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Abstract

Recent work has examined the estimation of models of stimulus-driven
neural activity in which some linear filtering process is followed by
a nonlinear, probabilistic spiking stage. We analyze the estimation
of one such model for which this nonlinear step is implemented by a
noisy, leaky, integrate-and-fire mechanism with a spike-dependent after-
current. This model is a biophysically plausible alternative to models
with Poisson (memory-less) spiking, and has been shown to effectively
reproduce various spiking statistics of neurons in vivo. However, the
problem of estimating the model from extracellular spike train data has
not been examined in depth. We formulate the problem in terms of max-
imum likelihood estimation, and show that the computational problem
of maximizing the likelihood is tractable. Our main contribution is an
algorithm and a proof that this algorithm is guaranteed to find the global
optimum with reasonable speed. We demonstrate the effectiveness of our
estimator with numerical simulations.

A central issue in computational neuroscience is the characterization of the functional re-
lationship between sensory stimuli and neural spike trains. A common model for this re-
lationship consists of linear filtering of the stimulus, followed by a nonlinear, probabilistic
spike generation process. The linear filter is typically interpreted as the neuron’s “receptive
field,” while the spiking mechanism accounts for simple nonlinearities like rectification
and response saturation. Given a set of stimuli and (extracellularly) recorded spike times,
the characterization problem consists of estimating both the linear filter and the parameters
governing the spiking mechanism.

One widely used model of this type is the Linear-Nonlinear-Poisson (LNP) cascade model,
in which spikes are generated according to an inhomogeneous Poisson process, with rate
determined by an instantaneous (“memoryless”) nonlinear function of the filtered input.
This model has a number of desirable features, including conceptual simplicity and com-
putational tractability. Additionally, reverse correlation analysis provides a simple unbi-
ased estimator for the linear filter [5], and the properties of estimators (for both the linear
filter and static nonlinearity) have been thoroughly analyzed, even for the case of highly
non-symmetric or “naturalistic” stimuli [12]. One important drawback of the LNP model,
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NLIF and LNP models to 20 rep-
etitions of a fixed 100-ms stimu-
lus segment of temporal white noise.
Top: Raster of responses of L-NLIF
model, where σnoise/σsignal = 0.5
and g gives a membrane time con-
stant of 15 ms. The top row shows
the fixed (deterministic) response of
the model with σnoise set to zero.
Middle: Raster of responses of LNP
model, with parameters fit with stan-
dard methods from a long run of
the L-NLIF model responses to non-
repeating stimuli. Bottom: (Black
line) Post-stimulus time histogram
(PSTH) of the simulated L-NLIF re-
sponse. (Gray line) PSTH of the
LNP model. Note that the LNP
model fails to preserve the fine tem-
poral structure of the spike trains,
relative to the L-NLIF model.

however, is that Poisson processes do not accurately capture the statistics of neural spike
trains [2, 9, 16, 1]. In particular, the probability of observing a spike is not a functional of
the stimulus only; it is also strongly affected by the recent history of spiking.

The leaky integrate-and-fire (LIF) model provides a biophysically more realistic spike
mechanism with a simple form of spike-history dependence. This model is simple, well-
understood, and has dynamics that are entirely linear except for a nonlinear “reset” of the
membrane potential following a spike. Although this model’s overriding linearity is often
emphasized (due to the approximately linear relationship between input current and firing
rate, and lack of active conductances), the nonlinear reset has significant functional impor-
tance for the model’s response properties. In previous work, we have shown that standard
reverse correlation analysis fails when applied to a neuron with deterministic (noise-free)
LIF spike generation; we developed a new estimator for this model, and demonstrated that a
change in leakiness of such a mechanism might underlie nonlinear effects of contrast adap-
tation in macaque retinal ganglion cells [15]. We and others have explored other “adaptive”
properties of the LIF model [17, 13, 19].

In this paper, we consider a model consisting of a linear filter followed by noisy LIF spike
generation with a spike-dependent after-current; this is essentially the standard LIF model
driven by a noisy, filtered version of the stimulus, with an additional current waveform
injected following each spike. We will refer to this as the the “L-NLIF” model. The prob-
abilistic nature of this model provides several important advantages over the deterministic
version we have considered previously. First, an explicit noise model allows us to couch
the problem in the terms of classical estimation theory. This, in turn, provides a natural
“cost function” (likelihood) for model assessment and leads to more efficient estimation of
the model parameters. Second, noise allows us to explicitly model neural firing statistics,
and could provide a rigorous basis for a metric distance between spike trains, useful in
other contexts [18]. Finally, noise influences the behavior of the model itself, giving rise to



phenomena not observed in the purely deterministic model [11].

Our main contribution here is to show that the maximum likelihood estimator (MLE) for
the L-NLIF model is computationally tractable. Specifically, we describe an algorithm
for computing the likelihood function, and prove that this likelihood function contains no
non-global maxima, implying that the MLE can be computed efficiently using standard
ascent techniques. The desirable statistical properties of this estimator (e.g. consistency,
efficiency) are all inherited “for free” from classical estimation theory. Thus, we have a
compact and powerful model for the neural code, and a well-motivated, efficient way to
estimate the parameters of this model from extracellular data.

The Model

We consider a model for which the (dimensionless) subthreshold voltage variable V evolves
according to

dV =

(

− gV (t) + ~k · ~x(t) +

i−1
∑

j=0

h(t − tj)

)

dt + σNt, (1)

and resets to Vr whenever V = 1. Here, g denotes the leak conductance, ~k · ~x(t) the
projection of the input signal ~x(t) onto the linear kernel ~k, h is an “afterpotential,” a current
waveform of fixed amplitude and shape whose value depends only on the time since the last
spike ti−1, and Nt is an unobserved (hidden) noise process with scale parameter σ. Without
loss of generality, the “leak” and “threshold” potential are set at 0 and 1, respectively, so the
cell spikes whenever V = 1, and V decays back to 0 with time constant 1/g in the absence
of input. Note that the nonlinear behavior of the model is completely determined by only
a few parameters, namely {g, σ, Vr}, and h (where the function h is allowed to take values
in some low-dimensional vector space). The dynamical properties of this type of “spike
response model” have been extensively studied [7]; for example, it is known that this class
of models can effectively capture much of the behavior of apparently more biophysically
realistic models (e.g. Hodgkin-Huxley).

Figures 1 and 2 show several simple comparisons of the L-NLIF and LNP models. In
1, note the fine structure of spike timing in the responses of the L-NLIF model, which is
qualitatively similar to in vivo experimental observations [2, 16, 9]). The LNP model fails
to capture this fine temporal reproducibility. At the same time, the L-NLIF model is much
more flexible and representationally powerful, as demonstrated in Fig. 2: by varying Vr

or h, for example, we can match a wide variety of dynamical behaviors (e.g. adaptation,
bursting, bistability) known to exist in biological neurons.

The Estimation Problem

Our problem now is to estimate the model parameters {~k, σ, g, Vr, h} from a sufficiently
rich, dynamic input sequence ~x(t) together with spike times {ti}. A natural choice is
the maximum likelihood estimator (MLE), which is easily proven to be consistent and
statistically efficient here. To compute the MLE, we need to compute the likelihood and
develop an algorithm for maximizing it.

The tractability of the likelihood function for this model arises directly from the linearity
of the subthreshold dynamics of voltage V (t) during an interspike interval. In the noise-
less case [15], the voltage trace during an interspike interval t ∈ [ti−1, ti] is given by the
solution to equation (1) with σ = 0:

V0(t) = Vre
−gt +

∫ t

ti−1




~k · ~x(s) +

i−1
∑

j=0

h(s − tj)



 e−g(t−s)ds, (2)
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Figure 2: Illustration of diverse behaviors
of L-NLIF model.
A: Firing rate adaptation. A positive
DC current (top) was injected into three
model cells differing only in their h cur-
rents (shown on left: top, h = 0; mid-
dle, h depolarizing; bottom, h hyperpo-
larizing). Voltage traces of each cell’s re-
sponse (right, with spikes superimposed)
exhibit rate facilitation for depolarizing h
(middle), and rate adaptation for hyperpo-
larizing h (bottom).
B: Bursting. The response of a model cell
with a biphasic h current (left) is shown as
a function of the three different levels of
DC current. For small current levels (top),
the cell responds rhythmically. For larger
currents (middle and bottom), the cell re-
sponds with regular bursts of spikes.
C: Bistability. The stimulus (top) is a
positive followed by a negative current
pulse. Although a cell with no h current
(middle) responds transiently to the posi-
tive pulse, a cell with biphasic h (bottom)
exhibits a bistable response: the positive
pulse puts it into a stable firing regime
which persists until the arrival of a neg-
ative pulse.

which is simply a linear convolution of the input current with a negative exponential. It
is easy to see that adding Gaussian noise to the voltage during each time step induces a
Gaussian density over V (t), since linear dynamics preserve Gaussianity [8]. This density is
uniquely characterized by its first two moments; the mean is given by (2), and its covariance
is σ2EgE

T
g , where Eg is the convolution operator corresponding to e−gt. Note that this

density is highly correlated for nearby points in time, since noise is integrated by the linear
dynamics. Intuitively, smaller leak conductance g leads to stronger correlation in V (t)

at nearby time points. We denote this Gaussian density G(~xi,~k, σ, g, Vr, h), where index
i indicates the ith spike and the corresponding stimulus chunk ~xi (i.e. the stimuli that
influence V (t) during the ith interspike interval).

Now, on any interspike interval t ∈ [ti−1, ti], the only information we have is that V (t)
is less than threshold for all times before ti, and exceeds threshold during the time bin
containing ti. This translates to a set of linear constraints on V (t), expressed in terms of
the set

Ci =
⋂

ti−1≤t<ti

{

V (t) < 1

}

∩
{

V (ti) ≥ 1
}

.

Therefore, the likelihood that the neuron first spikes at time ti, given a spike at time ti−1,
is the probability of the event V (t) ∈ Ci, which is given by

L~xi,ti
(~k, σ, g, Vr, h) =

∫

Ci

G(~xi,~k, σ, g, Vr, h),

the integral of the Gaussian density G(~xi,~k, σ, g, Vr, h) over the set Ci.
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Figure 3: Behavior of the L-NLIF model
during a single interspike interval, for
a single (repeated) input current (top).
Top middle: Ten simulated voltage traces
V (t), evaluated up to the first threshold
crossing, conditional on a spike at time
zero (Vr = 0). Note the strong corre-
lation between neighboring time points,
and the sparsening of the plot as traces are
eliminated by spiking. Bottom Middle:
Time evolution of P (V ). Each column
represents the conditional distribution of
V at the corresponding time (i.e. for all
traces that have not yet crossed thresh-
old). Bottom: Probability density of the
interspike interval (isi) corresponding to
this particular input. Note that probability
mass is concentrated at the points where
input drives V0(t) close to threshold.

Spiking resets V to Vr, meaning that the noise contribution to V in different interspike
intervals is independent. This “renewal” property, in turn, implies that the density over V (t)
for an entire experiment factorizes into a product of conditionally independent terms, where
each of these terms is one of the Gaussian integrals derived above for a single interspike
interval. The likelihood for the entire spike train is therefore the product of these terms
over all observed spikes. Putting all the pieces together, then, the full likelihood is

L{~xi,ti}(
~k, σ, g, Vr, h) =

∏

i

∫

Ci

G(~xi,~k, σ, g, Vr, h),

where the product, again, is over all observed spike times {ti} and corresponding stimulus
chunks {~xi}.

Now that we have an expression for the likelihood, we need to be able to maximize it. Our
main result now states, basically, that we can use simple ascent algorithms to compute the
MLE without getting stuck in local maxima.

Theorem 1. The likelihood L{~xi,ti}(
~k, σ, g, Vr, h) has no non-global extrema in the pa-

rameters (~k, σ, g, Vr, h), for any data {~xi, ti}.

The proof [14] is based on the log-concavity of L{~xi,ti}(
~k, σ, g, Vr, h) under a certain

parametrization of (~k, σ, g, Vr, h). The classical approach for establishing the nonexistence
of non-global maxima of a given function uses concavity, which corresponds roughly to the
function having everywhere non-positive second derivatives. However, the basic idea can
be extended with the use of any invertible function: if f has no non-global extrema, neither
will g(f), for any strictly increasing real function g. The logarithm is a natural choice for
g in any probabilistic context in which independence plays a role, since sums are easier
to work with than products. Moreover, concavity of a function f is strictly stronger than
logconcavity, so logconcavity can be a powerful tool even in situations for which concavity
is useless (the Gaussian density is logconcave but not concave, for example). Our proof
relies on a particular theorem [3] establishing the logconcavity of integrals of logconcave
functions, and proceeds by making a correspondence between this type of integral and the



integrals that appear in the definition of the L-NLIF likelihood above.

We should also note that the proof extends without difficulty to some other noise pro-
cesses which generate logconcave densities (where white noise has the standard Gaussian
density); for example, the proof is nearly identical if Nt is allowed to be colored or non-
Gaussian noise, with possibly nonzero drift.

Computational methods and numerical results

Theorem 1 tells us that we can ascend the likelihood surface without fear of getting stuck
in local maxima. Now how do we actually compute the likelihood? This is a nontrivial
problem: we need to be able to quickly compute (or at least approximate, in a rational way)
integrals of multivariate Gaussian densities G over simple but high-dimensional orthants
Ci. We discuss two ways to compute these integrals; each has its own advantages.

The first technique can be termed “density evolution” [10, 13]. The method is based on the
following well-known fact from the theory of stochastic differential equations [8]: given
the data (~xi, ti−1), the probability density of the voltage process V (t) up to the next spike
ti satisfies the following partial differential (Fokker-Planck) equation:

∂P (V, t)

∂t
=

σ2

2

∂2P

∂V 2
+ g

∂[(V − Veq(t))P ]

∂V
, (3)

under the boundary conditions

P (V, ti−1) = δ(V − Vr),

P (Vth, t) = 0;

where Veq(t) is the instantaneous equilibrium potential:

Veq(t) =
1

g




~k · ~x(t) +

i−1
∑

j=0

h(t − tj)



 .

Moreover, the conditional firing rate f(t) satisfies
∫ t

ti−1

f(s)ds = 1 −

∫

P (V, t)dV.

Thus standard techniques for solving the drift-diffusion evolution equation (3) lead to
a fast method for computing f(t) (as illustrated in Fig. 2). Finally, the likelihood
L~xi,ti

(~k, σ, g, Vr, h) is simply f(ti).

While elegant and efficient, this density evolution technique turns out to be slightly more
powerful than what we need for the MLE: recall that we do not need to compute the con-
ditional rate function f at all times t, but rather just at the set of spike times {ti}, and thus
we can turn to more specialized techniques for faster performance. We employ a rapid
technique for computing the likelihood using an algorithm due to Genz [6], designed to
compute exactly the kinds of multidimensional Gaussian probability integrals considered
here. This algorithm works well when the orthants Ci are defined by fewer than ≈ 10 linear
constraints on V (t). The number of actual constraints on V (t) during an interspike interval
(ti+1 − ti) grows linearly in the length of the interval: thus, to use this algorithm in typical
data situations, we adopt a strategy proposed in our work on the deterministic form of the
model [15], in which we discard all but a small subset of the constraints. The key point
is that, due to strong correlations in the noise and the fact that the constraints only figure
significantly when the V (t) is driven close to threshold, a small number of constraints often
suffice to approximate the true likelihood to a high degree of precision.
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Figure 4: Demonstration of the estimator’s performance on simulated data. Dashed lines
show the true kernel ~k and aftercurrent h; ~k is a 12-sample function chosen to resemble the
biphasic temporal impulse response of a macaque retinal ganglion cell, while h is function
specified in a five-dimensional vector space, whose shape induces a slight degree of bursti-
ness in the model’s spike responses. The L-NLIF model was stimulated with parameters
g = 0.05 (corresponding to a membrane time constant of 20 time-samples), σnoise = 0.5,
and Vr = 0. The stimulus was 30,000 time samples of white Gaussian noise with a standard
deviation of 0.5. With only 600 spikes of output, the estimator is able to retrieve an esti-
mate of ~k (gray curve) which closely matches the true kernel. Note that the spike-triggered
average (black curve), which is an unbiased estimator for the kernel of an LNP neuron [5],
differs significantly from this true kernel (see also [15]).

The accuracy of this approach improves with the number of constraints considered, but
performance is fastest with fewer constraints. Therefore, because ascending the likelihood
function requires evaluating the likelihood at many different points, we can make this as-
cent process much quicker by applying a version of the coarse-to-fine idea. Let Lk denote
the approximation to the likelihood given by allowing only k constraints in the above al-
gorithm. Then we know, by a proof identical to that of Theorem 1, that Lk has no local
maxima; in addition, by the above logic, Lk → L as k grows. It takes little additional effort
to prove that

argmax Lk → argmax L;

thus, we can efficiently ascend the true likelihood surface by ascending the “coarse” ap-
proximants Lk, then gradually “refining” our approximation by letting k increase.

An application of this algorithm to simulated data is shown in Fig. 4. Further applications
to both simulated and real data will be presented elsewhere.

Discussion

We have shown here that the L-NLIF model, which couples a linear filtering stage to a
biophysically plausible and flexible model of neuronal spiking, can be efficiently estimated
from extracellular physiological data using maximum likelihood. Moreover, this model
lends itself directly to analysis via tools from the modern theory of point processes. For
example, once we have obtained our estimate of the parameters (~k, σ, g, Vr, h), how do we
verify that the resulting model provides an adequate description of the data? This important
“model validation” question has been the focus of some recent elegant research, under the
rubric of “time rescaling” techniques [4]. While we lack the room here to review these
methods in detail, we can note that they depend essentially on knowledge of the conditional
firing rate function f(t). Recall that we showed how to efficiently compute this function



in the last section and examined some of its qualitative properties in the L-NLIF context in
Figs. 2 and 3.

We are currently in the process of applying the model to physiological data recorded both
in vivo and in vitro, in order to assess whether it accurately accounts for the stimulus pref-
erences and spiking statistics of real neurons. One long-term goal of this research is to
elucidate the different roles of stimulus-driven and stimulus-independent activity on the
spiking patterns of both single cells and multineuronal ensembles.
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