) Block diagram illustrating the structure of the NIM, based
on (B). The set of inputs are represented as (one-dimensional) LN models, with a corresponding stimulus filter ki, and ‘‘upstream nonlinearity’’ fi(.).
These inputs are then linearly combined, with weights wi, and fed into the spiking nonlinearity F[.], resulting in the predicted firing rate r(t). The NIM
thus has a ‘second-order LN’ structure (or LNLN), with the neuron’s own nonlinear processing shaped by the LN nature of its inputs.
doi:10.1371/journal.pcbi.1003143.g002

A Nonlinear Neuronal Model of Sensory Processing

PLOS Computational Biology | www.ploscompbiol.org 4 July 2013 | Volume 9 | Issue 7 | e1003143

to the system is analogous to a reaction rate that depends on the
concentration of the reactants. For example, the change in the
active state is described by

dA

dt
= inflow! outflow= kau ðtÞRðtÞ ! kfiAðtÞ; (Equation 1)

where R(t) and A(t) are the occupancies of the resting and active
states, ka and kfi are constants, and u (t) is the input that scales
the activation rate constant, ka.

When a train of pulses of either small or large amplitude drives
the four-state system, the larger input produces output pulses
with a smaller gain and also increases the baseline (Figure 2A).
To produce dynamics with both fast and slow timescales, the
fourth state (I2) couples to the first inactivated state (I1), using
slower rate constants. As a result, a slow shift in baseline occurs
following a change in the amplitude of the input. The rate
constants in the four-state model are the rates of activation
(ka), fast inactivation (kfi), fast recovery (kfr), slow inactivation
(ksi), and slow recovery (ksr).

Although this four-statesystemcanproduceadaptivechanges,
it lacks the temporal filtering and selectivity of retinal neurons. At

D

A

B

C

E

g(t) u(t)

N(g)

s(t)

Nonlinearity Kinetics

u ka

kfikfr

ksiu ksr

R A

I1

I2

r(t)

F(t)

u 60

320

1 0.03

R A

I1

I2
u(t) A(t)

Figure 2. The LNK Model
(A) A train of impulses that changed from low- to

high-amplitude is shownasan input, u (t), presented

to a first-order kinetic model with four states.

Numbers indicate rate constants for transitions

between the resting (R), active (A), and inactivated

states, (I1 and I2). The rateconstantbetween resting

and active states ismodulated by u (t). The output is

the occupancy of the active state (A(t)).

(B) The LNK model. The input, s(t), is convolved

with a linear temporal filter, FLNK(t), and then

passed through a static nonlinearity, NLNK(g), that

does not change with contrast. The output of

the nonlinearity, u (t), controls two rate constants

in the kinetics block, one that leads to the active

state and one that accelerates recovery from the

inactivated state, I2. Other rate constants are fixed,

and the output of the model r0ðtÞ is the active state.

(C) The membrane potential of an adapting ama-

crine cell compared to the LNK model output for a

transition to low contrast (left) and to high contrast

(right).

(D) The LNK model compared to the amacrine cell

response for three repeats of an identical stimulus

sequence.

(E) The distribution of the absolute difference in

membrane potential between responses to an

identical stimulus compared to the distribution of

the difference between the model output and

membrane potential responses. Results are

combined for six cells with three repeated

responses across the entire recording.

a fixed mean luminance, photoreceptors
are nearly linear. Strong rectification first
appears in amacrine and ganglion cells,
coincidingwith strong contrast adaptation
(Baccus and Meister, 2002; Kim and
Rieke, 2001; Rieke, 2001). This threshold

likely arises from voltage-dependent calcium channels in the
bipolar cell synaptic terminal (Heidelberger and Matthews,
1992), a point that would occur prior to adaptive changes in
sensitivity in the presynaptic terminal or postsynaptic membrane.
Thus, we combined the adaptive system with a linear-nonlinear
model, yielding a system with a linear temporal filter, a static
nonlinearity, and an adaptive kinetics block (Figure 2B). In this
linear-nonlinear-kinetic (LNK) model, the kinetics block contrib-
utes both to the overall temporal filtering and the sensitivity of
the system, making these properties depend on the input. Thus,
the linear filter (FLNK) and nonlinearity (NLNK) of the LNK model
are not the same as the filter and nonlinearity, FLN and NLN,
respectively, in an LN model fit to the entire response. To couple
the initial linear-nonlinear system to the kinetics block, the
output of the nonlinearity, u (t), scales one or two rate constants.
Although this means that the transition rate is proportional to the
nonlinearity output, a higher-order dependence—such as the
dependence of vesicle release on a higher power of the calcium
concentration—can be captured in the nonlinearity itself.
We fit LNK models using a constrained optimization algorithm

(see Experimental Procedures). The filter and nonlinearity were

Neuron

The Computational Structure of Variance Adaptation

1004 Neuron 73, 1002–1015, March 8, 2012 ª2012 Elsevier Inc.

[Real, Asari, Gollisch & Meister 2017]

Nonlinear input model (NIM)
[McFarland, Cui, & Butts 2013]

Linear-Nonlinear-Kinetics (LNK)
[Ozuysal & Baccus 2014]

We have developed a general model for V1 neurons (Fig. 1),
along with a direct method for fitting it to spiking data. The
model has two channels (one excitatory, one suppressive), each
formed from a weighted sum of linear-nonlinear (LN) subunits,
similar in concept to Hubel and Wiesel’s original description of
complex cell responses as resulting from a spatial combination of
simple cells (Hubel and Wiesel, 1962), to Barlow and Levick’s
characterization of directionally selective retinal ganglion cells in
the rabbit (Barlow and Levick, 1965), and to Victor and Shapley’s
subunit model for Y-type ganglion cells in cat retina (Victor and
Shapley, 1979).

To make the fitting problem tractable, we assume that the
subunit filters of each channel differ only in spatial position and
that their nonlinearities are identical. The difference between the
responses of the two channels is transformed with a rectifying
nonlinearity to give the firing rate of the neuron. We have devel-
oped a method for directly and efficiently estimating the model,
and have tested it on data from V1 neurons driven by spatiotem-
poral white noise. The results show that the fitted model outper-
forms previously published functional models (specifically, the
LN, energy, and spike-triggered covariance [STC]-based models)
for all cells, in addition to providing a more biologically reason-
able account of the origins of cortical receptive fields. A brief
account of some of this work has appeared previously (Vintch et
al., 2012).

Materials and Methods
Electrophysiology
We recorded from 38 well-isolated single neurons in the primary visual
area (V1) of adult macaque monkeys (Macaca nemestrina and M. fascicu-
laris; 6 males), using methods that are described in detail previously
(Cavanaugh et al., 2002). Typical experiments spanned 5–7 d during
which animals were maintained in an anesthetized and paralyzed state
through a continuous intravenous infusion of sufentanil citrate and ve-
curonium bromide. Vital signs (temperature, heart rate, end-tidal PCO2

levels, blood pressure, EEG activity, and urine quantity, and specific

gravity) were continuously monitored and maintained within physiolog-
ical limits. Eyes were treated with topical gentamicin, dilated with topical
atropine, and protected with gas-permeable hard contact lenses. Addi-
tional corrective lenses were chosen via direct ophthalmoscopy to make
the retinae conjugate with the experimental display. All experimental
procedures and animal care were performed in accordance to protocols
approved by the New York University Animal Welfare Committee, and
in compliance with the National Institute of Health Guide for the Care and
Use of Laboratory Animals.

We recorded neuronal signals with quartz-platinum-tungsten micro-
electrodes (Thomas Recording) lowered through a craniotomy and du-
rotomy centered between 10 and 16 mm lateral to the midline and
between 3 and 6 mm behind the lunate sulcus. We recorded across all
cortical depths. Receptive fields were centered in the inferior quadrant of
the visual field, between 2 and 5 degrees from the center of gaze. The
amplified signal from the electrode was bandpassed (300 Hz to 8 kHz)
and routed to a time-amplitude discriminator, which detected and time-
stamped spikes at a resolution of 0.1 ms.

Visual stimulation
We presented pixellated (XYT) noise stimuli on a gamma-corrected CRT
monitor (Eizo T966; mean luminance, 33 cd/m 2), at a resolution of
1280 ! 960 pixels, with a refresh rate of 120 Hz, positioned 114 cm from
the animal’s eyes. We generated stimuli pseudorandomly using Expo
software (http://corevision.cns.nyu.edu) on an Apple Macintosh com-
puter. The stimuli consisted of a pixel array (usually 16 ! 16) filled with
white, ternary noise that was continuously refreshed at 40 Hz. The width
of the array was approximately double that of the receptive field (as
measured with optimized drifting gratings) while still maintaining ade-
quate pixel resolution to capture receptive field features. For a subset of
cells, we measured responses to a repeated “frozen” sample of noise for
cross-validation. Each sample of frozen noise had identical statistics to
the main white-noise stimuli, lasted 25 s, and was repeated 20 times in
succession.

Data for flickering bar (XT) noise stimuli were taken from Rust et al.
(2005); these data were collected similarly, and details can be found in the
original article. Stimuli were displayed using a Silicon graphics Octane-2
workstation at 100 Hz. Each frame consisted of a square region contain-
ing 16 adjacent parallel bars of the neuron’s preferred orientation, ar-

a

b

Figure 1. Subunit model for a single channel. a, A signal flow diagram describes how stimulus information is converted to a firing rate. The stimulus is passed through a bank of spatially shifted,
but otherwise identical, linear-nonlinear subunits. The activity of these subunits is combined with a weighted sum over space (and optionally time; not shown), and passed through an output
nonlinearity to generate a firing rate. b, Responses of intermediate model stages are depicted for an example input (for simplicity, a single frame is shown, rather than a temporal sequence). Each
stage, except for the last, maps a spatially distributed array of inputs to a spatially distributed array of responses, depicted as pixel intensities in an image. The pooling stage sums over these responses
and applies the final output nonlinearity.

14830 • J. Neurosci., November 4, 2015 • 35(44):14829 –14841 Vintch et al. • A Subunit Model of V1 Responses

LNFDSNF model
convolutional subunit model

[Vintch, Movshon & Simoncelli 2015,
Wu, Park & Pillow 2014]

modeling. Repeated presentations of the same flicker sequence
reliably evoked very similar spike trains (Figures 2A, 2B, and
S2B), as expected from previous studies [9–11]. This suggests
that essential features of the retina’s light response can be
captured by a deterministic model of the ganglion cell and its
input circuitry [4]. In addition, we presented a long non-repeating
flicker sequence to explore as many spatiotemporal patterns as
possible. Thirty ganglion cells were selected for quantitative
modeling based on the stability of their responses throughout
the extended recording period.

Modeling Approach
We focused on predicting the firing rate of ganglion cells (GCs),
namely the expected number of spikes fired in any given 1/60 s
interval. Mathematical models were constructed that take the
time course of the flicker stimulus as input and produce a time
course of the firing rate at the output. The parameters of the
model were optimized to fit the long stretch of non-repeating
flicker (!80% of the data; the ‘‘training set’’). Specifically, we
maximized the fraction of variance in the firing rate that themodel
explains (Equation S10) [11]. Then the model performance was
evaluated on the remaining data examined with the repeated

flicker (!20%; the ‘‘test set’’). This performance metric was
tracked across successive changes in the model structure.
As a formalism, we chose so-called cascade models [4, 5].

These are networks of simple elements that involve either linear
filtering (convolution in space and time) or a static nonlinear
transform. They map naturally onto neural circuitry (Figure 1)
and can be adjusted from a coarse-grained version (every
neuron is an element) to arbitrarily fine-grained ones (multi-
compartment models of every neuron and synapse).
As a reference point, we chose the so-called LN model, con-

sisting of a single linear-nonlinear cascade (Figure 1B). This
has been very popular in sensory neuroscience [12–14] and
serves as a common starting point for fitting neural responses.
This model was able to approximate the GC output (Figures
2A, 2B, and S2B), though with a wide range of performance for
different neurons (Figures 2C and 2D). Even with optimized pa-
rameters, however, the LN model predicts firing at times when
it should not, thus making the peaks of firing events wider and
flatter than observed (Figures 2A, 2B, and S2B).
Guided by knowledge of retinal anatomy, we then created a

sequence of four cascade models by systematically adding
components to the circuits (Figures 1C–1F). Each model derives

7
1

25

7

42

25

108
...

output

Σ

stimulus

Σ

output

stimulus

B C

D

E

F G

...

stimulus

output

Σ

LN model LNSN model

LNSNF's GCM

LNFSNF's BCM

LNFDSNF model Parameters

BBBB

P

H

G

A

P

P P P P
P

A Retinal circuit

BCM

GCM

Σ

ACM

Figure 1. A Progression of Circuit Models
Constrained by Retinal Anatomy
(A)Schematicof thecircuit upstreamofaganglioncell

in the vertebrate retina. Photoreceptors (P) transduce

the visual stimulus into electrical signals that propa-

gate through bipolar cells (B) to the ganglion cell (G).

At both synaptic stages, one finds both convergence

and divergence, as well as lateral signal flow carried

by horizontal (H) and amacrine (A) cells. The bipolar

cell and its upstream circuitry are modeled by a

spatiotemporal filter, a nonlinearity, and feedback

(bipolar cell module [BCM]; blue). The amacrine cell

introduces a delay in lateral propagation (amacrine

cell module [ACM]; red). The ganglion cell was

modeled by a weighted summation, another nonlin-

earity, and a second feedback function (ganglion cell

module [GCM]; green). Drawings after Polyak, 1941.

(B) LN model. A different temporal filter is applied to

the history of each bar in the stimulus. The outputs

of all of these filters are summed over space. The

resulting signal is passed through an instantaneous

nonlinearity.

(C) LNSN model. The stimulus is first processed

by partially overlapping, identical BCMs, each of

which consists of its own spatiotemporal filter and

nonlinearity. Their outputs are weighted and sum-

med by the GCM, which then applies another

instantaneous nonlinearity to give the model’s

output. For display purpose, the BCMs are shown

here to span only three stimulus bars, but they

spanned seven bars in the computations.

(D) LNSNF model. This is identical to the previous

one, except that the GCM (depicted here) has an

additional feedback loop around its nonlinearity.

(E) LNFSNF model. This is identical to the previous one, except that the BCMs (one of which is depicted here) have an additional feedback loop around their

nonlinearities. This new feedback function is the same for all BCMs.

(F) LNFDSNFmodel. This is identical to the previous one, except that there is a delay inserted between each BCM and the GCM. These delays are allowed to vary

independently for each BCM.

(G) A count of the free parameters in the LNFDSNF model, color coded as in the model diagram. Except for the total (108), the numbers here also apply to the

LNSN, LNSNF, and LNFSNF models. The LN model has 186 free parameters in the linear filter (31 spatial positions, each with six-parameter temporal filter as in

Equations S3–S5) and one in the nonlinearity. See also Figures S1 and S3.

190 Current Biology 27, 189–198, January 23, 2017

linear-nonlinear-feedback-delayed-sum-nonlinear-feedback

deep learning / deep neural networks (DNNs)

[Yamins et al 2014, Mcintosh et al 2016, Maheswaranathan et al 2017, Benjamin et al 2017, …]

… …

time
8 subunits 16 subunits

convolution

convolution

dense
responses

Figure 1: A schematic of the model architecture. The stimulus was convolved with 8 learned
spatiotemporal filters whose activations were rectified. The second convolutional layer then projected
the activity of these subunits through spatial filters onto 16 subunit types, whose activity was linearly
combined and passed through a final soft rectifying nonlinearity to yield the predicted response.

retina, potentially simplifying the retinal response to such stimuli [11, 12, 2, 10, 13]. In contrast to
the perceived linearity of the retinal response to coarse stimuli, the retina performs a wide variety of
nonlinear computations including object motion detection [6], adaptation to complex spatiotemporal
patterns [14], encoding spatial structure as spike latency [15], and anticipation of periodic stimuli
[16], to name a few. However it is unclear what role these nonlinear computational mechanisms have
in generating responses to more general natural stimuli.

To better understand the visual code for natural stimuli, we modeled retinal responses to natural image
sequences with convolutional neural networks (CNNs). CNNs have been successful at many pattern
recognition and function approximation tasks [17]. In addition, these models cascade multiple layers
of spatiotemporal filtering and rectification–exactly the elementary computational building blocks
thought to underlie complex functional responses of sensory circuits. Previous work utilized CNNs
to gain insight into the neural computations of inferotemporal cortex [18], but these models have
not been applied to early sensory areas where knowledge of neural circuitry can provide important
validation for such models.

We find that deep neural network models markedly outperform previous models in predicting retinal
responses both for white noise and natural scenes. Moreover, these models generalize better to unseen
stimulus classes, and learn internal features consistent with known retinal properties, including
sub-Poisson variability, feedforward inhibition, and contrast adaptation. Our findings indicate that
CNNs can reveal both neural computations and mechanisms within a multilayered neural circuit
under natural stimulation.

2 Methods

The spiking activity of a population of tiger salamander retinal ganglion cells was recorded in response
to both sequences of natural images jittered with the statistics of eye movements and high resolution
spatiotemporal white noise. Convolutional neural networks were trained to predict ganglion cell
responses to each stimulus class, simultaneously for all cells in the recorded population of a given
retina. For a comparison baseline, we also trained linear-nonlinear models [19] and generalized
linear models (GLMs) with spike history feedback [2]. More details on the stimuli, retinal recordings,
experimental structure, and division of data for training, validation, and testing are given in the
Supplemental Material.

2.1 Architecture and optimization

The convolutional neural network architecture is shown in Figure 2.1. Model parameters were
optimized to minimize a loss function corresponding to the negative log-likelihood under Poisson
spike generation. Optimization was performed using ADAM [20] via the Keras and Theano software
libraries [21]. The networks were regularized with an `2 weight penalty at each layer and an `1
activity penalty at the final layer, which helped maintain a baseline firing rate near 0 Hz.

2

stimulus

If you understand GLMs … you understand Deep Nets!

•Stack multiple LNs of top of each other: LN LN LN LN-P

•Use Gradient Ascent to maximize log-likelihood

•Use Software Tools (Theano, Tensorflow, Autograd) to calculate
gradients for you (no more high-school calculus needed!)

•Use a bunch of tricks (noise, adaptive gradients, …)

•Do NOT worry about local maxima!

Everything you need to know about DNNs,  
in one slide, without equations!

If you understand GLMs… you understand DNNs!

• stack many LNs on top of each other: LN LN LN LN P
• use gradient ascent to maximize likelihood
• use software (tensorflow, theano) to compute gradients 

(no more computing gradients by hand!)
• use a bunch of tricks (batches, noise, SGD, dropout, ….)
• do NOT worry about local maxima!

[credit: Jakob Macke]

Modern machine learning far outperforms GLMs at predicting spikes

Ari S. Benjamin1, Hugo L. Fernandes2, Tucker Tomlinson3, Pavan Ramkumar2,4, Chris VerSteeg1, Lee

Miller1,2,3, Konrad Paul Kording1,2,3

1.! Department of Biomedical Engineering, Northwestern University,, Evanston, IL, 60208, USA
2.! Department of Physical Medicine and Rehabilitation, Northwestern University and Rehabilitation Institute of

Chicago, Chicago,�IL, 60611, USA
3.! Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
4.! Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA

Contact: Ari Benjamin, aribenjamin2014@u.northwestern.edu

Abstract

Neuroscience has long focused on finding encoding models that effectively ask “what predicts neural
spiking?” and generalized linear models (GLMs) are a typical approach. Modern machine learning
techniques have the potential to perform better. Here we directly compared GLMs to three leading methods:
feedforward neural networks, gradient boosted trees, and stacked ensembles that combine the predictions
of several methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1) cortices
from reaching kinematics, and in rat hippocampal cells from open field location and orientation. In general,
the modern methods produced far better spike predictions and were less sensitive to the preprocessing of
features. XGBoost and the ensemble were the best-performing methods and worked well even on neural
data with very low spike rates. This overall performance suggests that tuning curves built with GLMs are
at times inaccurate and can be easily improved upon. Our publicly shared code uses standard packages and
can be quickly applied to other datasets. Encoding models built with machine learning techniques more
accurately predict spikes and can offer meaningful benchmarks for simpler models.

Introduction

A central tool of neuroscience is the tuning curve,
which maps stimulus to neural response. The tuning
curve asks what information in the external world a
neuron encodes in its spikes. For a tuning curve to be
meaningful it is important that it accurately predicts the
neural response. Often, however, methods are chosen
that sacrifice accuracy for simplicity. Predictive
methods for tuning curves should instead be evaluated
primarily by their ability to describe neural activity
accurately.

A common predictive model is the Generalized
Linear Model (GLM), occasionally referred to as a
linear-nonlinear Poisson (LNP) cascade (1-4). The
GLM performs a nonlinear operation upon a linear
combination of the input features, which are often called
external covariates. Typical covariates are stimulus
features, movement vectors, or the animal’s location.

The nonlinear operation on the weighted sum of
covariates is usually held fixed, though it can be learned
(5, 6), and the linear weights of the combined inputs are
chosen to maximize the agreement between the model
fit and the neural recordings. This optimization problem
of choosing weights is often convex and can be solved
with efficient algorithms (7). The assumption of Poisson
firing statistics can often be loosened (8) allowing the
modeling of a broad range of neural responses. Due to
its ease of use, perceived interpretability, and flexibility,
the GLM has become a popular model of neural spiking.

The GLM’s central assumption of linearity in feature
space may hold in certain cases (8, 9), but in general,
neural responses can be very nonlinear (5, 10). When a
neuron responds nonlinearly to stimulus features, it is
common practice to mathematically transform the
features to obtain a new set that meets the linearity
requirements of the GLM and yields better spike

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

Modern machine learning far outperforms GLMs at predicting spikes

Ari S. Benjamin1, Hugo L. Fernandes2, Tucker Tomlinson3, Pavan Ramkumar2,4, Chris VerSteeg1, Lee

Miller1,2,3, Konrad Paul Kording1,2,3

1.! Department of Biomedical Engineering, Northwestern University,, Evanston, IL, 60208, USA
2.! Department of Physical Medicine and Rehabilitation, Northwestern University and Rehabilitation Institute of

Chicago, Chicago,�IL, 60611, USA
3.! Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
4.! Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA

Contact: Ari Benjamin, aribenjamin2014@u.northwestern.edu

Abstract

Neuroscience has long focused on finding encoding models that effectively ask “what predicts neural
spiking?” and generalized linear models (GLMs) are a typical approach. Modern machine learning
techniques have the potential to perform better. Here we directly compared GLMs to three leading methods:
feedforward neural networks, gradient boosted trees, and stacked ensembles that combine the predictions
of several methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1) cortices
from reaching kinematics, and in rat hippocampal cells from open field location and orientation. In general,
the modern methods produced far better spike predictions and were less sensitive to the preprocessing of
features. XGBoost and the ensemble were the best-performing methods and worked well even on neural
data with very low spike rates. This overall performance suggests that tuning curves built with GLMs are
at times inaccurate and can be easily improved upon. Our publicly shared code uses standard packages and
can be quickly applied to other datasets. Encoding models built with machine learning techniques more
accurately predict spikes and can offer meaningful benchmarks for simpler models.

Introduction

A central tool of neuroscience is the tuning curve,
which maps stimulus to neural response. The tuning
curve asks what information in the external world a
neuron encodes in its spikes. For a tuning curve to be
meaningful it is important that it accurately predicts the
neural response. Often, however, methods are chosen
that sacrifice accuracy for simplicity. Predictive
methods for tuning curves should instead be evaluated
primarily by their ability to describe neural activity
accurately.

A common predictive model is the Generalized
Linear Model (GLM), occasionally referred to as a
linear-nonlinear Poisson (LNP) cascade (1-4). The
GLM performs a nonlinear operation upon a linear
combination of the input features, which are often called
external covariates. Typical covariates are stimulus
features, movement vectors, or the animal’s location.

The nonlinear operation on the weighted sum of
covariates is usually held fixed, though it can be learned
(5, 6), and the linear weights of the combined inputs are
chosen to maximize the agreement between the model
fit and the neural recordings. This optimization problem
of choosing weights is often convex and can be solved
with efficient algorithms (7). The assumption of Poisson
firing statistics can often be loosened (8) allowing the
modeling of a broad range of neural responses. Due to
its ease of use, perceived interpretability, and flexibility,
the GLM has become a popular model of neural spiking.

The GLM’s central assumption of linearity in feature
space may hold in certain cases (8, 9), but in general,
neural responses can be very nonlinear (5, 10). When a
neuron responds nonlinearly to stimulus features, it is
common practice to mathematically transform the
features to obtain a new set that meets the linearity
requirements of the GLM and yields better spike

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

Fig 2

 6

learning methods with their own approaches for
encoding models.

To test that all methods work reasonably well in a trivial
case, we trained each to predict spiking from a simple

and well-understood feature. Some neurons in M1 have
been described as responding linearly to the
exponentiated cosine of movement direction relative to
a preferred angle (41). We therefore predicted the

Figure 2: Encoding models for M1 performed similarly when trained on the sine and cosine of hand velocity direction. (a) The
pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3-5 the example neuron is the
same, and is not the neuron for which method hyperparameters were optimized. (b) The tuning curves of the neural net and
XGBoost were similar to that of the GLM. The black points are the recorded responses, to which we added y-axis jitter for
visualization. The tuning curve of the ensemble method was similar and is omitted here for clarity. (c) Plotting the pseudo-R2
of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single
neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error
bars represent the 95% bootstrap confidence interval.

Figure 3: Modern ML models could learn the cosine nonlinearity when trained on only the direction of hand velocity, in radians. (a) For
the same example neuron as in Figure 3, the neural net and XGBoost maintained the same predictive power, while the GLM was unable
to extract a relationship between direction and spike rate. (b) XGBoost and neural nets displayed reasonable tuning curves, while the GLM
reduced to the average spiking rate (with a small slope, in this case). (c) Most neurons in the population were poorly fit by the GLM, while
the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 6

learning methods with their own approaches for
encoding models.

To test that all methods work reasonably well in a trivial
case, we trained each to predict spiking from a simple

and well-understood feature. Some neurons in M1 have
been described as responding linearly to the
exponentiated cosine of movement direction relative to
a preferred angle (41). We therefore predicted the

Figure 2: Encoding models for M1 performed similarly when trained on the sine and cosine of hand velocity direction. (a) The
pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3-5 the example neuron is the
same, and is not the neuron for which method hyperparameters were optimized. (b) The tuning curves of the neural net and
XGBoost were similar to that of the GLM. The black points are the recorded responses, to which we added y-axis jitter for
visualization. The tuning curve of the ensemble method was similar and is omitted here for clarity. (c) Plotting the pseudo-R2
of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single
neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error
bars represent the 95% bootstrap confidence interval.

Figure 3: Modern ML models could learn the cosine nonlinearity when trained on only the direction of hand velocity, in radians. (a) For
the same example neuron as in Figure 3, the neural net and XGBoost maintained the same predictive power, while the GLM was unable
to extract a relationship between direction and spike rate. (b) XGBoost and neural nets displayed reasonable tuning curves, while the GLM
reduced to the average spiking rate (with a small slope, in this case). (c) Most neurons in the population were poorly fit by the GLM, while
the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 7

spiking of M1 neurons from the cosine and sine of the
direction of hand movement in the reaching task. (The
linear combination of a sine and cosine curve is a phase-
shifted cosine, by identity, allowing the GLM to learn
the proper preferred direction). We observed that each
method identified a similar tuning curve (Fig. 2b),
constructed by plotting the predictions of spike rate on
the validation set against movement direction. The bulk
of the neurons in the dataset were just as well predicted
by each of the methods (Fig. 2a, c), though the ensemble
was slightly better than the GLM (mean comparative
pseudo-R2, defined in methods, of 0.06 [0.043 – 0.084],
95% bootstrapped confidence interval (CI)). The similar
performance suggested that an exponentiated cosine is a
nearly optimal approximating function of the neural
response to movement direction alone, as was
previously known (42). This classic example thus
illustrated that all methods can in principle estimate
tuning curves.

The exact form of the nonlinearity of the neural response
to a given feature is rarely known, but this lack of
knowledge need not impact our prediction ability. To
illustrate the ability of modern machine learning to find
the proper nonlinearity, we performed the same analysis
as above but omitted the initial cosine feature
engineering step. Trained on only the hand velocity
direction, in radians, which are likely to be

discontinuous at ±π, the modern ML methods very
nearly reproduced the predictive power they attained
using the engineered feature (Fig. 3a). As expected, the
GLM failed at generating a meaningful tuning curve
(Fig. 3b). Both trends were consistent across the
population of recorded neurons (Fig. 3c). The neural net,
XGBoost, and ensemble methods thus perform well
without feature engineering and the required prior
knowledge or assumptions.

Machine learning methods can also take advantage of
information contained in combinations of inputs, and
should perform better if given more inputs. We verified
that this was true for our dataset by training on the four-
dimensional set of hand position and velocity
!, #, !, # , which we call the set of original features. All

methods gained a significant amount of predictive
power with these new features, though the GLM did not
nearly match the other methods (Fig 4a, c). This set of
neurons thus seemed to encode strongly for position and
velocity in a potentially nonlinear fashion captured by
machine learning methods.

While some amount of feature engineering can improve
the performance of GLMs, it is not always simple to
guess the optimal set of processed features. We
demonstrated this by training all methods on features
that have previously been successful at explaining spike

Figure 4: Training on the set of original features (!, #, !̇, #̇) increased the predictive power of all methods. Note the change in axes scales
from Figures 2-3. (a) For the same example neuron as in Figure 3, all methods gained a significant amount of predictive power, indicating a
strong encoding of position and speed or their correlates. The GLM showed less predictive power than the other methods on this feature set.
(b) The spike rate in black, with jitter on the y-axis, again overlaid with the predictions of the three methods as a function of velocity direction.
The neuron encodes for position and speed, as well, and the projection of the multidimensional tuning curve onto a 1D velocity direction
dependence leaves the projected curve diffuse. (c) The ensemble method, neural network, and XGBoost performed consistently better than
the GLM across the population. The mean pseudo-R2 scores show the hierarchy of success across methods.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 8

rate in a similar center-out reaching task (6). These extra
features included the sine and cosine of velocity
direction (as in Figure 2), the speed, the radial distance
of hand position, and the sine and cosine of position
direction. The training set was thus 10-dimensional,
though highly redundant, and was aimed at maximizing
the predictive power of the GLM. Feature engineering
improved the predictive power of all methods to
variable degrees, with the GLM improving to the level
of the neural network (Fig. 5). XGBoost and the
ensemble still predicted spikes better than the GLM (Fig.
5c), with the ensemble scoring on average 1.8 times
higher than the GLM (ratio of population means of 1.8
[1.4 – 2.2], 95% bootstrapped CI). The ensemble was
significantly better than XGBoost (mean comparative
pseudo-R2 of 0.08 [0.055 – 0.103], 95% bootstrapped CI)
and was thus consistently the best predictor. Though
standard feature engineering greatly improved the GLM,
the ensemble and XGBoost still captured the neural
response more accurately.

To ensure that these results are not specific to the motor
cortex, we extended the same analyses to primary
somatosensory cortex (S1) data. The ensemble was
consistently the best predictor across all neurons,
scoring almost twice as well as the GLM (ratio of 1.8
[1.2 – 2.2] of population means, 95% bootstrapped CI).
XGBoost predicted spikes better than the GLM only for

neurons with significant effect sizes for any of the four
methods (i.e., with cross-validated pseudo-R2 scores
two standard deviations above 0; mean comparative
pseudo-R2 was 0.002 [0.0006 – 0.0045], 95%
bootstrapped CI). Interestingly, the neural network
performed worse than all other methods. We speculated
that this could be related to the small covariate effect
size in the S1 dataset, as we observed similar scores for
the neural network on the M1 dataset for regimes of
similar effect sizes, as well as on simulated data with
GLM structure, small effect size, and similar firing rates
(Supp. Fig. 2). We also found that a much smaller
network performed better (a single hidden layer with 20
nodes) but that max-norm or elastic-net regularization
did not improve the results with the larger network.
Neural networks may thus be poor choices for Poisson
data with very small covariate effect sizes, though we
see no theoretical reason why this should be the case.
Overall, on this S1 dataset featuring generally low
predictability, the tested methods displayed a range of
performances, with the ensemble predicting the data
nearly twice as well as the GLM alone.

We asked if the same trends of performance would hold
for the rat hippocampus dataset, which was
characterized by very low mean firing rates but strong
effect sizes. All methods were trained on a list of
features representing the rat position and orientation, as

Figure 5: Encoding models for M1 trained on all the original features plus the engineered features show that modern ML methods can
outperform the GLM even with standard featuring engineering. (a) For this example neuron, inclusion of the computed features increased
the predictive power of the GLM to the level of the neural net. XGBoost and the ensemble method also increased in predictive power. (b)
The tuning curves for the example neuron are diffuse when projected onto the movement direction, indicating a high-dimensional
dependence. (c) Even with feature engineering, XGBoost and the ensemble consistently achieve pseudo-R2 scores higher than the GLM,
though the neural net does not. The selected neuron at left is marked with black arrows.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

Fig 3 Fig 4 Fig 5

 9

described in methods. We found that many neurons
were described much better by XGBoost and the
ensemble method than by the GLM (Fig. 6b). On
average, the ensemble was almost ten times more
predictive than the GLM (ratio of population means of
9.8 [5.4 – 100.0], 95% bootstrapped CI), and many
neurons shifted from being completely unpredictable by
the GLM (pseudo-R2 near zero) to very predictable by
XGBoost and the ensemble (pseudo-R2 above 0.2). The
neural network performed poorly, here not due to effect
size as in S1 but likely due to the very low firing rates
of most hippocampal cells (Supp. Fig. 2). Out of the 58
neurons in the dataset, 54 had rates below 1 spikes/
second, and it was only on the four high-firing neurons
that the neural network achieved pseudo-R2 scores
comparable to the GLM. The relative success of
XGBoost was interesting given the failure of the neural
network, and supported the general observation that
XGBoost can work well with smaller and sparser
datasets than those neural networks generally require.
Thus for hippocampal cells, a method leveraging
decision trees such as XGBoost or the ensemble is able
to capture far more structure in the neural response than
the GLM or the neural network.

Discussion
We contrasted the performance of GLMs with recent

machine learning techniques at the task of predicting
spike rates in three brain regions. We found that the
tested ML methods predicted spike rates far more
accurately than the GLM. Typical feature engineering
only partially bridged the performance gap. The ML
methods performed comparably well with and without
feature engineering, indicating they could serve as
convenient performance benchmarks for improving
simpler encoding models. The consistently best method
was the ensemble, which was an instance of XGBoost
stacked on the predictions of the GLM, neural network,
XGBoost, and a random forest. The ensemble and
XGBoost could fit the data well even for very low spike
rates, as in the hippocampus dataset, and for very low
covariate effect sizes, as in the S1 dataset. These
findings indicate that GLMs are not the best choice as
neuroscience’s standard method of spike prediction.

The ML methods we have put forward here have
been implemented without substantial modification
from methods that are already in wide use. We hope that
this simple application might spur a wider adoption of
these methods in the neurosciences, thereby increasing
the power and efficiency of studies involving neural
prediction without requiring complicated, application-

Figure 6: XGBoost and the ensemble method predicted the activity of neurons in S1 and the hippocampus better than a GLM.
The diagonal dotted line in both plots is the line of equal predictive power with the GLM. (a) The ensemble predicted firing
almost twice as well, on average, as the GLM for all neurons in the S1 dataset. XGBoost was better for neurons with higher
effect sizes but poorly predicted neurons that were not predictable by any method. The neural network performed the worst
of all methods. (b) Many neurons in the rat hippocampus were described well by XGBoost and the ensemble but poorly by
the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing
of most neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally more predictable
than those in S1.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 9

described in methods. We found that many neurons
were described much better by XGBoost and the
ensemble method than by the GLM (Fig. 6b). On
average, the ensemble was almost ten times more
predictive than the GLM (ratio of population means of
9.8 [5.4 – 100.0], 95% bootstrapped CI), and many
neurons shifted from being completely unpredictable by
the GLM (pseudo-R2 near zero) to very predictable by
XGBoost and the ensemble (pseudo-R2 above 0.2). The
neural network performed poorly, here not due to effect
size as in S1 but likely due to the very low firing rates
of most hippocampal cells (Supp. Fig. 2). Out of the 58
neurons in the dataset, 54 had rates below 1 spikes/
second, and it was only on the four high-firing neurons
that the neural network achieved pseudo-R2 scores
comparable to the GLM. The relative success of
XGBoost was interesting given the failure of the neural
network, and supported the general observation that
XGBoost can work well with smaller and sparser
datasets than those neural networks generally require.
Thus for hippocampal cells, a method leveraging
decision trees such as XGBoost or the ensemble is able
to capture far more structure in the neural response than
the GLM or the neural network.

Discussion
We contrasted the performance of GLMs with recent

machine learning techniques at the task of predicting
spike rates in three brain regions. We found that the
tested ML methods predicted spike rates far more
accurately than the GLM. Typical feature engineering
only partially bridged the performance gap. The ML
methods performed comparably well with and without
feature engineering, indicating they could serve as
convenient performance benchmarks for improving
simpler encoding models. The consistently best method
was the ensemble, which was an instance of XGBoost
stacked on the predictions of the GLM, neural network,
XGBoost, and a random forest. The ensemble and
XGBoost could fit the data well even for very low spike
rates, as in the hippocampus dataset, and for very low
covariate effect sizes, as in the S1 dataset. These
findings indicate that GLMs are not the best choice as
neuroscience’s standard method of spike prediction.

The ML methods we have put forward here have
been implemented without substantial modification
from methods that are already in wide use. We hope that
this simple application might spur a wider adoption of
these methods in the neurosciences, thereby increasing
the power and efficiency of studies involving neural
prediction without requiring complicated, application-

Figure 6: XGBoost and the ensemble method predicted the activity of neurons in S1 and the hippocampus better than a GLM.
The diagonal dotted line in both plots is the line of equal predictive power with the GLM. (a) The ensemble predicted firing
almost twice as well, on average, as the GLM for all neurons in the S1 dataset. XGBoost was better for neurons with higher
effect sizes but poorly predicted neurons that were not predictable by any method. The neural network performed the worst
of all methods. (b) Many neurons in the rat hippocampus were described well by XGBoost and the ensemble but poorly by
the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing
of most neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally more predictable
than those in S1.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

macaque S1 hippocampus

macaque M1

Fig 6

Fig 6

Modern machine learning far outperforms GLMs at predicting spikes

Ari S. Benjamin1, Hugo L. Fernandes2, Tucker Tomlinson3, Pavan Ramkumar2,4, Chris VerSteeg1, Lee

Miller1,2,3, Konrad Paul Kording1,2,3

1.! Department of Biomedical Engineering, Northwestern University,, Evanston, IL, 60208, USA
2.! Department of Physical Medicine and Rehabilitation, Northwestern University and Rehabilitation Institute of

Chicago, Chicago,�IL, 60611, USA
3.! Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
4.! Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA

Contact: Ari Benjamin, aribenjamin2014@u.northwestern.edu

Abstract

Neuroscience has long focused on finding encoding models that effectively ask “what predicts neural
spiking?” and generalized linear models (GLMs) are a typical approach. Modern machine learning
techniques have the potential to perform better. Here we directly compared GLMs to three leading methods:
feedforward neural networks, gradient boosted trees, and stacked ensembles that combine the predictions
of several methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1) cortices
from reaching kinematics, and in rat hippocampal cells from open field location and orientation. In general,
the modern methods produced far better spike predictions and were less sensitive to the preprocessing of
features. XGBoost and the ensemble were the best-performing methods and worked well even on neural
data with very low spike rates. This overall performance suggests that tuning curves built with GLMs are
at times inaccurate and can be easily improved upon. Our publicly shared code uses standard packages and
can be quickly applied to other datasets. Encoding models built with machine learning techniques more
accurately predict spikes and can offer meaningful benchmarks for simpler models.

Introduction

A central tool of neuroscience is the tuning curve,
which maps stimulus to neural response. The tuning
curve asks what information in the external world a
neuron encodes in its spikes. For a tuning curve to be
meaningful it is important that it accurately predicts the
neural response. Often, however, methods are chosen
that sacrifice accuracy for simplicity. Predictive
methods for tuning curves should instead be evaluated
primarily by their ability to describe neural activity
accurately.

A common predictive model is the Generalized
Linear Model (GLM), occasionally referred to as a
linear-nonlinear Poisson (LNP) cascade (1-4). The
GLM performs a nonlinear operation upon a linear
combination of the input features, which are often called
external covariates. Typical covariates are stimulus
features, movement vectors, or the animal’s location.

The nonlinear operation on the weighted sum of
covariates is usually held fixed, though it can be learned
(5, 6), and the linear weights of the combined inputs are
chosen to maximize the agreement between the model
fit and the neural recordings. This optimization problem
of choosing weights is often convex and can be solved
with efficient algorithms (7). The assumption of Poisson
firing statistics can often be loosened (8) allowing the
modeling of a broad range of neural responses. Due to
its ease of use, perceived interpretability, and flexibility,
the GLM has become a popular model of neural spiking.

The GLM’s central assumption of linearity in feature
space may hold in certain cases (8, 9), but in general,
neural responses can be very nonlinear (5, 10). When a
neuron responds nonlinearly to stimulus features, it is
common practice to mathematically transform the
features to obtain a new set that meets the linearity
requirements of the GLM and yields better spike

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

Modern machine learning far outperforms GLMs at predicting spikes

Ari S. Benjamin1, Hugo L. Fernandes2, Tucker Tomlinson3, Pavan Ramkumar2,4, Chris VerSteeg1, Lee

Miller1,2,3, Konrad Paul Kording1,2,3

1.! Department of Biomedical Engineering, Northwestern University,, Evanston, IL, 60208, USA
2.! Department of Physical Medicine and Rehabilitation, Northwestern University and Rehabilitation Institute of

Chicago, Chicago,�IL, 60611, USA
3.! Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
4.! Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA

Contact: Ari Benjamin, aribenjamin2014@u.northwestern.edu

Abstract

Neuroscience has long focused on finding encoding models that effectively ask “what predicts neural
spiking?” and generalized linear models (GLMs) are a typical approach. Modern machine learning
techniques have the potential to perform better. Here we directly compared GLMs to three leading methods:
feedforward neural networks, gradient boosted trees, and stacked ensembles that combine the predictions
of several methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1) cortices
from reaching kinematics, and in rat hippocampal cells from open field location and orientation. In general,
the modern methods produced far better spike predictions and were less sensitive to the preprocessing of
features. XGBoost and the ensemble were the best-performing methods and worked well even on neural
data with very low spike rates. This overall performance suggests that tuning curves built with GLMs are
at times inaccurate and can be easily improved upon. Our publicly shared code uses standard packages and
can be quickly applied to other datasets. Encoding models built with machine learning techniques more
accurately predict spikes and can offer meaningful benchmarks for simpler models.

Introduction

A central tool of neuroscience is the tuning curve,
which maps stimulus to neural response. The tuning
curve asks what information in the external world a
neuron encodes in its spikes. For a tuning curve to be
meaningful it is important that it accurately predicts the
neural response. Often, however, methods are chosen
that sacrifice accuracy for simplicity. Predictive
methods for tuning curves should instead be evaluated
primarily by their ability to describe neural activity
accurately.

A common predictive model is the Generalized
Linear Model (GLM), occasionally referred to as a
linear-nonlinear Poisson (LNP) cascade (1-4). The
GLM performs a nonlinear operation upon a linear
combination of the input features, which are often called
external covariates. Typical covariates are stimulus
features, movement vectors, or the animal’s location.

The nonlinear operation on the weighted sum of
covariates is usually held fixed, though it can be learned
(5, 6), and the linear weights of the combined inputs are
chosen to maximize the agreement between the model
fit and the neural recordings. This optimization problem
of choosing weights is often convex and can be solved
with efficient algorithms (7). The assumption of Poisson
firing statistics can often be loosened (8) allowing the
modeling of a broad range of neural responses. Due to
its ease of use, perceived interpretability, and flexibility,
the GLM has become a popular model of neural spiking.

The GLM’s central assumption of linearity in feature
space may hold in certain cases (8, 9), but in general,
neural responses can be very nonlinear (5, 10). When a
neuron responds nonlinearly to stimulus features, it is
common practice to mathematically transform the
features to obtain a new set that meets the linearity
requirements of the GLM and yields better spike

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

Fig 2

 6

learning methods with their own approaches for
encoding models.

To test that all methods work reasonably well in a trivial
case, we trained each to predict spiking from a simple

and well-understood feature. Some neurons in M1 have
been described as responding linearly to the
exponentiated cosine of movement direction relative to
a preferred angle (41). We therefore predicted the

Figure 2: Encoding models for M1 performed similarly when trained on the sine and cosine of hand velocity direction. (a) The
pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3-5 the example neuron is the
same, and is not the neuron for which method hyperparameters were optimized. (b) The tuning curves of the neural net and
XGBoost were similar to that of the GLM. The black points are the recorded responses, to which we added y-axis jitter for
visualization. The tuning curve of the ensemble method was similar and is omitted here for clarity. (c) Plotting the pseudo-R2
of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single
neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error
bars represent the 95% bootstrap confidence interval.

Figure 3: Modern ML models could learn the cosine nonlinearity when trained on only the direction of hand velocity, in radians. (a) For
the same example neuron as in Figure 3, the neural net and XGBoost maintained the same predictive power, while the GLM was unable
to extract a relationship between direction and spike rate. (b) XGBoost and neural nets displayed reasonable tuning curves, while the GLM
reduced to the average spiking rate (with a small slope, in this case). (c) Most neurons in the population were poorly fit by the GLM, while
the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 6

learning methods with their own approaches for
encoding models.

To test that all methods work reasonably well in a trivial
case, we trained each to predict spiking from a simple

and well-understood feature. Some neurons in M1 have
been described as responding linearly to the
exponentiated cosine of movement direction relative to
a preferred angle (41). We therefore predicted the

Figure 2: Encoding models for M1 performed similarly when trained on the sine and cosine of hand velocity direction. (a) The
pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3-5 the example neuron is the
same, and is not the neuron for which method hyperparameters were optimized. (b) The tuning curves of the neural net and
XGBoost were similar to that of the GLM. The black points are the recorded responses, to which we added y-axis jitter for
visualization. The tuning curve of the ensemble method was similar and is omitted here for clarity. (c) Plotting the pseudo-R2
of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single
neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error
bars represent the 95% bootstrap confidence interval.

Figure 3: Modern ML models could learn the cosine nonlinearity when trained on only the direction of hand velocity, in radians. (a) For
the same example neuron as in Figure 3, the neural net and XGBoost maintained the same predictive power, while the GLM was unable
to extract a relationship between direction and spike rate. (b) XGBoost and neural nets displayed reasonable tuning curves, while the GLM
reduced to the average spiking rate (with a small slope, in this case). (c) Most neurons in the population were poorly fit by the GLM, while
the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 7

spiking of M1 neurons from the cosine and sine of the
direction of hand movement in the reaching task. (The
linear combination of a sine and cosine curve is a phase-
shifted cosine, by identity, allowing the GLM to learn
the proper preferred direction). We observed that each
method identified a similar tuning curve (Fig. 2b),
constructed by plotting the predictions of spike rate on
the validation set against movement direction. The bulk
of the neurons in the dataset were just as well predicted
by each of the methods (Fig. 2a, c), though the ensemble
was slightly better than the GLM (mean comparative
pseudo-R2, defined in methods, of 0.06 [0.043 – 0.084],
95% bootstrapped confidence interval (CI)). The similar
performance suggested that an exponentiated cosine is a
nearly optimal approximating function of the neural
response to movement direction alone, as was
previously known (42). This classic example thus
illustrated that all methods can in principle estimate
tuning curves.

The exact form of the nonlinearity of the neural response
to a given feature is rarely known, but this lack of
knowledge need not impact our prediction ability. To
illustrate the ability of modern machine learning to find
the proper nonlinearity, we performed the same analysis
as above but omitted the initial cosine feature
engineering step. Trained on only the hand velocity
direction, in radians, which are likely to be

discontinuous at ±π, the modern ML methods very
nearly reproduced the predictive power they attained
using the engineered feature (Fig. 3a). As expected, the
GLM failed at generating a meaningful tuning curve
(Fig. 3b). Both trends were consistent across the
population of recorded neurons (Fig. 3c). The neural net,
XGBoost, and ensemble methods thus perform well
without feature engineering and the required prior
knowledge or assumptions.

Machine learning methods can also take advantage of
information contained in combinations of inputs, and
should perform better if given more inputs. We verified
that this was true for our dataset by training on the four-
dimensional set of hand position and velocity
!, #, !, # , which we call the set of original features. All

methods gained a significant amount of predictive
power with these new features, though the GLM did not
nearly match the other methods (Fig 4a, c). This set of
neurons thus seemed to encode strongly for position and
velocity in a potentially nonlinear fashion captured by
machine learning methods.

While some amount of feature engineering can improve
the performance of GLMs, it is not always simple to
guess the optimal set of processed features. We
demonstrated this by training all methods on features
that have previously been successful at explaining spike

Figure 4: Training on the set of original features (!, #, !̇, #̇) increased the predictive power of all methods. Note the change in axes scales
from Figures 2-3. (a) For the same example neuron as in Figure 3, all methods gained a significant amount of predictive power, indicating a
strong encoding of position and speed or their correlates. The GLM showed less predictive power than the other methods on this feature set.
(b) The spike rate in black, with jitter on the y-axis, again overlaid with the predictions of the three methods as a function of velocity direction.
The neuron encodes for position and speed, as well, and the projection of the multidimensional tuning curve onto a 1D velocity direction
dependence leaves the projected curve diffuse. (c) The ensemble method, neural network, and XGBoost performed consistently better than
the GLM across the population. The mean pseudo-R2 scores show the hierarchy of success across methods.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 8

rate in a similar center-out reaching task (6). These extra
features included the sine and cosine of velocity
direction (as in Figure 2), the speed, the radial distance
of hand position, and the sine and cosine of position
direction. The training set was thus 10-dimensional,
though highly redundant, and was aimed at maximizing
the predictive power of the GLM. Feature engineering
improved the predictive power of all methods to
variable degrees, with the GLM improving to the level
of the neural network (Fig. 5). XGBoost and the
ensemble still predicted spikes better than the GLM (Fig.
5c), with the ensemble scoring on average 1.8 times
higher than the GLM (ratio of population means of 1.8
[1.4 – 2.2], 95% bootstrapped CI). The ensemble was
significantly better than XGBoost (mean comparative
pseudo-R2 of 0.08 [0.055 – 0.103], 95% bootstrapped CI)
and was thus consistently the best predictor. Though
standard feature engineering greatly improved the GLM,
the ensemble and XGBoost still captured the neural
response more accurately.

To ensure that these results are not specific to the motor
cortex, we extended the same analyses to primary
somatosensory cortex (S1) data. The ensemble was
consistently the best predictor across all neurons,
scoring almost twice as well as the GLM (ratio of 1.8
[1.2 – 2.2] of population means, 95% bootstrapped CI).
XGBoost predicted spikes better than the GLM only for

neurons with significant effect sizes for any of the four
methods (i.e., with cross-validated pseudo-R2 scores
two standard deviations above 0; mean comparative
pseudo-R2 was 0.002 [0.0006 – 0.0045], 95%
bootstrapped CI). Interestingly, the neural network
performed worse than all other methods. We speculated
that this could be related to the small covariate effect
size in the S1 dataset, as we observed similar scores for
the neural network on the M1 dataset for regimes of
similar effect sizes, as well as on simulated data with
GLM structure, small effect size, and similar firing rates
(Supp. Fig. 2). We also found that a much smaller
network performed better (a single hidden layer with 20
nodes) but that max-norm or elastic-net regularization
did not improve the results with the larger network.
Neural networks may thus be poor choices for Poisson
data with very small covariate effect sizes, though we
see no theoretical reason why this should be the case.
Overall, on this S1 dataset featuring generally low
predictability, the tested methods displayed a range of
performances, with the ensemble predicting the data
nearly twice as well as the GLM alone.

We asked if the same trends of performance would hold
for the rat hippocampus dataset, which was
characterized by very low mean firing rates but strong
effect sizes. All methods were trained on a list of
features representing the rat position and orientation, as

Figure 5: Encoding models for M1 trained on all the original features plus the engineered features show that modern ML methods can
outperform the GLM even with standard featuring engineering. (a) For this example neuron, inclusion of the computed features increased
the predictive power of the GLM to the level of the neural net. XGBoost and the ensemble method also increased in predictive power. (b)
The tuning curves for the example neuron are diffuse when projected onto the movement direction, indicating a high-dimensional
dependence. (c) Even with feature engineering, XGBoost and the ensemble consistently achieve pseudo-R2 scores higher than the GLM,
though the neural net does not. The selected neuron at left is marked with black arrows.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

Fig 3 Fig 4 Fig 5

 9

described in methods. We found that many neurons
were described much better by XGBoost and the
ensemble method than by the GLM (Fig. 6b). On
average, the ensemble was almost ten times more
predictive than the GLM (ratio of population means of
9.8 [5.4 – 100.0], 95% bootstrapped CI), and many
neurons shifted from being completely unpredictable by
the GLM (pseudo-R2 near zero) to very predictable by
XGBoost and the ensemble (pseudo-R2 above 0.2). The
neural network performed poorly, here not due to effect
size as in S1 but likely due to the very low firing rates
of most hippocampal cells (Supp. Fig. 2). Out of the 58
neurons in the dataset, 54 had rates below 1 spikes/
second, and it was only on the four high-firing neurons
that the neural network achieved pseudo-R2 scores
comparable to the GLM. The relative success of
XGBoost was interesting given the failure of the neural
network, and supported the general observation that
XGBoost can work well with smaller and sparser
datasets than those neural networks generally require.
Thus for hippocampal cells, a method leveraging
decision trees such as XGBoost or the ensemble is able
to capture far more structure in the neural response than
the GLM or the neural network.

Discussion
We contrasted the performance of GLMs with recent

machine learning techniques at the task of predicting
spike rates in three brain regions. We found that the
tested ML methods predicted spike rates far more
accurately than the GLM. Typical feature engineering
only partially bridged the performance gap. The ML
methods performed comparably well with and without
feature engineering, indicating they could serve as
convenient performance benchmarks for improving
simpler encoding models. The consistently best method
was the ensemble, which was an instance of XGBoost
stacked on the predictions of the GLM, neural network,
XGBoost, and a random forest. The ensemble and
XGBoost could fit the data well even for very low spike
rates, as in the hippocampus dataset, and for very low
covariate effect sizes, as in the S1 dataset. These
findings indicate that GLMs are not the best choice as
neuroscience’s standard method of spike prediction.

The ML methods we have put forward here have
been implemented without substantial modification
from methods that are already in wide use. We hope that
this simple application might spur a wider adoption of
these methods in the neurosciences, thereby increasing
the power and efficiency of studies involving neural
prediction without requiring complicated, application-

Figure 6: XGBoost and the ensemble method predicted the activity of neurons in S1 and the hippocampus better than a GLM.
The diagonal dotted line in both plots is the line of equal predictive power with the GLM. (a) The ensemble predicted firing
almost twice as well, on average, as the GLM for all neurons in the S1 dataset. XGBoost was better for neurons with higher
effect sizes but poorly predicted neurons that were not predictable by any method. The neural network performed the worst
of all methods. (b) Many neurons in the rat hippocampus were described well by XGBoost and the ensemble but poorly by
the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing
of most neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally more predictable
than those in S1.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 9

described in methods. We found that many neurons
were described much better by XGBoost and the
ensemble method than by the GLM (Fig. 6b). On
average, the ensemble was almost ten times more
predictive than the GLM (ratio of population means of
9.8 [5.4 – 100.0], 95% bootstrapped CI), and many
neurons shifted from being completely unpredictable by
the GLM (pseudo-R2 near zero) to very predictable by
XGBoost and the ensemble (pseudo-R2 above 0.2). The
neural network performed poorly, here not due to effect
size as in S1 but likely due to the very low firing rates
of most hippocampal cells (Supp. Fig. 2). Out of the 58
neurons in the dataset, 54 had rates below 1 spikes/
second, and it was only on the four high-firing neurons
that the neural network achieved pseudo-R2 scores
comparable to the GLM. The relative success of
XGBoost was interesting given the failure of the neural
network, and supported the general observation that
XGBoost can work well with smaller and sparser
datasets than those neural networks generally require.
Thus for hippocampal cells, a method leveraging
decision trees such as XGBoost or the ensemble is able
to capture far more structure in the neural response than
the GLM or the neural network.

Discussion
We contrasted the performance of GLMs with recent

machine learning techniques at the task of predicting
spike rates in three brain regions. We found that the
tested ML methods predicted spike rates far more
accurately than the GLM. Typical feature engineering
only partially bridged the performance gap. The ML
methods performed comparably well with and without
feature engineering, indicating they could serve as
convenient performance benchmarks for improving
simpler encoding models. The consistently best method
was the ensemble, which was an instance of XGBoost
stacked on the predictions of the GLM, neural network,
XGBoost, and a random forest. The ensemble and
XGBoost could fit the data well even for very low spike
rates, as in the hippocampus dataset, and for very low
covariate effect sizes, as in the S1 dataset. These
findings indicate that GLMs are not the best choice as
neuroscience’s standard method of spike prediction.

The ML methods we have put forward here have
been implemented without substantial modification
from methods that are already in wide use. We hope that
this simple application might spur a wider adoption of
these methods in the neurosciences, thereby increasing
the power and efficiency of studies involving neural
prediction without requiring complicated, application-

Figure 6: XGBoost and the ensemble method predicted the activity of neurons in S1 and the hippocampus better than a GLM.
The diagonal dotted line in both plots is the line of equal predictive power with the GLM. (a) The ensemble predicted firing
almost twice as well, on average, as the GLM for all neurons in the S1 dataset. XGBoost was better for neurons with higher
effect sizes but poorly predicted neurons that were not predictable by any method. The neural network performed the worst
of all methods. (b) Many neurons in the rat hippocampus were described well by XGBoost and the ensemble but poorly by
the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing
of most neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally more predictable
than those in S1.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

macaque S1 hippocampus

GLMs NNs
?

 6

learning methods with their own approaches for
encoding models.

To test that all methods work reasonably well in a trivial
case, we trained each to predict spiking from a simple

and well-understood feature. Some neurons in M1 have
been described as responding linearly to the
exponentiated cosine of movement direction relative to
a preferred angle (41). We therefore predicted the

Figure 2: Encoding models for M1 performed similarly when trained on the sine and cosine of hand velocity direction. (a) The
pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3-5 the example neuron is the
same, and is not the neuron for which method hyperparameters were optimized. (b) The tuning curves of the neural net and
XGBoost were similar to that of the GLM. The black points are the recorded responses, to which we added y-axis jitter for
visualization. The tuning curve of the ensemble method was similar and is omitted here for clarity. (c) Plotting the pseudo-R2
of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single
neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error
bars represent the 95% bootstrap confidence interval.

Figure 3: Modern ML models could learn the cosine nonlinearity when trained on only the direction of hand velocity, in radians. (a) For
the same example neuron as in Figure 3, the neural net and XGBoost maintained the same predictive power, while the GLM was unable
to extract a relationship between direction and spike rate. (b) XGBoost and neural nets displayed reasonable tuning curves, while the GLM
reduced to the average spiking rate (with a small slope, in this case). (c) Most neurons in the population were poorly fit by the GLM, while
the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 8

rate in a similar center-out reaching task (6). These extra
features included the sine and cosine of velocity
direction (as in Figure 2), the speed, the radial distance
of hand position, and the sine and cosine of position
direction. The training set was thus 10-dimensional,
though highly redundant, and was aimed at maximizing
the predictive power of the GLM. Feature engineering
improved the predictive power of all methods to
variable degrees, with the GLM improving to the level
of the neural network (Fig. 5). XGBoost and the
ensemble still predicted spikes better than the GLM (Fig.
5c), with the ensemble scoring on average 1.8 times
higher than the GLM (ratio of population means of 1.8
[1.4 – 2.2], 95% bootstrapped CI). The ensemble was
significantly better than XGBoost (mean comparative
pseudo-R2 of 0.08 [0.055 – 0.103], 95% bootstrapped CI)
and was thus consistently the best predictor. Though
standard feature engineering greatly improved the GLM,
the ensemble and XGBoost still captured the neural
response more accurately.

To ensure that these results are not specific to the motor
cortex, we extended the same analyses to primary
somatosensory cortex (S1) data. The ensemble was
consistently the best predictor across all neurons,
scoring almost twice as well as the GLM (ratio of 1.8
[1.2 – 2.2] of population means, 95% bootstrapped CI).
XGBoost predicted spikes better than the GLM only for

neurons with significant effect sizes for any of the four
methods (i.e., with cross-validated pseudo-R2 scores
two standard deviations above 0; mean comparative
pseudo-R2 was 0.002 [0.0006 – 0.0045], 95%
bootstrapped CI). Interestingly, the neural network
performed worse than all other methods. We speculated
that this could be related to the small covariate effect
size in the S1 dataset, as we observed similar scores for
the neural network on the M1 dataset for regimes of
similar effect sizes, as well as on simulated data with
GLM structure, small effect size, and similar firing rates
(Supp. Fig. 2). We also found that a much smaller
network performed better (a single hidden layer with 20
nodes) but that max-norm or elastic-net regularization
did not improve the results with the larger network.
Neural networks may thus be poor choices for Poisson
data with very small covariate effect sizes, though we
see no theoretical reason why this should be the case.
Overall, on this S1 dataset featuring generally low
predictability, the tested methods displayed a range of
performances, with the ensemble predicting the data
nearly twice as well as the GLM alone.

We asked if the same trends of performance would hold
for the rat hippocampus dataset, which was
characterized by very low mean firing rates but strong
effect sizes. All methods were trained on a list of
features representing the rat position and orientation, as

Figure 5: Encoding models for M1 trained on all the original features plus the engineered features show that modern ML methods can
outperform the GLM even with standard featuring engineering. (a) For this example neuron, inclusion of the computed features increased
the predictive power of the GLM to the level of the neural net. XGBoost and the ensemble method also increased in predictive power. (b)
The tuning curves for the example neuron are diffuse when projected onto the movement direction, indicating a high-dimensional
dependence. (c) Even with feature engineering, XGBoost and the ensemble consistently achieve pseudo-R2 scores higher than the GLM,
though the neural net does not. The selected neuron at left is marked with black arrows.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

(No of course not!)

GLM is a special case of
NN!

 9

described in methods. We found that many neurons
were described much better by XGBoost and the
ensemble method than by the GLM (Fig. 6b). On
average, the ensemble was almost ten times more
predictive than the GLM (ratio of population means of
9.8 [5.4 – 100.0], 95% bootstrapped CI), and many
neurons shifted from being completely unpredictable by
the GLM (pseudo-R2 near zero) to very predictable by
XGBoost and the ensemble (pseudo-R2 above 0.2). The
neural network performed poorly, here not due to effect
size as in S1 but likely due to the very low firing rates
of most hippocampal cells (Supp. Fig. 2). Out of the 58
neurons in the dataset, 54 had rates below 1 spikes/
second, and it was only on the four high-firing neurons
that the neural network achieved pseudo-R2 scores
comparable to the GLM. The relative success of
XGBoost was interesting given the failure of the neural
network, and supported the general observation that
XGBoost can work well with smaller and sparser
datasets than those neural networks generally require.
Thus for hippocampal cells, a method leveraging
decision trees such as XGBoost or the ensemble is able
to capture far more structure in the neural response than
the GLM or the neural network.

Discussion
We contrasted the performance of GLMs with recent

machine learning techniques at the task of predicting
spike rates in three brain regions. We found that the
tested ML methods predicted spike rates far more
accurately than the GLM. Typical feature engineering
only partially bridged the performance gap. The ML
methods performed comparably well with and without
feature engineering, indicating they could serve as
convenient performance benchmarks for improving
simpler encoding models. The consistently best method
was the ensemble, which was an instance of XGBoost
stacked on the predictions of the GLM, neural network,
XGBoost, and a random forest. The ensemble and
XGBoost could fit the data well even for very low spike
rates, as in the hippocampus dataset, and for very low
covariate effect sizes, as in the S1 dataset. These
findings indicate that GLMs are not the best choice as
neuroscience’s standard method of spike prediction.

The ML methods we have put forward here have
been implemented without substantial modification
from methods that are already in wide use. We hope that
this simple application might spur a wider adoption of
these methods in the neurosciences, thereby increasing
the power and efficiency of studies involving neural
prediction without requiring complicated, application-

Figure 6: XGBoost and the ensemble method predicted the activity of neurons in S1 and the hippocampus better than a GLM.
The diagonal dotted line in both plots is the line of equal predictive power with the GLM. (a) The ensemble predicted firing
almost twice as well, on average, as the GLM for all neurons in the S1 dataset. XGBoost was better for neurons with higher
effect sizes but poorly predicted neurons that were not predictable by any method. The neural network performed the worst
of all methods. (b) Many neurons in the rat hippocampus were described well by XGBoost and the ensemble but poorly by
the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing
of most neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally more predictable
than those in S1.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

 9

described in methods. We found that many neurons
were described much better by XGBoost and the
ensemble method than by the GLM (Fig. 6b). On
average, the ensemble was almost ten times more
predictive than the GLM (ratio of population means of
9.8 [5.4 – 100.0], 95% bootstrapped CI), and many
neurons shifted from being completely unpredictable by
the GLM (pseudo-R2 near zero) to very predictable by
XGBoost and the ensemble (pseudo-R2 above 0.2). The
neural network performed poorly, here not due to effect
size as in S1 but likely due to the very low firing rates
of most hippocampal cells (Supp. Fig. 2). Out of the 58
neurons in the dataset, 54 had rates below 1 spikes/
second, and it was only on the four high-firing neurons
that the neural network achieved pseudo-R2 scores
comparable to the GLM. The relative success of
XGBoost was interesting given the failure of the neural
network, and supported the general observation that
XGBoost can work well with smaller and sparser
datasets than those neural networks generally require.
Thus for hippocampal cells, a method leveraging
decision trees such as XGBoost or the ensemble is able
to capture far more structure in the neural response than
the GLM or the neural network.

Discussion
We contrasted the performance of GLMs with recent

machine learning techniques at the task of predicting
spike rates in three brain regions. We found that the
tested ML methods predicted spike rates far more
accurately than the GLM. Typical feature engineering
only partially bridged the performance gap. The ML
methods performed comparably well with and without
feature engineering, indicating they could serve as
convenient performance benchmarks for improving
simpler encoding models. The consistently best method
was the ensemble, which was an instance of XGBoost
stacked on the predictions of the GLM, neural network,
XGBoost, and a random forest. The ensemble and
XGBoost could fit the data well even for very low spike
rates, as in the hippocampus dataset, and for very low
covariate effect sizes, as in the S1 dataset. These
findings indicate that GLMs are not the best choice as
neuroscience’s standard method of spike prediction.

The ML methods we have put forward here have
been implemented without substantial modification
from methods that are already in wide use. We hope that
this simple application might spur a wider adoption of
these methods in the neurosciences, thereby increasing
the power and efficiency of studies involving neural
prediction without requiring complicated, application-

Figure 6: XGBoost and the ensemble method predicted the activity of neurons in S1 and the hippocampus better than a GLM.
The diagonal dotted line in both plots is the line of equal predictive power with the GLM. (a) The ensemble predicted firing
almost twice as well, on average, as the GLM for all neurons in the S1 dataset. XGBoost was better for neurons with higher
effect sizes but poorly predicted neurons that were not predictable by any method. The neural network performed the worst
of all methods. (b) Many neurons in the rat hippocampus were described well by XGBoost and the ensemble but poorly by
the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing
of most neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally more predictable
than those in S1.

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/111450doi: bioRxiv preprint first posted online Feb. 24, 2017;

stimulus

spikes

membrane
potential

imaging

neural activity

encoding models

encoding models

What if there’s
no stimulus?

spikes

membrane
potential

imaging

neural activity

encoding models

encoding models

What if there’s
no stimulus?

spikes

membrane
potential

imaging

neural activity

latent variable models

latent encoding
models

latent variable
(unobserved or

“hidden”)

<latexit sha1_base64="W03iimHuVnRwoVFYpQGh0ykBtHs=">AAACM3icbZDLSgMxFIYz3q13XYoQLIKrMuNG3QkiuGzBqtCpkklPNTSXITlTW4Z5Arf6Kr6L4Erc+g6mdRZaPZDw83/nkJM/SaVwGIavwdT0zOzc/MJiZWl5ZXVtfWPz0pnMcmhyI429TpgDKTQ0UaCE69QCU4mEq6R3OuJXfbBOGH2BwxTait1p0RWcobcag9v1algLx0X/iqgUVVJW/XYj2Ik7hmcKNHLJnGtFYYrtnFkUXEJRiTMHKeM9dgctLzVT4Nr5eNOC7nmnQ7vG+qORjt2fEzlTzg1V4jsVw3s3yUbmf6yVYfeonQudZgiafz/UzSRFQ0ffph1hgaMcesG4FX5Xyu+ZZRx9OJVKrOGBG6WY7uRxv1f4CzjtFRNgUILBBECbFvlNjCYtfKDRZHx/RfOgdlyLGmH15KxMdoFsk12yTyJySE7IOamTJuEEyCN5Is/BS/AWvAcf361TQTmzRX5V8PkF+AGrsg==</latexit>

<latexit sha1_base64="Y1Rdd0vDJoDdlc8eOTZsZtbYSw8=">AAACgXicbVFdb9MwFHXDgK18rIXHvVhUSB1CldNRuoqXSRMSj0WibKgJlePcdlb9EdnO1irkp/DKfhP/BqfLA2RcydbROffI1+cmmeDWEfK7FTzYe/jo8f5B+8nTZ88PO90XX63ODYMZ00Kby4RaEFzBzHEn4DIzQGUi4CJZn1f6xTUYy7X64rYZxJKuFF9yRp2nFp3utL/9sTmOjIG0mPY3x+Wi0yMDsit8H4Q16KG6potu61uUapZLUI4Jau08JJmLC2ocZwLKdpRbyChb0xXMPVRUgo2L3ewlfu2ZFC+18Uc5vGP/dhRUWruVie+U1F3ZplaR/9PmuVuexgVXWe5AsbuHlrnATuMqCJxyA8yJrQeUGe5nxeyKGsqcj6vdjhTcMC0lVWkRXa9LfwHD67IhbGph0xCcycrie+R01hCqoL1n98+5WSVxQQbvJ6fkZPLWhzx+NwqJB+HJeDgaldUywmb098FsOJgMws+kd/ax3so+OkKvUB+FaIzO0Cc0RTPE0A36iX6h22AveBOQYHjXGrRqz0v0TwUf/gB49sGr</latexit>

50

N
eu

ro
n

in
de

x

Time

(simulated data)

spike responses
[credit: Jakob Macke]

50

N
eu

ro
n

in
de

x

Time

(simulated data)

spike responses

0

Time

Tr
aj
ec
to
rie
s

inferred latent variables

[credit: Jakob Macke]

50

N
eu

ro
n

in
de

x

Time

[credit: Jakob Macke]

spike responses

[credit: Jakob Macke]

spike response y

nonlinear
function noise

common input x

couplings C

latent variable models = GLMs where we don’t know
<latexit sha1_base64="ql7PqUzNbTp1EoEFdNvIvQdBct0=">AAACb3icbZHdahNBFMcna9Uav1q9EQplMAgKEmZbY5q7ggi9bKGxlexaZmdP0iHzscycrQnLPoG39uH6Gj6Bk3Qv6tYDM/z5/+Yw5yMrlPTI2E0nerDx8NHjzSfdp8+ev3i5tf3qm7elEzAWVll3nnEPShoYo0QF54UDrjMFZ9n8y4qfXYHz0ppTXBaQaj4zcioFx2CdLC62eqzP1kHvi7gRPdLE8cV253uSW1FqMCgU934SswLTijuUQkHdTUoPBRdzPoNJkIZr8Gm1rrSm74KT06l14Rika/duRsW190udhZea46Vvs5X5PzYpcXqQVtIUJYIRtx9NS0XR0lXbNJcOBKplEFw4GWql4pI7LjAMp9tNDPwUVmtu8iq5mtfhAkHndQssGrBoAXRFXf1I0BYt4BzkIWfd58TNsrRi/c+jA7Y/+hiGPPw0iFkQ8f5wbzCo67CMuD36+2K81x/14xPWO/zabGWT7JC35D2JyZAckiNyTMZEECC/yG9y3fkTvYl2I3r7NOo0Oa/JPxF9+AvvT7wp</latexit>

<latexit sha1_base64="lz4ifoyFRNHWQ7mKU1FpWBpsYiU=">AAACb3icbZHbahsxEIblTdqm7imHm0IhiJpCC8Vok7qO7wKl0MsE4ibFuw1a7dgR1mGRZpOYZZ8gt+nD9TX6BJWdvUg3HZD4+T8NmkNWKOmRsd+daG390eMnG0+7z56/ePlqc2v7u7elEzAWVll3lnEPShoYo0QFZ4UDrjMFp9n8y5KfXoLz0poTXBSQaj4zcioFx2AdL843e6zPVkEfirgRPdLE0flW50eSW1FqMCgU934SswLTijuUQkHdTUoPBRdzPoNJkIZr8Gm1qrSm74KT06l14RikK/d+RsW19wudhZea44Vvs6X5PzYpcXqQVtIUJYIRdx9NS0XR0mXbNJcOBKpFEFw4GWql4oI7LjAMp9tNDFwJqzU3eZVczutwgaDzugWuG3DdAuiKuvqZoC1awDnIQ86qz4mbZWnF+p9HB2x/9DEMefhpELMg4v3h3mBQ12EZcXv0D8V4rz/qx8esd/i12coGeUPekvckJkNySL6RIzImggC5IbfkV+dP9Drajejd06jT5OyQfyL68BfxWrwq</latexit>

<latexit sha1_base64="ql7PqUzNbTp1EoEFdNvIvQdBct0=">AAACb3icbZHdahNBFMcna9Uav1q9EQplMAgKEmZbY5q7ggi9bKGxlexaZmdP0iHzscycrQnLPoG39uH6Gj6Bk3Qv6tYDM/z5/+Yw5yMrlPTI2E0nerDx8NHjzSfdp8+ev3i5tf3qm7elEzAWVll3nnEPShoYo0QF54UDrjMFZ9n8y4qfXYHz0ppTXBaQaj4zcioFx2CdLC62eqzP1kHvi7gRPdLE8cV253uSW1FqMCgU934SswLTijuUQkHdTUoPBRdzPoNJkIZr8Gm1rrSm74KT06l14Rika/duRsW190udhZea46Vvs5X5PzYpcXqQVtIUJYIRtx9NS0XR0lXbNJcOBKplEFw4GWql4pI7LjAMp9tNDPwUVmtu8iq5mtfhAkHndQssGrBoAXRFXf1I0BYt4BzkIWfd58TNsrRi/c+jA7Y/+hiGPPw0iFkQ8f5wbzCo67CMuD36+2K81x/14xPWO/zabGWT7JC35D2JyZAckiNyTMZEECC/yG9y3fkTvYl2I3r7NOo0Oa/JPxF9+AvvT7wp</latexit>

?

goal: find shared structure underlying y

chicken and egg problem

Why are latent variable models hard to work with?

• hard to compute likelihood!

sensory  
encoding model

x

y

logP (Y |X) =
X

t

yt log �t � �t

Why are latent variable models hard to work with?

• hard to compute likelihood!

fit using:Poisson GLM:

sensory  
encoding model

x

y

logP (Y |X) =
X

t

yt log �t � �t

latent
variable model

Why are latent variable models hard to work with?

• hard to compute likelihood!

x

y

<latexit sha1_base64="lhxhmta7V1DdOurbFKk1Lo00a9U=">AAACeHicbZHLbhMxFIad4VbCpReWbAwRopVQ5ElJ0+wqISSWQSK0JTNUHs9JasWXkX2mNBrNW7CF9+JZ2OCks4ApR7L16/985HPJCiU9MvarE925e+/+g62H3UePnzzd3tnd++xt6QRMhVXWnWXcg5IGpihRwVnhgOtMwWm2fLfmp1fgvLTmE64KSDVfGDmXgmOwviTKLuhk//yAXuz0WJ9tgt4WcSN6pInJxW7nPMmtKDUYFIp7P4tZgWnFHUqhoO4mpYeCiyVfwCxIwzX4tNqUXNNXwcnp3LpwDNKN+3dGxbX3K52Fl5rjpW+ztfk/NitxfpxW0hQlghE3H81LRdHSdf80lw4EqlUQXDgZaqXikjsuMEyp200MfBNWa27yKrla1uECQZd1C1w34LoF0BV19TVBW7SAc5CHnE2fM7fI0or1j8bH7HD8Jgx59HYYsyDiw9FgOKzrsIy4PfrbYjroj/vxR9Y7ed9sZYs8Jy/JPonJiJyQD2RCpkQQQ76TH+Rn53f0InodHdw8jTpNzjPyT0SDPyolvuM=</latexit>

<latexit sha1_base64="kkgOIzcbbGBUSnoMenwIov6gI1Y=">AAACinicbVFdaxNBFJ2s1dZobapv9mVoECpImG0a0yBCwQp9TMHYlOwaZmdv0iHzsczM1oR1wV/jq/4d/42TdB9064WZOZxzL3PvuUkmuHWE/G4ED7YePtreedx88nT32V5r//lnq3PDYMS00GacUAuCKxg57gSMMwNUJgKuksWHtX51C8ZyrT65VQaxpHPFZ5xR56lp6+V7HAk9xxFXDg+Prr+NX/vHX+ly2mqTDtkEvg/CCrRRFcPpfuM6SjXLJSjHBLV2EpLMxQU1jjMBZTPKLWSULegcJh4qKsHGxWaIEr/yTIpn2vjje9mwf1cUVFq7konPlNTd2Lq2Jv+nTXI3O40LrrLcgWJ3H81ygZ3Ga0dwyg0wJ1YeUGa47xWzG2ooc963ZjNS8JVpKalKi+h2UfoLGF6UNWFZCcua4ExWFl8ip7OaYAykvmYz58TMk7ggnbeDU9IdvPEm9096IfEg7PaPe72y9MsI69bfB6PjzqATXpL22cdqKzvoAB2iIxSiPjpDF2iIRoih7+gH+ol+BbtBNxgE7+5Sg0ZV8wL9E8H5H0sHw6I=</latexit>

requires an integral!

fit using: fit using:

latent
dynamical model

Why are latent variable models hard to work with?

• hard to compute likelihood!

<latexit sha1_base64="lhxhmta7V1DdOurbFKk1Lo00a9U=">AAACeHicbZHLbhMxFIad4VbCpReWbAwRopVQ5ElJ0+wqISSWQSK0JTNUHs9JasWXkX2mNBrNW7CF9+JZ2OCks4ApR7L16/985HPJCiU9MvarE925e+/+g62H3UePnzzd3tnd++xt6QRMhVXWnWXcg5IGpihRwVnhgOtMwWm2fLfmp1fgvLTmE64KSDVfGDmXgmOwviTKLuhk//yAXuz0WJ9tgt4WcSN6pInJxW7nPMmtKDUYFIp7P4tZgWnFHUqhoO4mpYeCiyVfwCxIwzX4tNqUXNNXwcnp3LpwDNKN+3dGxbX3K52Fl5rjpW+ztfk/NitxfpxW0hQlghE3H81LRdHSdf80lw4EqlUQXDgZaqXikjsuMEyp200MfBNWa27yKrla1uECQZd1C1w34LoF0BV19TVBW7SAc5CHnE2fM7fI0or1j8bH7HD8Jgx59HYYsyDiw9FgOKzrsIy4PfrbYjroj/vxR9Y7ed9sZYs8Jy/JPonJiJyQD2RCpkQQQ76TH+Rn53f0InodHdw8jTpNzjPyT0SDPyolvuM=</latexit>

fit using:

xt+1

yt+1

xt

yt

xt-1

yt-1

dynamics

...

......response

<latexit sha1_base64="qKHYXGUUbB4Z85tADVA3P8Cjjyk=">AAACNHicbZC7TsMwFIYd7pRbgZHFokJqB6qkCzAgVbAwMIDU0kpNiRzHLRZObNknqFXoS7HwHkwwMABi5RlwSgduR7L16f/PkX3+UAluwHWfnKnpmdm5+YXFwtLyyupacX3jwshUU9akUkjdDolhgiesCRwEayvNSBwK1gqvj3O/dcO04TJpwFCxbkz6Ce9xSsBKQfHU5wlgX2kZBRkceqPLBvaPeL+sysMAbgcBVLAqD8aYwa43quRuBUeDwMuvGvZpJMHk3AiKJbfqjgv/BW8CJTSps6D44EeSpjFLgApiTMdzFXQzooFTwUYFPzVMEXpN+qxjMSExM91svPUI71glwj2p7bE7jNXvExmJjRnGoe2MCVyZ314u/ud1UujtdzOeqBRYQr8e6qUCg8R5hDjimlEQQwuEam7/iukV0YSCDbpgQ/B+r/wXmrXqQdU7d0v1o0kaC2gLbaMy8tAeqqMTdIaaiKI79Ihe0Ktz7zw7b877V+uUM5nZRD/K+fgEHp6qAQ==</latexit>

latent

observations dynamics

high-dimensional integral

Fitting Latent Variable Models

1. Sampling (“MCMC”) - fully Bayesian inference

1) sample latents: conditional over
latents

2) sample parameters: conditional over
parameters

• procedure for sampling joint distribution:

Fitting Latent Variable Models

1. Sampling (“MCMC”) - fully Bayesian inference

2. Expectation maximization (EM)

1) sample latents: conditional over
latents

2) sample parameters: conditional over
parameters

• procedure for sampling joint distribution:

Alternate updating parameters and posterior over latents.

Fitting Latent Variable Models

1. Sampling (“MCMC”) - fully Bayesian inference

2. Expectation maximization (EM)

3. Variational inference

1) sample latents: conditional over
latents

2) sample parameters: conditional over
parameters

• procedure for sampling joint distribution:

Alternate updating parameters and posterior over latents.

Optimize a lower bound on posterior over parameters
Easy with modern probabilistic programming languages
(STAN, Edward)

Latent Variable models are defined by two quantities:

<latexit sha1_base64="ws37Pmllp+Wshk+faQ9ajP05jK0=">AAACcnicbZHLbhMxFIad4daGWwvLbgwRUpGqyNMS0uwqoUpdBonQosxQeTwniRVfRvaZkmg0r8AWXo0HYV8nzAKmHMnWr//zkc8lK5T0yNivTnTv/oOHj3Z2u4+fPH32fG//xWdvSydgIqyy7irjHpQ0MEGJCq4KB1xnCi6z5YcNv7wB56U1n3BdQKr53MiZFBw31vhw9fZ6r8f6bBv0rogb0SNNjK/3O1+S3IpSg0GhuPfTmBWYVtyhFArqblJ6KLhY8jlMgzRcg0+rbbE1fROcnM6sC8cg3bp/Z1Rce7/WWXipOS58m23M/7FpibPTtJKmKBGM+PPRrFQULd10TnPpQKBaB8GFk6FWKhbccYFhPt1uYuCbsFpzk1fJzbIOFwi6rFtg1YBVC6Ar6uprgrZoAecgDznbPqdunqUV678fnbKT0VEY8vDdIGZBxCfD48GgrsMy4vbo74rJcX/Ujz+y3tl5s5UdckBek0MSkyE5IxdkTCZEkAX5Tn6Qn53f0UH0KmpWGHWanJfkn4iObgGqV7zo</latexit>

<latexit sha1_base64="z3DakK0PnR7CeqMWV3f0ylYJ1tc=">AAACdHicbZFdT9swFIbdbGysY+NjlxOStQqJSVPkAF3pHRJC2mWRVmBqMuQ4p8XUH5HtQKss/2G38M/4JdzOLbnYwo5k69X7+MjnI80Ft46Qh1bw4uXKq9erb9pv1969X9/Y3DqzujAMhkwLbS5SakFwBUPHnYCL3ACVqYDzdHq84Oc3YCzX6rub55BIOlF8zBl13job7M5/zT5fbnRISJaBn4uoFh1Ux+Bys/UjzjQrJCjHBLV2FJHcJSU1jjMBVTsuLOSUTekERl4qKsEm5bLcCu94J8NjbfxRDi/dvzNKKq2dy9S/lNRd2SZbmP9jo8KND5OSq7xwoNjTR+NCYKfxoneccQPMibkXlBnua8XsihrKnJ9Qux0ruGVaSqqyMr6ZVv4ChqdVA8xqMGsAZ/Kq/Bk7nTeAMZD5nGWfIzNJk5KEX/uHZL//xQ+5d9CNiBfRfm+v260qv4yoOfrnYrgX9sPolHSOTuqtrKKP6BPaRRHqoSP0DQ3QEDF0jX6jO3Tfegy2g06w8/Q0aNU5H9A/EYR/AO0zvfE=</latexit>

latent mapping

• discrete • Gaussian
• Mixture of
Gaussians

(“clustering”)

Model

• Gaussian • linear,
Gaussian

• Factor analysis
(PCA is special

case)

• linear Gaussian  
dynamics

• linear,  
Gaussian

• Linear Dynamical
Systems (LDS) 
(“Kalman filter”)

• discrete
transitions • any • Hidden Markov

Model (“HMM”)

variational latent Gaussian process (vLGP)

Poisson GLMGaussian Process

[Zhao & Park 2016]

<latexit sha1_base64="ws37Pmllp+Wshk+faQ9ajP05jK0=">AAACcnicbZHLbhMxFIad4daGWwvLbgwRUpGqyNMS0uwqoUpdBonQosxQeTwniRVfRvaZkmg0r8AWXo0HYV8nzAKmHMnWr//zkc8lK5T0yNivTnTv/oOHj3Z2u4+fPH32fG//xWdvSydgIqyy7irjHpQ0MEGJCq4KB1xnCi6z5YcNv7wB56U1n3BdQKr53MiZFBw31vhw9fZ6r8f6bBv0rogb0SNNjK/3O1+S3IpSg0GhuPfTmBWYVtyhFArqblJ6KLhY8jlMgzRcg0+rbbE1fROcnM6sC8cg3bp/Z1Rce7/WWXipOS58m23M/7FpibPTtJKmKBGM+PPRrFQULd10TnPpQKBaB8GFk6FWKhbccYFhPt1uYuCbsFpzk1fJzbIOFwi6rFtg1YBVC6Ar6uprgrZoAecgDznbPqdunqUV678fnbKT0VEY8vDdIGZBxCfD48GgrsMy4vbo74rJcX/Ujz+y3tl5s5UdckBek0MSkyE5IxdkTCZEkAX5Tn6Qn53f0UH0KmpWGHWanJfkn4iObgGqV7zo</latexit> <latexit sha1_base64="z3DakK0PnR7CeqMWV3f0ylYJ1tc=">AAACdHicbZFdT9swFIbdbGysY+NjlxOStQqJSVPkAF3pHRJC2mWRVmBqMuQ4p8XUH5HtQKss/2G38M/4JdzOLbnYwo5k69X7+MjnI80Ft46Qh1bw4uXKq9erb9pv1969X9/Y3DqzujAMhkwLbS5SakFwBUPHnYCL3ACVqYDzdHq84Oc3YCzX6rub55BIOlF8zBl13job7M5/zT5fbnRISJaBn4uoFh1Ux+Bys/UjzjQrJCjHBLV2FJHcJSU1jjMBVTsuLOSUTekERl4qKsEm5bLcCu94J8NjbfxRDi/dvzNKKq2dy9S/lNRd2SZbmP9jo8KND5OSq7xwoNjTR+NCYKfxoneccQPMibkXlBnua8XsihrKnJ9Qux0ruGVaSqqyMr6ZVv4ChqdVA8xqMGsAZ/Kq/Bk7nTeAMZD5nGWfIzNJk5KEX/uHZL//xQ+5d9CNiBfRfm+v260qv4yoOfrnYrgX9sPolHSOTuqtrKKP6BPaRRHqoSP0DQ3QEDF0jX6jO3Tfegy2g06w8/Q0aNU5H9A/EYR/AO0zvfE=</latexit>

latent mapping

variational latent Gaussian process (vLGP)

• 63 simultaneously-recorded V1 neurons [Graf et al 2011]
• stimuli: drifting sinusoidal gratings

[Zhao & Park 2016]

https://www.youtube.com/watch?v=CrY5AfNH1ik

variational latent Gaussian process (vLGP)
[Zhao & Park 2016]

• 63 simultaneously-recorded V1 neurons [Graf et al 2011]
• stimuli: drifting sinusoidal gratings

https://www.youtube.com/watch?v=CrY5AfNH1ik

Summary

• descriptive statistical “encoding” models
• seek to capture structure in data
• formal tools for comparing models
• encoding and decoding analyses via Bayes rule
• models are modular, easy to build /extend / generalize

• large-scale recording technology advancing rapidly

• lots of interesting structure in high-D neural data

• big opportunities in computational / statistical for
developing new methods and models to find / exploit
this structure!

Big Picture

