Statistical Models for Neural Data: from Regression / GLMs to Latent Variables

Jonathan Pillow
Princeton Neuroscience Institute

Tutorial
Cosyne 2018
Retinal responses to white noise (ON parasol cells)

neural coding problem

stimulus \(x \)

membrane potential
spikes
imaging

neural activity \(y \)

- How are stimuli and actions encoded in neural activity?
- What aspects of neural activity carry information?
neural coding problem

Approach:
- develop flexible statistical models of $P(y|x)$
- quantify information carried in neural responses
neural coding problem

\[P(y|x) \]

encoding models

“regression models”

• not restricted to sensory variables
neural coding problem

- Position (P)
- Head direction
- Speed (S)
- Theta phase

“external covariates”

\[P(y|x) \]

encoding models

“regression models”

- not restricted to sensory variables

membrane potential
spikes
imaging

[Hardcastle et al 2015]
latent variable models

- capture hidden structure underlying neural activity
 (e.g. low-dimensional or discrete states)
latent variable models

• capture hidden dynamics underlying neural activity

latent variable
(unobserved or “hidden”)

spikes

membrane potential

imaging

latent dynamics

latent dynamical encoding models

\[P(y_t | x_t) P(x_t | x_{t-1}) \]
model desiderata

- Linear, Gaussian
- GLM
- Sweet spot
- Multi-compartment Hodgkin-Huxley

Fittability / tractability
(can be fit to data)

Richness / flexibility
(capture realistic neural properties)
What is the code?

Why does the code take this form?

How is it implemented?

normative theories (e.g. “efficient coding”)

descriptive statistical models

anatomy, biophysics

$P(y|x)$
Outline

1. Spike count models & Maximum Likelihood
2. Spike train models (GLMs with spike history)
3. Multiple Spike Train Models (GLMs with coupling)
4. Regularization
5. Beyond GLM
6. Latent variable models
simple example #1: linear Poisson neuron

encoding model: \[P(y|x, \theta) = \frac{1}{y!} \lambda^y e^{-\lambda} = \frac{1}{y!} (\theta x)^y e^{-(\theta x)} \]

\[\lambda = \text{mean} = \text{variance} \]

spike rate \[\lambda = \theta x \]

spike count \[y \sim \text{Poisson}(\lambda) \]
mean(y) = \theta x
\text{var}(y) = \theta x

P(y|x)

conditional distribution

p(y|x = 5)
mean(y) = \theta x
var(y) = \theta x

conditional distribution

\begin{align*}
P(y|x) \\
p(y|x = 20)
\end{align*}
mean\((y) = \theta x \)

\[\text{var}(y) = \theta x \]

Conditional distribution

\[P(y|x) \]

\[p(y|x = 35) \]
Maximum Likelihood Estimation:

- given observed data \((Y, X)\), find \(\theta\) that maximizes \(P(Y|X, \theta)\)

\[
P(Y|X, \theta) = \prod_{i=1}^{N} P(y_i|x_i, \theta)
\]

Q: what assumption are we making about the responses?
A: conditional independence across trials!
Maximum Likelihood Estimation:

- given observed data \((Y, X)\), find \(\theta\) that maximizes

\[
P(Y | X, \theta) = \prod_{i=1}^{N} P(y_i | x_i, \theta)
\]

all spike counts, all stimuli, parameters

Q: what assumption are we making about the responses?

A: conditional independence across trials!

Q: when do we call \(P(Y | X, \theta)\) a likelihood?

A: when considering it as a function of \(\theta\)!
Maximum Likelihood Estimation:

• given observed data \((Y, X)\), find \(\theta\) that maximizes \(P(Y \mid X, \theta)\)

\[y \sim \text{Pois}(\theta x) \]
\[\theta = 1.5 \]

• could in theory do this by turning a knob
Maximum Likelihood Estimation:

- given observed data \((Y, X)\), find \(\theta\) that maximizes \(P(Y|X, \theta)\)

\[
P(y|x) \sim \text{Poiss}(\theta x)
\]

\(\theta = 1\)

- could in theory do this by turning a knob
Maximum Likelihood Estimation:

- given observed data \((Y, X)\), find \(\theta\) that maximizes \(P(Y|X, \theta)\)

\[P(y|x) \]

\[y \sim \text{Poiss}(\theta x) \]

\[\theta = 0.5 \]

- could in theory do this by turning a knob
Likelihood function: $P(Y|X, \theta)$ as a function of θ

Because data are independent:

$$P(Y|X, \theta) = \prod_i P(y_i|x_i, \theta)$$

$$= \prod \frac{1}{y_i!} (\theta x_i)^{y_i} e^{-\theta x_i}$$
Likelihood function: $P(Y | X, \theta)$ as a function of θ

Because data are independent:

$$P(Y | X, \theta) = \prod_i P(y_i | x_i, \theta)$$

$$= \prod \frac{1}{y_i!} (\theta x_i)^{y_i} e^{-\theta x_i}$$

log-likelihood:

$$\log P(Y | X, \theta) = \sum_i \log P(y_i | x_i, \theta)$$

$$= \sum y_i \log \theta - \theta x_i + c$$
\[
\log P(Y \mid X, \theta) = \sum_i \log P(y_i \mid x_i, \theta) \\
= \sum y_i \log \theta - \theta x_i + c \\
= \log \theta \left(\sum y_i \right) - \theta \left(\sum x_i \right)
\]

Do it: solve for θ
\[\log P(Y|X, \theta) = \sum_i \log P(y_i|x_i, \theta) \]
\[= \sum y_i \log \theta - \theta x_i + c \]
\[= \log \theta (\sum y_i) - \theta (\sum x_i) \]

- Closed-form solution when model in “exponential family”

\[
\frac{d}{d\theta} \log P(Y|X, \theta) = \frac{1}{\theta} \sum y_i - \sum x_i = 0
\]

\[\Rightarrow \hat{\theta}_{ML} = \frac{\sum y_i}{\sum x_i} \]
Properties of the MLE (maximum likelihood estimator)

• **consistent**
 (converges to true θ in limit of infinite data)

• **efficient**
 (converges as quickly as possible, i.e., achieves minimum possible asymptotic error)
simple example #2: linear Gaussian neuron

spike rate $\mu = \theta x$

spike count $y \sim \mathcal{N}(\mu, \sigma^2)$

encoding model:

$$P(y|x, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y - \theta x)^2}{2\sigma^2}}$$
\[
\text{mean}(y) = \theta x \\
\text{var}(y) = \sigma^2
\]
\[P(y|x, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta x)^2}{2\sigma^2}} \]

Log-Likelihood

\[\log P(Y|X, \theta) = - \sum \frac{(y_i - \theta x_i)^2}{2\sigma^2} + c \]

Differentiate, set to zero, and solve for \(\theta \)
Log-Likelihood

\[P(y|x, \theta) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(y-\theta x)^2}{2\sigma^2}} \]

Log-Likelihood

\[\log P(Y|X, \theta) = - \sum \frac{(y_i - \theta x_i)^2}{2\sigma^2} + c \]

\[\frac{d}{d\theta} \log P(Y|X, \theta) = - \sum \frac{(y_i - \theta x_i)x_i}{\sigma^2} = 0 \]

Maximum-Likelihood Estimator:

\[\hat{\theta}_{ML} = \frac{\sum y_i x_i}{\sum x_i^2} \]

("Least squares regression" solution)

(Recall that for Poisson, \(\hat{\theta}_{ML} = \frac{\sum y_i}{\sum x_i} \))
example #3: unknown neuron

Be the computational neuroscientist: what model would you use?
Example 3: unknown neuron

More general setup:

- $\lambda = f(\theta x)$: firing rate is nonlinear
- $y \sim Poiss(\lambda)$: Poisson firing

This is a GLM!
“basic” Poisson generalized linear model (GLM)

Linear-Nonlinear-Poisson (LNP) model

- stimulus $x(t)$
- dimensionality reduction
- nonlinear stretching
- noise
- stimulus filter θ
- exponential nonlinearity f
- Poisson spiking $\lambda(t)$
- spike rate $\lambda = f(\vec{k} \cdot \vec{x})$
- spike count $y \sim \text{Poiss}(\lambda)$

- also known as a “cascade” model
What is a GLM?

Be careful about terminology:

GLM ≠ GLM

General Linear Model ≠ Generalized Linear Model

(Nelder 1972)
Moral:
Be careful when naming your model!
1. General Linear Model

Examples:

1. Gaussian
 \[y = \theta \cdot x + \epsilon \]

2. Poisson
 \[y \sim \text{Poisson}(\theta \cdot x) \]
2. Generalized Linear Model

Examples:
1. Gaussian
 \[y = f(\vec{\theta} \cdot \vec{x}) + \epsilon \]
2. Poisson
 \[y \sim \text{Poisson}(f(\vec{\theta} \cdot \vec{x})) \]
2. Generalized Linear Model

Terminology:

\[\tilde{x} \rightarrow \text{Linear} \rightarrow \text{Nonlinear} \rightarrow \text{Noise} \rightarrow y \]

- \(\tilde{x} \) → Linear → Nonlinear → Noise → \(y \)
- \(\theta \) → “parameters”
- \(f \) → “distribution function”
- \(f^{-1} \) = “link function”
- \(f \) = “the nonlinearity”
Applying it to data

\[y_t = \vec{k} \cdot \vec{x}_t + \text{noise} \]

response at time \(t \)

linear filter

vector stimulus at time \(t \)

stimulus

response

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0

time ————->
response at time t

\[y_t = \vec{k} \cdot \vec{x}_t + \text{noise} \]

linear filter

vector stimulus at time t

walk through the data one time bin at a time

$t = 1$

stimulus

response

Time y_t
response at time \(t \)

walk through the data one time bin at a time

\[y_t = \mathbf{k} \cdot \mathbf{x}_t + \text{noise} \]

linear filter

vector stimulus at time \(t \)

stimulus

response

t = 2

\(\mathbf{x}_t \)

time \(\rightarrow \)

\(y_t \)
The response at time t is given by:

$$y_t = \vec{k} \cdot \vec{x}_t + \text{noise}$$

where \vec{k} is the linear filter and \vec{x}_t is the vector stimulus at time t.

Walk through the data one time bin at a time.

For $t = 3$, we have \vec{x}_t as the stimulus.

The response is shown below.
response at time t

walk through the data one time bin at a time

$t = 4$

stimulus

$y_t = \vec{k} \cdot \vec{x}_t + \text{noise}$

linear filter

vector stimulus at time t

response

stimulus

response

time

y_t
response at time t

$$y_t = \mathbf{k} \cdot \mathbf{x}_t + \text{noise}$$

linear filter

vector stimulus at time t

walk through the data one time bin at a time

$t = 5$

stimulus

response

time \rightarrow y_t

$y_t = \mathbf{k} \cdot \mathbf{x}_t + \text{noise}$
response at time t

$y_t = \mathbf{k} \cdot \mathbf{x}_t + \text{noise}$

linear filter

vector stimulus at time t

walk through the data one time bin at a time

$t = 6$

stimulus

response

time \longrightarrow

y_t
Build up to following matrix version:

\[Y = X\vec{k} + \text{noise} \]

\[
\begin{bmatrix}
0 \\
0 \\
1 \\
\vdots
\end{bmatrix} = \begin{bmatrix}
\vdots \\
\vdots \\
\vdots
\end{bmatrix} \begin{bmatrix}
\vec{k}
\end{bmatrix}
\]

\text{design matrix}
Computing maximum likelihood estimate

\[Y = X \tilde{k} + \text{noise} \]

1. "Linear-Gaussian" GLM:
\[\hat{k} = \left(X^T X \right)^{-1} X^T Y \]
Computing maximum likelihood estimate

\[Y = f(X \vec{k}) + \text{noise} \]

\[
\begin{bmatrix}
0 \\
1 \\
\vdots
\end{bmatrix}
=
\begin{bmatrix}
\vdots \\
\vdots \\
\vdots
\end{bmatrix}
\begin{bmatrix}
\vec{k}
\end{bmatrix}
\]

2. **Poisson GLM:**
\[k = \text{glmfit}(X,Y,'\text{Poisson'}); \]

maximum likelihood fit

(assumes exponential nonlinearity by default)
Computing maximum likelihood estimate

\[Y = f(X\vec{k}) + noise \]

3. **Bernoulli GLM**: \(\vec{k} = \text{glmfit}(X,Y,\text{'binomial'}); \)

outputs 0 and 1 (assumes **logistic** nonlinearity by default)

“logistic regression”
GLM summary

1. Linear-Gaussian GLM: \(Y \mid X, \mathbf{k} \sim \mathcal{N}(X \mathbf{k}, \sigma^2 I) \) \text{ continuous}

 log-likelihood: \[-\frac{1}{2\sigma^2} (Y - X \mathbf{k})^\top (Y - X \mathbf{k}) + \text{const}\]

 MLE: \(\hat{\mathbf{k}} = (X^T X)^{-1} X^T Y \)

2. Poisson GLM: \(y \mid \bar{x}, \mathbf{k} \sim \text{Pois}(f(\bar{x}_t \cdot \mathbf{k})) \) \text{ integer counts}

 log-likelihood: \(\mathcal{L} = Y^\top \log f(X \mathbf{k}) - 1^\top f(X \mathbf{k}) \)

3. Bernoulli GLM: \(y_t \mid \bar{x}_t, \mathbf{k} \sim \text{Ber}(f(\bar{x}_t \cdot \mathbf{k})) \) \text{ binary counts}

 log-likelihood: \(\mathcal{L} = Y^\top \log f(X \mathbf{k}) - (1 - Y)^\top \log(1 - f(X \mathbf{k})) \)

 “logistic regression” if \(f(x) = \frac{1}{1 + e^{-x}} \)
NEXT:

GLMs with spike-history and coupling
stimulus filter

Poisson spiking

stimulus $x(t)$

spike rate $\lambda(t) = f(k \cdot x(t))$

• problem: assumes spiking depends only on stimulus!
Poisson GLM with spike-history dependence

stimulus filter

exponential nonlinearity

probabilistic spiking

stimulus

\[\lambda(t) = f(\vec{k} \cdot \vec{x}(t) + \vec{h} \cdot \vec{y}_{hst}(t)) \]

\[= e^{\vec{k} \cdot \vec{x}(t)} \cdot e^{\vec{h} \cdot \vec{y}_{hst}(t)} \]

• output: no longer a Poisson process
• interpretation: “soft-threshold” integrate-and-fire model

(Truccolo et al 2004, Gerstner 2001)
Poisson GLM with spike-history dependence

• interpretation: “soft-threshold” integrate-and-fire model

traditional IF

“soft-threshold” IF
GLM dynamic behaviors

- irregular spiking

stimulus

filter outputs ("currents")

\[p(\text{spike}) \]

post-spike filter \[h(t) \]
GLM dynamic behaviors

- regular spiking

stimulus

filter outputs ("currents")

p(spike)

post-spike filter

h(t)
GLM dynamic behaviors

- adaptation

stimulus

filter outputs ("currents")

p(spike)

post-spike filter $h(t)$
GLM dynamic behaviors

- bursting

stimulus

filter outputs
("currents")

p(spike)

post-spike filter

$h(t)$
GLM dynamic behaviors (from Izhikevich)

(A) tonic spiking

(B) phasic spiking

(C) tonic bursting

(D) phasic bursting

(E) mixed mode

(F) spike frequency adaptation

(G) type I

(H) type II

(I) spike latency

(J) resonator

(K) integrator

(L) rebound spike

(M) rebound burst

(N) threshold variability

(O) bistability I

(P) bistability II

Figure 6: Suite of dynamical behaviors of Izhikevich and GLM neurons. Each panel, top to bottom: stimulus (blue), Izhikevich neuron response (black), GLM responses on five trials (gray), stimulus filter (left, blue), and post-spike filter (right, red). Black line in each plot indicates a 50 ms scale bar for the stimulus and spike response. (Differing timescales reflect timescales used for each behavior in original Izhikevich paper (Izhikevich, 2004)). Stimulus filter and post-spike filter plots all have 100 ms duration.

Weber & Pillow 2017
multi-neuron GLM

stimulus filter → + → exponential nonlinearity → probabilistic spiking

post-spike filter

stimulus

neuron 1

neuron 2
multi-neuron GLM

stimulus

stimulus filter

exponential nonlinearity

probabilistic spiking

post-spike filter

coupling filters

neuron 1

+ +

neuron 2

+ +

...
GLM equivalent diagram:

\[\lambda_i(t) = \exp(k_i \cdot x(t) + \sum_j h_{ij} \cdot y(t)) \]
Example dataset

- stimulus = binary flicker
- parasol retinal ganglion cell spike responses
Example dataset

- stimulus = binary flicker
- parasol retinal ganglion cell spike responses
Stimulus-only GLM

- **Design matrix**
 - X

- **Spike response**
 - Y

Model

$$P(Y|X)$$

Diagram Description

- The design matrix X is represented with a time lag and time dimension.
- The spike response Y is shown as a vertical bar with varying intensities, indicating the model output.

Note: The diagram illustrates the relationship between the stimulus (design matrix X) and the resulting spike response Y, with the model $P(Y|X)$ showing the probabilistic relationship.
Stimulus + SpikeHistory GLM

\[Y \sim X \]

model

\[P(Y \mid X) \]
Stimulus + History + 3 Neuron Coupling GLM

design matrix

\[X \]

spike response

\[Y \]

model

\[P(Y|X) \]
Fitting: Maximum Likelihood

Data

\[x_t \]

\[y^1_t \]

\[\vdots \]

\[y^n_t \]

GLM

\[k \]

\[h^1 \]

\[\vdots \]

\[h^n \]

- maximize log-likelihood for filters \(\{k, h_1, h_2, \ldots, h_n\} \)

- firing rate:
 \[\lambda_t = f(\vec{x}_t \cdot \vec{k}) \]

- log-likelihood is concave
- no local maxima \([Paninski 04]\)

\[\log P(Y|X) = \sum_t y_t \log \lambda_t - \lambda_t \]
convexity and concavity

- everywhere downward curvature
- everywhere upward curvature

- maximizing concave function \iff minimizing a convex function
- preclude existence of non-global local optima
capturing dependencies in multi-neuron responses

[Pillow et al 2008]

retinal receptive fields

cross-correlations

cell #

1 2 3 4 5 6 7 8 9 10

--- data
--- GLM
--- uncoupled GLM

75 sp/s

50 ms
Decoding

- estimate stimuli from the observed spike times
- tool for comparing different encoding models
Q: what was the stimulus?
Decide: response 2

Q: what was the stimulus?
Bayesian Decoding

Bayes’ rule: \[P(x|y) \propto P(y|x)P(x) \]
Bayesian Decoding

Bayes’ rule:

\[
P(x|y) \propto P(y|x)P(x)
\]

\[
P(y_1|x) \cdots P(y_n|x)
\]

“independent” (uncoupled GLM)

vs.

\[
P(y_1, y_2, \ldots, y_n|x)
\]

“joint encoding” (coupled GLM)
Decoding Comparison

![Bar graph showing comparison between linear decoding and Bayesian decoding with and without coupling. The graph illustrates a 20% increase in log SNR (bits/s) with coupling compared to without coupling.](image)

[Pillow et al 2008]
Regularization
Modern statistics

• more dimensions than samples \(D \geq N \)

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_N
\end{bmatrix}
= \begin{bmatrix}
 \overrightarrow{x}_1 \\
 \vdots \\
 \overrightarrow{x}_N
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 \vdots \\
 w_D
\end{bmatrix} + \text{noise}
\]

• fewer equations than unknowns!
• no unique solution
Simulated Example

- 100-element filter ($D=100$)
- 100 noisy samples ($N=100$)

```
true $w$
```

maximum likelihood

```
\[
\text{maximize} \quad \log p(data|w)
\]
```

“overfitting” - parameters fit to details in the training data that are not useful for predicting new data
Simulated Example

- 100-element filter (D=100)
- 100 noisy samples (N=100)

\[\hat{w} = (X^T X + \lambda I)^{-1} X^T Y \]

true \(w \)

maximum likelihood

"ridge regression"

- biased, but gives improved performance for appropriate choice of \(\lambda \) (James & Stein 1960)
Simulated Example

- 100-element filter (D=100)
- 100 noisy samples (N=100)

true w

maximum likelihood

\[
\text{maximize}
\log p(\text{data}|w)
\]

“smoothed”

\[
\text{maximize}
\log p(\text{data}|w) - \lambda \sum (w_i - w_{i-1})^2
\]

Q: how to set the regularization strength λ?

Simplest answer: use cross-validation!
GLM tutorial (matlab):

code: https://github.com/pillowlab/GLMspiketraintutorial
data: available on request from pillow@princeton.edu

• tutorial1_PoissonGLM.m - fitting of a linear-Gaussian GLM and Poisson GLM (aka LNP model) to RGC neurons stimulated with temporal white noise stimulus.

• tutorial2_spikehistcoupledGLM.m - fitting of a Poisson GLM with spike-history and coupling between neurons.

• tutorial3_regularization_linGauss.m - regularizing linear-Gaussian model parameters using maximum a posteriori (MAP) estimation under two kinds of priors:
 ○ (1) ridge regression (aka "L2 penalty");
 ○ (2) L2 smoothing prior (aka "graph Laplacian").

• tutorial4_regularization_PoissonGLM.m - MAP estimation of Poisson-GLM parameters using same two priors as in tutorial3.
GLM summary

• linear ("dim reduction") + nonlinear + noise
• incorporate spike-history via "spike history" filter
• rich dynamical properties: refractoriness, bursting, adaptation
• incorporate correlations between neurons via "coupling" filters
• flexible tool for encoding & decoding analyses
• regularize to reduce overfitting (essential w/ correlated stimuli)
Beyond GLM
Volterra / Wiener Kernels

Taylor series expansion of a function $f(x)$ in n dimensions

$$y = k_0 + \vec{k}_1 \cdot \vec{x} + \vec{x}^t K_2 \vec{x} + K_3 \cdot \vec{x}^3 + \ldots$$

- k_0: constant
- \vec{k}_1: vector
- K_2: matrix
- K_3: 3-tensor

parameters:
- k_0: 1
- \vec{k}_1: n (20)
- K_2: n^2 (400)
- K_3: n^3 (8000)

- from “systems identification” literature (1960s-70s)
- white noise stimuli
- estimate kernels using moments of spike-triggered stimuli

Lee & Schetzen 1965
Marmarelis & Naka 1972
Korenberg & Hunter 1986
Why are Volterra/Wiener models (generally) bad?

- no output nonlinearity
- polynomials give poor fit to neural nonlinearities (e.g., rectifying, saturating)
- responses may depend on more than one projection of stimulus!
- emphasis on dimensionality reduction
- no longer technically a GLM if fitting nonlinearity f
multi-filter LNP

Estimators:

- Spike-triggered covariance (STC) [de Ruyter & Bialek 1998, Schwartz et al 2006]
- Generalized Quadratic Model (GQM) [Park & Pillow 2011; Park et al 2013; Rajan et al 2013]
- maximally informative dimensions (MID) / maximum likelihood [Sharpee et al 2004] [Williamson et al 2015]
extending GLM to conductance-based model [Latimer et al 2014]

membrane dynamics

\[\frac{dV}{dt} = g_l (E_l - V) + g_e (E_e - V) + g_i (E_i - V) \]

conductances

\[g_e(t) = f_c(k_e \cdot x(t)) \]
\[g_i(t) = f_c(k_i \cdot x(t)) \]

inst. spike rate

\[\lambda(t) = f(V(t)) \]

- shunting inhibition
- adaptive changes in dynamics
extending GLM to conductance-based model

- intracellular recordings in macaque parasol RGCs (Fred Rieke)

Linear filters

- excitatory (from spikes)
- inhibitory (from spikes)
- excitatory (from conductance)
- inhibitory (from conductance)

measured conductances
fit to conductance ($R^2=0.83$)
fit to spikes ($R^2 = 0.63$)

fit to spikes ($R^2 = 0.63$)

fit to spikes ($R^2 = 0.51$)

[Latimer et al 2014]
many other biophysically oriented extensions

Nonlinear input model (NIM)
[McFarland, Cui, & Butts 2013]

Linear-Nonlinear-Kinetics (LNK)
[Ozuysal & Baccus 2014]

Linear-Nonlinear-feedback-delayed-sum-nonlinear-feedback
[Real, Asari, Gollisch & Meister 2017]
If you understand GLMs... you understand DNNs!

- stack many LNs on top of each other: LN LN LN LN LN P
- use gradient ascent to maximize likelihood
- use software (tensorflow, theano) to compute gradients (no more computing gradients by hand!)
- use a bunch of tricks (batches, noise, SGD, dropout, ...)
- do NOT worry about local maxima!
Modern machine learning far outperforms GLMs at predicting spikes

Ari S. Benjamin¹, Hugo L. Fernandes², Tucker Tomlinson³, Pavan Ramkumar²,⁴, Chris VerSteeg¹, Lee Miller¹,²,³, Konrad Paul Kording¹,²,³

macaque M1

Fig 2

Mean pR^2

Fig 3

Mean pR^2

Fig 4

Mean pR^2

Fig 5

Mean pR^2

macaque S1

Fig 6

Mean pR^2

hippocampus
Modern machine learning far outperforms GLMs at predicting spikes?

Ari S. Benjamin, Hugo L. Fernandes, Tucker Tomlinson, Pavan Ramkumar, Chris VerSteeg, Lee Miller, Konrad Paul Kording

GLMs

NNs

Fig 2

Mean pR^2

Fig 3

Mean pR^2

Fig 4

Mean pR^2

Fig 5

Mean pR^2

(No of course not!)

GLM is a special case of NN!
What if there’s no stimulus?
encoding models

What if there’s no stimulus?

$P(y|x)$ encoding models

membrane potential
spikes
imaging
neural activity y
latent variable models

latent variable
(unobserved or “hidden”)

$P(y|x)P(x)$
latent encoding models

membrane potential
spikes
imaging

neural activity Y
spike responses

Neuron index

Time

(simulated data)

[credit: Jakob Macke]
spike responses

inferred latent variables

Trajectories

Neuron index

[credit: Jakob Macke]
spike responses

Neuron index

Time

[credit: Jakob Macke]
latent variable models = GLMs where we don’t know x

good: find shared structure underlying y

can it be x?
Why are latent variable models hard to work with?

- hard to compute likelihood!
Why are latent variable models hard to work with?

- hard to compute likelihood!

Poisson GLM: fit using:

\[
\log P(Y|X) = \sum_t y_t \log \lambda_t - \lambda_t
\]
Why are latent variable models hard to work with?

- hard to compute likelihood!

sensory encoding model

\[\log P(Y|X) = \sum_t y_t \log \lambda_t - \lambda_t \]

latent variable model

\[\log P(Y) = \log \int P(Y|X)P(X)dx \]

requires an integral!
Why are latent variable models hard to work with?
- hard to compute likelihood!

fit using:
\[
\log P(Y) = \int \prod_{t=1}^{T} \left(p(y_t|x_t) p(x_t|x_{t-1}) \right) dx_1 dx_2 \cdots dx_T
\]

Note: The integral is high-dimensional and difficult to compute.
Fitting Latent Variable Models

1. Sampling (“MCMC”) - fully Bayesian inference

- procedure for sampling joint distribution: \(P(\theta, \{x\} \mid \{r\}, \{c\}) \)

 1) sample latents: \(x^{(i)} \sim p(x \mid r, c, \theta^{(i)}) \) conditional over latents

 2) sample parameters: \(\theta^{(i+1)} \sim p(\theta \mid r, c, x^{(i)}) \) conditional over parameters
Fitting Latent Variable Models

1. Sampling ("MCMC") - fully Bayesian inference
 • procedure for sampling joint distribution: $P(\theta, \{x\} \mid \{r\}, \{c\})$
 1) sample latents: $x^{(i)} \sim p(x \mid r, c, \theta^{(i)})$ conditional over latents
 2) sample parameters: $\theta^{(i+1)} \sim p(\theta \mid r, c, x^{(i)})$ conditional over parameters

2. Expectation maximization (EM)
 Alternate updating parameters and posterior over latents.
Fitting Latent Variable Models

1. Sampling ("MCMC") - fully Bayesian inference
 • procedure for sampling joint distribution: $P(\theta, \{x\} \mid \{r\}, \{c\})$
 1) sample latents: $x^{(i)} \sim p(x \mid r, c, \theta^{(i)})$ conditional over latents
 2) sample parameters: $\theta^{(i+1)} \sim p(\theta \mid r, c, x^{(i)})$ conditional over parameters

2. Expectation maximization (EM)
 Alternate updating parameters and posterior over latents.

3. Variational inference
 Optimize a lower bound on posterior over parameters
 Easy with modern probabilistic programming languages (STAN, Edward)
Latent Variable models are defined by two quantities:

\[
P(x) \quad \text{latent} \quad P(y|x) \quad \text{mapping} \]

\[
\text{Model}
\]

- Mixture of Gaussians ("clustering")
- Factor analysis (PCA is special case)
- Linear Dynamical Systems (LDS) ("Kalman filter")
- Hidden Markov Model ("HMM")

- discrete
- Gaussian
- linear Gaussian dynamics
- discrete transitions
variational latent Gaussian process (vLGP)

[Zhao & Park 2016]

latent

\[P(x) \]

mapping

\[P(y|x) \]

Gaussian Process

Poisson GLM
variational latent Gaussian process (vLGP)

- 63 simultaneously-recorded V1 neurons [Graf et al 2011]
- stimuli: drifting sinusoidal gratings

[Zhao & Park 2016]

Latent dynamics in V1 driven by drifting grating

arXiv: 1604.03053

Yuan Zhao & I. Memming Park
Stony Brook University

https://www.youtube.com/watch?v=CrY5AfNH1ik
variational latent Gaussian process (vLGP)

- 63 simultaneously-recorded V1 neurons [Graf et al 2011]
- stimuli: drifting sinusoidal gratings

https://www.youtube.com/watch?v=CrY5AfNH1ik
Summary

• descriptive statistical “encoding” models
• seek to capture structure in data
• formal tools for comparing models
• encoding and decoding analyses via Bayes rule
• models are modular, easy to build / extend / generalize
Big Picture

- large-scale recording technology advancing rapidly
- lots of interesting structure in high-D neural data
- big opportunities in computational / statistical for developing new methods and models to find / exploit this structure!