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Abstract

An open question in systems and computational
neuroscience is how neural circuits accumulate
evidence towards a decision. Fitting models of
decision-making theory to neural activity helps
answer this question, but current approaches limit
the number of these models that we can fit to
neural data. Here we propose a general frame-
work for modeling neural activity during decision-
making. The framework includes the canonical
drift-diffusion model and enables extensions such
as multi-dimensional accumulators, variable and
collapsing boundaries, and discrete jumps. Our
framework is based on constraining the param-
eters of recurrent state space models, for which
we introduce a scalable variational Laplace EM
inference algorithm. We applied the modeling ap-
proach to spiking responses recorded from mon-
key parietal cortex during two decision-making
tasks. We found that a two-dimensional accu-
mulator better captured the responses of a set of
parietal neurons than a single accumulator model,
and we identified a variable lower boundary in
the responses of a parietal neuron during a ran-
dom dot motion task. We expect this framework
will be useful for modeling neural dynamics in a
variety of decision-making settings.

1. Introduction

Evidence accumulation is central to many models of per-
ceptual decision-making (Gold & Shadlen, 2007; Ratcliff
& McKoon, 2008; Ratcliff et al., 2016). However, despite
progress in identifying neural correlates of decision-making
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it remains an open question how evidence accumulation
is implemented in the brain (Brody & Hanks, 2016). One
approach to address this question is to formulate models of
decision-making behavior as generative models of neural
activity (Ditterich, 2006; Bollimunta et al., 2012; Latimer
et al., 2015; Zoltowski et al., 2019; DePasquale et al., 2019).
Fitting these models to single-trial neural responses during
decision-making tasks provides a direct test of how well the
theorized model explains neural dynamics.

However, there are a number of decision-making models
and features that are challenging to fit to neural activity us-
ing existing approaches. Most models of decision-making
behavior rely on either 1) approximations of analytic solu-
tions of the joint distribution of a binary choice and decision
time (Wiecki et al., 2013, e.g.); or 2) numerical solutions to
stochastic differential equations with boundary constraints
(Brunton et al., 2013; Shinn et al., 2020, e.g.). Analytic so-
lutions are not available for models of neural activity where
there are observations throughout the decision-period, and
numerical solutions are limited to low-dimensional accumu-
lator models. Thus, there is a clear need for tractable meth-
ods for modeling neural dynamics during decision-making
that can accommodate multiple choice options and/or inputs
(Churchland et al., 2008; Brunton et al., 2013) and dynamics
governed by multi-dimensional accumulators (Scott et al.,
2015).

Here we propose a general framework for fitting decision-
making models to neural activity.1 Our key observation is
that many decision-making models can be formulated as re-
current switching linear dynamical systems (rSLDS) models
(Linderman et al., 2017) with appropriate constraints. This
allows us to instantiate and fit a number of models of interest
including the classic drift-diffusion model (Ratcliff & McK-
oon, 2008), one- and multi-dimensional accumulator models
(Gold & Shadlen, 2007; Brunton et al., 2013), and the ramp-
ing and stepping models from (Latimer et al., 2015). The
framework naturally includes collapsing boundaries and trial
history effects (O’Connell et al., 2018; Lueckmann et al.,
2018; Urai et al., 2019). It also enables new extensions to
models with variable, probabilistic boundaries and with non-

1Code is available at https://github.com/

davidzoltowski/ssmdm.
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constant boundary dynamics (Resulaj et al., 2009; Evans
et al., 2018), which are not naturally described by traditional
methods that assume constant, absorbing boundaries.

We also develop a variational Laplace EM algorithm for
inference in rSLDS models. This method combines vari-
ational and Laplace approximations over the discrete and
continuous latent variables, respectively. In synthetic data,
we find that the algorithm is faster than particle EM and
black box variational inference methods and provides com-
parable or greater accuracy. We show how it allows us to
fit new decision-making models to Poisson spike train data,
where we find that multi-dimensional accumulator models
outperform existing methods for modeling neural responses
during decision-making.

2. Background

We review decision-making models for behavioral and neu-
ral data and the recurrent switching linear dynamical sys-
tems we will use to represent, fit, and generalize them.

2.1. Perceptual decision-making

Perceptual decision-making is the process of using sensory
information to make a categorical choice (Hanks & Sum-
merfield, 2017). A classic example is determining the net
motion direction of a cloud of randomly moving dots (Fig-
ure 1A). The accumulation of evidence over time in fa-
vor of a decision until a threshold or boundary is crossed
(accumulation-to-bound) is a key process in models of such
perceptual decisions (Gold & Shadlen, 2007; Ratcliff &
McKoon, 2008).

A simple example model of perceptual decisions is the drift-
diffusion model (DDM). The DDM is a 1-dimensional dy-
namics model of a binary choice (Figure 1A). It states that
a scalar variable x evolves in time according to a biased
random walk. In discrete time this is formalized as

xt = xt�1 + �c + ✏t, ✏t ⇠ N (0,�2). (1)

where �c, the drift term, corresponds to the strength of
sensory evidence and noise ✏t corresponds to noise in the
sensory input. Once x crosses an upper or lower threshold
(boundary) the decision-process stops and the variable x

is fixed to one of the two boundary values. The choice
produced by the model depends on which of the upper or
lower thresholds is hit; each boundary represents one of the
two choices. The initial value may be set to a constant x0 or
drawn from an initial distribution x0 ⇠ N (µ0,�

2
0). Many

variants of drift-diffusion models exist; see (Ratcliff et al.,
2016) for a recent review.

2.2. Relating neural activity to decisions

Neural correlates of decision-making have been identified
in numerous brain regions (Gold & Shadlen, 2007; Brody &
Hanks, 2016; Hanks & Summerfield, 2017). While the neu-
ral correlates of decisions have traditionally been observed
when averaging neural activity across many decisions, a
prominent line of work has attempted to relate single-trial
neural responses to decision-making dynamics (Ditterich,
2006; Churchland et al., 2011; Bollimunta et al., 2012; La-
timer et al., 2015; Hanks et al., 2015; Zoltowski et al., 2019).
A prominent example is the ramping model from (Latimer
et al., 2015) where a modified DDM without a lower bound-
ary was formulated as a statistical model of spike trains
recorded in the monkey parietal cortex, following theoreti-
cal models (Mazurek et al., 2003).

2.3. Recurrent switching state space models

An rSLDS is an extension of a linear dynamical system
model that approximates nonlinear dynamics with a discrete
set of linear regimes (Linderman et al., 2017; Nassar et al.,
2019). The generative process is as follows. At each time
point, the dynamics are given by

xt = Aztxt�1 + Vztut + bzt + ✏t, ✏t ⇠ N (0, Qzt) (2)

where xt is the continuous state, zt is one of K discrete
states, and ut is the input at time t. There are sepa-
rate dynamics parameters Ak, Vk, bk for each discrete state
k 2 {1, 2, . . . ,K}. The key feature that makes the models
“recurrent” is that transitions between discrete states depend
on both the previous continuous and discrete latent vari-
ables. We parameterize the transition probabilities using a
multi-class logistic regression

p(zt | zt�1, xt�1) / exp
�
�(Rzt�1 + r xt�1)

 
(3)

with parameters Rk for each discrete state and a vector r 2
Rd describing the dependence on the previous continuous
latent state. The hyperparameter � sets the sharpness of
the decision boundaries. As � ! 0, the transitions become
uniform, and as � ! 1 they become deterministic.

In our applications, we use a Poisson observation distribu-
tion

yt ⇠ Poisson(f(Cxt + d)�t) (4)

where f(x) = log(1 + exp(x)) is the softplus function and
�t is the time bin size. However, it is possible to use other
observation distributions for alternative types of data. The
nonlinearity could also be changed to model accumulator
tuning curves (Hanks et al., 2015; DePasquale et al., 2019)
or saturating or accelerating relationships between the diffu-
sion process and firing rates (Howard et al., 2018; Zoltowski
et al., 2019). The graphical model of an rSLDS is shown in
Figure 1C.
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Figure 1. Constraining rSLDS to follow accumulation-to-bound dynamics. A. An example perceptual decision-making task is determining
the direction of a cloud of randomly moving dots. The expected value of the motion direction is either to the left or right. The drift-diffusion
model (DDM) is commonly used to explain decisions in these types of tasks. B. An rSLDS with constraints on the parameters can
implement accumulation-to-bound. A simulated trial from this model is shown. The continuous latent variable accumulates input in the
accumulation state before switching to the upper boundary state after it crosses the upper threshold. Firing rates are generated from an
affine mapping of the continuous variable and Poisson spike counts are generated. C. The rSLDS is a switching linear dynamical system
with additional dependencies between xt and zt+1, as shown in this graphical model.

3. Decision-making dynamics as constrained

rSLDS

Our key observation is that the dynamics of accumulation-
to-bound models can be instantiated as constrained recurrent
switching linear dynamical systems. We first illustrate this
by writing a one-dimensional accumulation-to-bound as a
constrained rSLDS. We then describe how this approach
generalizes to multi-dimensional accumulators, ramping and
stepping models, variable boundaries, and other features.

3.1. Illustrative example: one-dimensional

accumulator model

Consider a one-dimensional accumulation-to-bound model
with upper and lower decision boundaries. This model has
a continuous latent variable xt 2 R that starts near zero
and accumulates sensory input until it reaches one of two
decision boundaries at ±B. The model has K = 3 discrete
states: an accumulation state (zt = acc), an upper boundary
state (zt = ub), and a lower boundary state (zt = lb).

In the accumulation state, the sensory input ut at each time
point is accumulated via the following dynamics

xt = xt�1 + Vaccut + ✏t, ✏t ⇠ N (0,�2
acc) (5)

where Vacc is a weight on the sensory input. In the boundary
states there is no dependence on the input (Vub = Vlb = 0)
such that

xt = xt�1 + ✏t, ✏t ⇠ N (0,�2
ub/lb) (6)

and the diffusion variances �
2
ub and �

2
lb are set to small

values relative to the scale of the dynamics. In all three
states, A = 1 and b = 0.

To implement the decision boundaries, we parameterize the
transitions such that the discrete state switches from the
accumulation to the boundary states once xt�1 has crossed
one of the boundaries. The transition parameters in equa-
tion 3 depend on a boundary location B parameter such
that

Racc =

2

4
0

�B

�B

3

5, Rub =

2

4
�1
0

�1

3

5, Rlb =

2

4
�1
�1
0

3

5, r =

2

4
0

+1
�1

3

5.

Here we set B = 1 and � = 500 to enforce sharp transition
boundaries at ±1. Figure 1B shows a simulation from this
model with Poisson spike count observations, as described
in equation 4.
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Figure 2. Examples of models in this framework. Constrained rSLDS models include multi-dimensional accumulators such as a 2D race
accumulator model, accumulators with variable boundaries and collapsing boundaries, and a model with both discrete steps and ramps as
special cases.

3.1.1. SOFT DECISION BOUNDARIES

We can implement soft decision boundaries where switches
from the boundary state back to the accumulation state are
allowed if xt falls below the boundary. Here the transi-
tion probabilities depend only on the previous value of the
continuous latent variable with

Racc = Rub = Rlb =

2

4
0

�B

�B

3

5, r =

2

4
0

+1
�1

3

5. (7)

3.2. Multi-dimensional accumulator models

Models with multiple accumulating dimensions are natural
for settings with multiple input streams and choice options.
Additional dimensions may also be useful for incorporating
other task features such as context (Shvartsman et al., 2015).
In this framework, it is straightforward to generalize the
one-dimensional accumulator model to multi-dimensional
accumulators by adding dimensions to the continuous and
discrete states. For a D-dimensional accumulator, the con-
tinuous latent variable x 2 RD and the input u 2 RD are
vectors. We set the dynamics, input, and covariance matrices
{Aacc, Vacc, Qacc} to be diagonal so that each dimension in-
dependently accumulates one stream of input. However, we
can relax this assumption to have interactions in the latent
space (non-diagonal Aacc) or correlated noise (non-diagonal
Qacc).

We set the discrete state transitions to follow “race” accumu-
lator dynamics, where the different accumulator dimensions
race to reach an upper boundary. The discrete state switches
when one of the dimensions of x crosses the boundary. As
in the 1D model, the boundary states have zero dependence
on the input and small dynamics variance. In this setup,
there is one accumulation state and D boundary states such
that K = D + 1. A set of simulated latent trajectories from
this model is shown in Figure 2.

3.3. Ramping and stepping models

The ramping model is a one-dimensional accumulator model
with an upper boundary (Latimer et al., 2015). It has a
constant drift for each stimulus category such that ut is a
one-hot vector denoting the stimulus on each trial and Vacc

is a vector with a drift for each category. The model has no
lower boundary and the initial continuous state has mean
x0 2 (�1, 1). This model can be written as a constrained
recurrent state space model with K = 2 discrete states.
Alternatively, the stepping model from Latimer et al. (2015)
posits that single-trial firing rates start in an initial state and
may either step up or down at some point during the trial.

The recurrent state space framework admits a generalization
of the ramping and stepping models that can be either a
ramp or a step depending on free parameters. In this model,
the underlying latent follows 1D accumulation-to-bound
dynamics with upper and lower boundaries and the emission
mean parameter depends on the discrete state

yt ⇠ Poisson(f(Cxt + dzt)�t). (8)

The model is a ramp if the mean d
(n)
zt for a neuron n is

the same for each discrete state and C
(n) is non-zero. If

C
(n) = 0 and d

(n)
zt is different for each state, then the

model steps to different firing rates when the discrete state
switches. An illustration of an underlying ramp generating
firing rates for two ramping and two stepping neurons is
shown in Figure 2 (far right).

3.4. Variable and learned boundaries

We may desire to relax the assumption of sharp boundaries
governing the discrete transitions. As the scale parameter �
is increased, the distribution over transitions flattens and the
transitions may occur at values below or above the bound-
ary (Figure 2). It is also possible to learn the parameters
governing the transitions. In our experiments, we present
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Table 1. Decision-making models and features that fit in the framework.

feature component details

leaky or unstable dynamics continuous dynamics learn Aacc

input-dependent noise continuous dynamics �
2
acc = �

2
a + u

2
t�

2
s

history bias: drift continuous dynamics augment input ut = [ut, cprev]
relaxed boundary dynamics continuous dynamics learn Alb, Aub and/or �2

lb,�
2
ub

variable drift continuous dynamics hierarchical model of Vacc across trials
variable boundaries discrete transitions decrease � and/or learn boundary params
collapsing boundaries discrete transitions switch to ub or lb when |xt�1| > B � f(t)
urgency signal discrete transitions and emissions add urgency signal gt to transitions and emissions
history bias: start initial state x0 ⇠ N (µz0 + Vc cprev,�

2
z0)

multi-dimensional all increase dimensions
non-decision time all start in additional state z0 = nd before acc

a model with a sharp upper boundary and a learned lower
boundary.

3.5. Other features

The modeling framework includes numerous other features
in decision-making models, such as sensory-dependent vs.
accumulation noise (Brunton et al., 2013), collapsing bound-
aries and non-decision time (Ratcliff et al., 2016), and trial-
history effects that for example depend on the previous
choice cprev (Urai et al., 2019). We list them in Table 1 and
describe input-dependent noise, collapsing boundaries, and
relaxed boundary dynamics below. While we do not fit mod-
els with all of the features in this paper, we present them for
completeness and we fit models with collapsing boundaries
and trial-history effects to simulated data in Appendix A.

Input-dependent dynamics variance In decisions with
non-constant input, dynamics variability can be separated
into input-driven and dynamics components (Brunton et al.,
2013). This corresponds to adding an input-dependent term
to the accumulation state variance

xt = Aaccxt�1 + Vaccut + ✏t, ✏t ⇠ N (0,�2
a + u

2
t�

2
s).
(9)

Collapsing boundaries Collapsing decision boundaries
can account for decision accuracy as a function of decision-
time (Ratcliff et al., 2016; O’Connell et al., 2018). Linearly
collapsing boundaries (Bowman et al., 2012) can be imple-
mented by adding a term to the transition probabilities that
depends on time t such that

p(zt | zt�1, xt�1) / exp
�
�(Rzt�1 + r xt�1 +Wt)

 

(10)
where W = [0,�,�]> (Figure 2). The parameter � de-
termines the slope of the linear boundary decrease. This
formulation can be directly extended for nonlinear collaps-
ing boundaries (Drugowitsch et al., 2012; Hawkins et al.,

2015). See Appendix A for more details and a simulated
experiment.

Relaxed boundary dynamics The models introduced
above make strong assumptions that the dynamics in the
boundary state are constant with nearly zero noise. We can
relax these assumptions by learning the dynamics parame-
ters of the boundary states, which could correspond to work-
ing memory or changes of mind (Resulaj et al., 2009) and
have been used to describe mouse escape behavior (Evans
et al., 2018).

3.6. Differences with decision-making models

Our recurrent state space formulation of accumulation to
a boundary departs from some formulations of decision-
making models in two ways. First, the continuous state xt

can cross the boundary and fluctuate, rather than reaching a
constant level after hitting the boundary. We consider this a
feature because it enables modeling neural dynamics after
the boundary is reached. However, using a small boundary
variance and identity dynamics matrix mitigates this dif-
ference, as described above. Additionally, to enforce the
continuous state to remain at the boundary we can threshold
xt when passing it to the firing rate. The second difference
is that the transitions are probabilistic. We also consider
this a feature because it allows for generalizations such as
variable boundary locations. However, we can set the transi-
tions to be effectively deterministic using sharp transition
boundaries, as described previously.

4. Inference

Inference in rSLDS models via direct maximum likeli-
hood scales exponentially in the length of the time-series
and is therefore computationally intractable (Barber, 2012).
A number of alternative methods have been developed
for inference in rSLDS models including expectation-
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Figure 3. Simulated 2D race accumulator model with Poisson observations. A. The true (z, x) and inferred (ẑ, x̂) discrete and continuous
latent variables are similar. The colored bars (top) indicate the true and inferred most likely discrete states at each time point. Shaded
areas indicate two standard deviations of the posterior q(x). B. The ELBO as a function of inference iteration for vLEM and BBVI. C.

Average mean squared error ± standard error between the true and inferred parameters across 10 simulated experiments for each number
of trials. The different colored lines on the Vacc, �2

acc, and Aacc panels denote the parameters for the two different dimensions.

propagation (Barber, 2006) and augmented Gibbs sampling
algorithms (Linderman et al., 2017; Nassar et al., 2019).
However, our use of multinomial logistic regression for
the transition distributions and Poisson observations render
the model non-conjugate. Further, we found that inference
using black-box variational inference (BBVI) approaches
(Archer et al., 2015; Gao et al., 2016; Linderman et al.,
2019) performed relatively poorly in this setting with strong
boundary parameter constraints (Figure 3, Appendix A).

We therefore developed an approximate inference algorithm
that exploits information about the parameter constraints
yet also has favorable scaling. The method combines a
variational approximation of the posterior over the discrete
states and a Laplace approximation of the posterior over
the continuous states. Here we present an overview of the
method, variational Laplace EM (vLEM), with additional
details in Appendix B.2

We approximate the true posterior over the latent vari-
ables with a structured, factorized approximate posterior
p(z, x | ✓, y) ⇡ q(z)q(x), where q(z) is a variational ap-
proximation and q(x) is computed via a Laplace approxima-
tion. This admits a lower-bound on the marginal likelihood

2A Python implementation of the vLEM algorithm for fit-
ting (r)SLDS models is available at https://github.com/
slinderman/ssm.

(ELBO)

log p(y | ✓) � Lq(✓)

= Eq(z)q(x)[log p(z, x, y | ✓)]
� Eq(z)[log q(z)]� Eq(x)[log q(x)]. (11)

We alternate between updating the two approximate posteri-
ors and the model parameters in three steps.

First, the discrete state approximate posterior is updated
using the optimal coordinate ascent variational inference
update (Bishop, 2006; Blei et al., 2017)

q
?(z) / exp(Eq(x)[log p(x, z, y|✓)]). (12)

This step locally maximizes the ELBO given a fixed q(x)
and model parameters ✓. We compute the expectation in
the update using Monte Carlo samples from q(x). Condi-
tioned on these samples, the posterior q?(z) has the same
factor graph as an HMM and we use the forward-backward
algorithm to compute the posterior distributions over the
discrete states and the marginal likelihood.

The second step is to update q(x) using a Laplace approxi-
mation around the most likely latent path x

? (Paninski et al.,
2010; Macke et al., 2011; 2015). That is, we set q?(x) to be

q
?(x) = N (x?

,�H
�1) (13)

https://github.com/slinderman/ssm
https://github.com/slinderman/ssm
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where

x
? = argmax

x
Eq(z)[log p(x, z, y | ✓)] (14)

H = r2
x Eq(z)[log p(x, z, y | ✓)]

����
x=x?

. (15)

Importantly, the Hessian is block-tridiagonal such that lin-
ear solves with the Hessian and sampling from q(x) scale
linearly in the length of the time-series. We note that this
step is not guaranteed to increase the ELBO.

Finally, the model parameters are updated by optimizing the
ELBO with respect to the parameters. This corresponds to
setting ✓ to

✓
? = argmax

✓
Eq(z)q(x)[log p(x, z, y | ✓)]. (16)

We approximate this update using a single sample from
q(x) and marginalizing the discrete states. That is, we find
✓
? = argmax✓ Eq(z)[log p(x̂, z, y | ✓)] where x̂ ⇠ q(x).

We then set the parameters to a convex combination of the
previous and new parameters

✓
(i+1) = ↵ ✓

(i) + (1� ↵) ✓?. (17)

We use either ↵ = 0.0 or ↵ = 0.5 in our experiments.

This method is a generalization of the Laplace EM method
for inference in single-state linear dynamical systems with
non-conjugate observations (Paninski et al., 2010; Macke
et al., 2011; 2015). When there is only one discrete state
the presented method is equivalent to Laplace EM. Methods
that combine variational and Laplace approximations were
proposed by (Wang & Blei, 2013), and they are particularly
well suited to this problem because of the block-tridiagonal
structure of the Hessian.

5. Experiments

We demonstrate the constrained recurrent state space mod-
eling framework and vLEM inference with one simulated
example and two applications to recordings of neural activ-
ity during decision-making tasks.

5.1. Simulated 2D accumulator

We first tested the vLEM inference algorithm on data sim-
ulated from a 2D race accumulator model with 2D pulse
inputs and Poisson spike count observations. We simulated
250 time series (i.e. trials) of spike counts from N = 10
neurons with T = 100 time points in each trial, which is
similar to the amount of data collected in experiments (Yates
et al., 2017). To generate realistic spike counts, we scaled
the rates of the Poisson distribution to have a mean of about
0.4 spike counts per 10ms time bin. We fit a 2D race ac-
cumulator model to the simulated data using 100 iterations

1D acc 2D pLDS2D acc

0

1

-1

0input

firing
rate

(sp/s)

spikes
0

100

0 0

0

1 10

-10

0.2 1.2time (s)

Figure 4. Inferred latent variables on a single trial from 1D and 2D
accumulator models and a 2D Poisson LDS fit to LIP responses
during a discrete-pulse motion direction discrimination task (Yates
et al., 2017). Given the same input and observed spikes, the three
models infer similar smoothed firing rates with different underlying
latent structure. The most likely discrete state ẑ is indicated by
the colored bar, and the shaded areas indicate the mean plus two
standard deviations of the continuous state posterior q(x).

of the vLEM algorithm (Figure 3A-B). The inferred dis-
crete and continuous states closely matched the true states
(Figure 3A). To test parameter recovery with vLEM, we
fit the model to 10 different simulated datasets for each of
25, 50, 100, and 250 trials and 10 neurons. We used the
same parameters for each simulation. As expected, the MSE
between the true and inferred parameters decreased as the
number of simulated trials increased (Figure 3C).

We next compared vLEM with BBVI and particle EM. For
BBVI, we used a jointly Gaussian posterior over the con-
tinuous latent variables with block-tridiagonal structure in
the precision matrix and we marginalized the discrete states
(Archer et al., 2015; Gao et al., 2016; Linderman et al.,
2019). For particle EM, we used a Rao-Blackwellized par-
ticle filter to sample from the marginal posterior over the
continuous latent variables and we optimized the expected
log joint probability (Appendix C). We found that vLEM
achieved a higher ELBO than BBVI (Figure 3B) and pro-
vided more accurate latent variable estimates and parameters
(Appendix A). Notably, vLEM provided comparable accu-
racy to particle EM at a much lower computational cost
(Appendix A).

5.2. 1D vs. 2D accumulator models

We used the modeling framework to compare accumulator
models of neural responses in the monkey lateral intrapari-
etal area (area LIP) during a discrete-pulse accumulation
task (Yates et al., 2017). In this task, a series of seven mo-
tion pulses was presented to the animal over a period of
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M1�M2
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held-out log likelihood. C. The experimental and simulated trial-averaged responses across stimulus conditions. The color indicates the
net direction of motion and the darkness indicates the strength of motion.

1050ms. Each pulse had a variable strength of motion in
one of two directions. The animal was trained to determine
the net direction of motion across the seven pulses.

We fit 1D and 2D accumulation-to-bound models and a
2D Poisson LDS (pLDS) with inputs to the responses of
6 LIP neurons simultaneously recorded during 327 trials
of this task (Figures 4-5). The pLDS is equivalent to an
unconstrained 2D accumulation without boundaries, with
interaction between the two accumulators. We fit the mod-
els to the recorded binned spike counts in 10ms bins from
the period 200ms after motion onset until 200ms after mo-
tion offset. This is the time window in which the neurons
putatively accumulate evidence. In the 1D model, the in-
put was the net motion strength at each time point. In the
2D accumulator model, the input was separated into the
two directions such that each dimension received only one
direction of motion as input.

The fits from the models to an example trial are shown
in Figure 4. All three models estimate similar smoothed
firing rate trajectories on this trial, with different underlying
structure. The accumulator models infer a switch between
the accumulation and boundary states in the same direction
and at about the same time across the two models. The
pLDS model simply infers a smooth 2D latent trajectory
underlying the responses. Interestingly, the firing rates in
the pLDS model appear to plateau about halfway through
the trial, which matches the 2D accumulator model even

Table 2. The mean held-out log likelihood across all trials on Yates
et al. (2017) data for each model, with standard error bars com-
puted across ten Monte Carlo sampling runs.

model mean held-out log likelihood

1D acc �349.47± 0.01
2D acc �348.74± 0.01

2D pLDS �351.29± 0.02

though the pLDS has no boundary.

The trial-averaged responses of three of the neurons are
shown in Figure 5C, where the averages are computed over
trials with similar net motion strengths. To qualitatively
check how well the fit models correspond to the data, we
simulated data from the inferred parameters of each of the
models. For each stimulus in the training data we simulated
spikes counts on three independent trials. We then computed
the trial-averaged simulated responses in the same manner
as the true responses (Figure 5C). The fit 1D model was
unable to capture uniform increases or decreases in the
trial-averaged responses across task conditions. However,
the fit 2D models produced simulated responses that either
decreased (neuron 2) or increased (neuron 3) across all
conditions, as seen in the data. Qualitatively, the 2D models
appear to better capture the trial-averaged activity.
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Figure 6. Ramping model with variable lower boundary fit to the
responses of an LIP neuron during a motion direction discrimina-
tion task (Roitman & Shadlen, 2002). A. The experimental and
simulated trial-averaged responses for each task condition. B. The
ELBO as a function of inference iteration. C. The inferred discrete
and continuous latent states on three example trials.

We compared the models quantitatively with a five-fold
cross validation. For each fold, we estimated the log likeli-
hood of the held-out data with Monte Carlo sampling (La-
timer et al., 2015; Zoltowski et al., 2019). The 2D accu-
mulator model had the highest held-out log likelihood, and
both accumulator models had better predictive performance
than the 2D pLDS (Figure 5, Table 2). Putting together
the quantitative and qualitative comparisons, we find that
the two dimensional accumulator model best explains the
observed responses out of the considered models.

5.3. Ramping model with variable lower boundary

The transitions in our framework are probabilistic, which en-
ables fitting a model with a variable lower boundary where
switches from the accumulation state to the boundary state
may occur at different values of x across trials. We fit a
ramping model with a variable lower boundary to the spike
count responses of an LIP neuron during a reaction-time
version of the random dot motion task (Roitman & Shadlen,
2002). To do this, we introduced transition parameters Blb

and �lb that governed the location and sharpness of the lower
boundary, and we learned these parameters during inference.
We kept a sharp upper boundary fixed at x = 1. Example
simulated trajectories from this model are shown in Fig-
ure 2. We fit the model to the binned spiking responses of
an LIP neuron (10ms bins) during 225 trials of a reaction
time version of the random dot motion task (Roitman &
Shadlen, 2002). We included the period 200ms after motion
onset until 50ms before the saccade in our analysis, and

the trials were separated into five categories of stimulus
motion in terms of stimulus strength (+high to -high). We
learned a separate ramping slope for each stimulus condi-
tion. True and simulated trial-averaged responses from the
fit model are shown in Figure 6A. We found that a variable
lower boundary stopped downward sloping trajectories, as
we inferred switches to the lower boundary state at different
values of x (Figure 6C).

6. Discussion

We introduced a unifying framework for decision-making
models based on constrained recurrent switching linear dy-
namical systems. We also presented a variational Laplace
EM algorithm for inference in rSLDS models. While we
applied the algorithm to fit rSLDS models constrained by
decision-making theory, we also expect the algorithm to be
broadly useful for fitting unconstrained rSLDS models. Fi-
nally, we demonstrated our framework by fitting 1D and 2D
accumulator models and a ramping model with a variable
lower boundary to neural responses during decision-making.

Recent work has used HMM and LDS models to show that
choice behavior is dynamic across trials of an experiment
(Ashwood et al., 2020; Roy et al., 2020; Stone et al., 2020).
Incorporating this observation is an interesting direction of
future work, and we expect that using such models of choice
behavior in conjunction with our framework will be useful
for the study of decision making.

In contrast to the long line of work developing general pur-
pose models of neural dynamics (Smith & Brown, 2003;
Yu et al., 2009; Paninski et al., 2010; Macke et al., 2011;
Linderman et al., 2017; Wu et al., 2017; Zhao & Park, 2017;
Pandarinath et al., 2018; Duncker et al., 2019), here we
leveraged long-standing theories of neural computation. The
theory-driven approach is natural for this setting, as it offers
interpretable latent states, statistical tests of how well spe-
cific decision-making dynamics describe neural activity, and
a framework for adding complexity as warranted by the data
(Linderman & Gershman, 2017). Importantly, the recurrent
state space framework not only unifies many existing mod-
els, it also suggests generalizations (c.f. Table 1) and greatly
expands our toolkit for modeling neural dynamics during
decision-making.
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A Additional Simulated Experiments

Here we demonstrate fitting models with collapsing boundaries and trial-history effects to simulated data. We also com-
pare the variational Laplace EM inference algorithm with black box variational inference and particle EM approaches.

A.1 Nonlinear collapsing boundaries
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Figure A1. Simulated experiment with nonlinear collapsing boundaries. A. Simulated latent trajectories from a one-
dimensional accumulation model with collapsing upper and lower boundaries. B. ELBO as a function of iteration. C.
The simulated data and the true and inferred discrete and continuous states for three example trials.
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We simulated spike counts from 10 Poisson neurons from a one-dimensional accumulation model with nonlinear col-
lapsing boundaries (Figure A1A). The bin size was �t = 0.01, the trial length was T = 100, and the number of trials was
200. The inputs were the difference of two dimensional pulses. The accumulation state parameters were Vacc = 0.005
and �

2
acc = 0.002.

The boundary parameterization was
bt = b0 � (1� e

�(t/�)k)(b0 � b1) (1)

where b0 = 1.0 is the initial height of the boundary and b1 = 0.25 is the final height of the boundary. The upper and
lower boundaries were symmetric across zero. We implemented this model by modifying the transition probabilities to
depend on the time-varying boundary.

We fit the nonlinear collapsing boundaries model to the simulated data using 50 iterations of the vLEM algorithm
(Figure A1B). The inferred continuous and discrete states from the algorithm were similar to the true latent states
(Figure A1C).

A.2 Linear collapsing boundaries
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Figure A2. Simulated experiment with linear collapsing boundaries. A. Simulated latent trajectories B. ELBO as a
function of iteration. C. The simulated data and the true and inferred discrete and continuous states for three example
trials.

We replicated the nonlinear collapsing boundary simulation with a linear collapsing bound, with 10 Poisson neurons,
�t = 0.01, T = 100, and 200 trials (Figure A2A-C). The inputs were the difference of two dimensional pulses. Here,
the accumulation state parameters were Vacc = 0.01 and �

2
acc = 0.001.

The boundaries started at ±1 and collapsed towards zero at a rate of 0.008 per time bin, which means that the final
boundary values at T = 100 were ±0.2. We implemented this model with the following steps. First, we augmented the
input vector with the current time of the trial such that ut = [st, t]> where st is the current stimulus input. Importantly,
we set the second dimension of the input weight parameter V (2)

acc to zero so the time is not input to the continuous

2



dynamics x. We modified the transitions to depend on the input with the following parameterization

p(zt | zt�1, xt�1) / exp
�
�(Rzt�1 + r xt�1 +Wut)

 
, W =

2

4
0 0
0 �

0 �

3

5 (2)

where � is a scalar parameter that controls the slope of the boundary. We set the left column of W to zeros so
the sensory input does not directly affect the transitions. We set � = 0.008, which corresponds to the rate of the
collapsing boundaries as described above. We note that asymmetric collapsing boundaries can be implemented by
having separate � parameters for each dimension. While we fix the slope parameter �, its value could be learned. The
parameters Rzt�1 and r have the same form as in the original 1D accumulator model.

A.3 Trial-history

iterationtime 0 100
0

1

B

-200
x103

EL
BO

-230

Choice history bias

true
inferred

time 0 100 time 0 100

1

-1

CA

0 15

+bias
-bias

+bias -bias

Figure A3. Simulated experiment with trial-history effects. A. True and inferred averaged drift rates for positive going
trials with and without the choice history bias. The previous choice biases the drift rate upwards (previous choice
corresponds to upper boundary) and downwards (previous choice corresponds to lower boundary). B. The ELBO as
a function of optimization iteration. C. True and inferred states for positive going trials with positive (left) and negative
(right) biases.

The modeling framework allows for trial-history effects based on the previous choice, reward, or stimulus. Here we
simulated data from a model where the previous trial choice affects the drift rate (Figure A3). We implemented this by
including the previous trial choice cprev = {�1, 1} as an additional input covariate. The input at each time point on a
given trial was ut = [st, cprev]. In this case, we learn each dimension of the input weights Vacc 2 R2. The element in the
second dimension corresponds to the bias in the drift rate. This parameterization enforces a symmetric drift bias, but it
is again possible to relax the symmetry.

We simulated spike counts of 5 Poisson neurons from this model with a bin size � = 0.1. Each trial had length T = 100
and we simulated N = 200 trials. In this simulation, the input on each trial was a constant drift of st = 0.015 for positive
going trials and st = �0.015 for negative going trials. The drift bias was 0.005 and the variance was �

2
acc = 0.001. The

average drift rate on positive going trials is shown in Figure A3. The bias increased the average drift when the previous
choice was +1 (blue line) and decreased the average drift when the previous choice was �1.

We fit this model using 15 iterations of the vLEM algorithm (Figure A3B). The inferred drift rates in the fit model were
similar to the true drift rates (Figure A3A). Next, the inferred latent states correctly followed the bias shown in the true
latent states (Figure A3C).

3
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Figure A4. Comparison of vLEM and BBVI for fitting a 2D accumulator model with Poisson neurons. A. The ELBO
as a function of algorithm iteration (these are the same values as presented in Figure 3). B. The true average neural
responses across different evidence strengths (line colors) and simulated responses from the fit model using vLEM
or BBVI. Here, “+high” is strong stimulus motion towards the“+” direction while “-high” is strong stimulus motion to the
opposite “-” direction. C. The inferred (dashed lines, ẑ, and x̂) and true (solid lines, z, and x) continuous and discrete
states using BBVI for three typical example trials. D. The true t and inferred t̂ transition times from the accumulation
state to the boundary state for vLEM and BBVI for all trials.

A.4 Comparison of vLEM and BBVI

Here we present additional results of the comparison between vLEM and BBVI from the simulated 2D accumulator
experiment in Section 5.1. As stated previously, we simulated a 2D race accumulator model and the model using vLEM
and BBVI. For BBVI, we used a jointly Gaussian posterior over the continuous latent variables with block-tridiagonal
structure in the precision of the covariance matrix and we marginalized the discrete states (Archer et al., 2015; Gao
et al., 2016; Linderman et al., 2019). We initialized the models with the same parameters and with the same posterior
over the continuous latent variables.
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Results of fitting the model with BBVI are shown in Figure A4. First, we found that vLEM achieved substantially higher
ELBO values (Figure A4A). Next, the learned model parameters from vLEM generated data that are more similar to the
true simulated data than BBVI (Figure A4B). This is shown by the similarity in the PSTHs in the first two columns.

Crucially, vLEM provided more accurate inferences about the latent states (Figure A4C). BBVI had difficulty learning
transitions from accumulation to boundary and had qualitatively poorer uncertainty estimates (Figure A4C-D). On many
trials BBVI did not infer a switch from accumulation to boundary.

A.5 Comparison of vLEM and particle EM

iteration0

ex
pe

ct
ed

 
lo

g 
jo

in
t

particle EM

vLEM

0

1

0

1

25

-38e3

-42e3

iteration0 50

EL
BO

-70e3

-80e3

time bin

Figure A5. (top) ELBO as a function of iteration (left) and true and inferred latents on example trials (right) when using
vLEM to fit the model. (bottom) Same as above, except for using particle EM to fit the model and with the expected log
joint probability instead of the ELBO.

To test the accuracy of vLEM, we compared vLEM with a particle EM algorithm that used a Rao-Blackwellized particle
filter to sample from the marginal posterior over the continuous latent states (see Appendix C). We simulated 100
trials from a 2D accumulator model with 10 neurons and used both vLEM and particle EM to fit the simulated data.
(Figure A5). We used S = 50 particles in particle EM. This balanced variety in the particles with computational cost,
as running the particle EM for 25 iterations took about four hours with our implementation (as opposed to ⇡ 10 minutes
for 50 iterations of vLEM). The mean squared error between the true and inferred (posterior mean) latent continuous
trajectories was smaller for vLEM (0.047 ± 0.0008 for vLEM, 0.064 ± 0.0010 for particle EM). The relatively strong
performance of vLEM in this limited data comparison is encouraging. We note that we could improve the particle EM
method by optimizing the speed of our implementation, which would allow us to increase the number of particles without
incurring a large computational cost. Nonetheless, we consider our current implementation to be a reasonable baseline
and are encouraged that vLEM achieves comparable accuracy with lower computational cost.
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B Variational Laplace-EM Inference

Here we describe in more detail the variational Laplace-EM inference method. As noted in the main text, we introduce
a factorized approximate posterior q(z)q(x) ⇡ p(z, x | y, ✓) over the discrete and continuous latent variables. With
those distributions we lower-bound the marginal likelihood with

Lq(✓) = Eq(z)q(x)[log p(x, z, y | ✓)� log q(z)q(x)]

= Eq(z)q(x)[log p(x, z, y | ✓)]� Eq(z)[log q(z)]� Eq(x)[log q(x)].

To optimize this objective, we alternate between updating 1) q(z), 2) q(x) and 3) ✓. The updates to q(z) and ✓ follow
from optimizing the lower bound Lq(✓). The update to q(x) is an approximate update and is therefore not guaranteed
to increase the value of the lower bound.

B.1 Update discrete state posterior

We update q(z) via the optimal coordinate ascent variational inference update

q
?(z) / exp(Eq(x)[log p(x, z, y | ✓)]). (3)

To compute this, we expand the expected log joint probability

Eq(x)[log p(x, z, y | ✓)] = Eq(x)


log p(z1, x1 | ✓) +

TX

t=2

log p(xt | xt�1, zt, ✓)

+
T�1X

t=1

log p(zt+1 | zt, xt, ✓) +
TX

t=1

log p(yt | xt, zt, ✓)
�

= �(z1, x1) +
TX

t=2

�(zt, xt, xt�1) +
T�1X

t=1

�(zt, zt+1, xt) +
TX

t=1

�(zt, xt, yt)

where we have introduced the potentials

�(z1, x1) = Eq(x)[log p(z1, x1 | ✓)]
�(zt, xt, xt�1) = Eq(x)[log p(xt | xt�1, zt, ✓)]

�(zt, zt+1, xt) = Eq(x)[log p(zt+1 | zt, xt, ✓)]
�(zt, xt, yt) = Eq(x)[log p(yt | xt, zt, ✓)].

We used samples from q(x) to estimate the expectations in these potentials. We used a default of a single sample in
our simulations and applications to data. We note that if the observations are independent of the discrete states when
conditioned on the continuous states (i.e. log p(yt | xt, zt, ✓) = log p(yt | xt, ✓)) then the emission potential �(zt, xt, yt)
can be disregarded for updating q(z).

We introduce the normalizing constant Z(✓) of the distribution such that

q(z) =
1

Z(✓)
exp

✓
�(z1, x1) +

TX

t=2

�(zt, xt, xt�1) +
T�1X

t=1

�(zt, zt+1, xt) +
TX

t=1

�(zt, xt, yt)

◆
. (4)

Conditioned on the estimates of the potentials, we have a factor graph equivalent to the factor graph of an HMM. There-
fore we compute the unary and pairwise marginals over z and the normalizing constant using the forward-backwards

6



algorithm. We evaluate the entropy term in the ELBO using the potentials, the unary and pairwise marginals, and the
normalizing constant as

Eq(z)[log q(z)] = Eq(z)


� logZ(✓) + �(z1, x1) +

TX

t=2

�(zt, xt, xt�1) +
T�1X

t=1

�(zt, zt+1, xt) +
TX

t=1

�(zt, xt, yt)

�

= � logZ(✓) + Eq(z)[�(z1, x1)] +
TX

t=2

Eq(z)[�(zt, xt, xt�1)] +
T�1X

t=1

Eq(z)[�(zt, zt+1, xt)]

+
TX

t=1

Eq(z)[�(zt, xt, yt)].

B.2 Update continuous state posterior

We update q(x) with a Laplace approximation around the mode of Eq(z)[log p(x, z, y | ✓)] such that

q
?(x) = N (x?,�H

�1)

x
? = argmax

x
Eq(z)[log p(x, z, y | ✓)]

H = r2
xEq(z)[log p(x, z, y | ✓)]

����
x=x?

.

To compute the Hessian we expand the terms in the objective

L(x) = Eq(z)[log p(x, z, y|✓)]

= Eq(z)


log p(z1 | ✓) + log p(x1 | z1, ✓) +

TX

t=2

log p(xt | xt�1, zt, ✓)

+
T�1X

t=1

log p(zt+1 | zt, xt, ✓) +
TX

t=1

log p(yt | xt, zt, ✓)
�

= �(x1, z1) +
TX

t=2

�(xt, xt�1, zt) +
T�1X

t=1

�(xt, zt, zt+1) +
TX

t=1

�(xt, yt, zt) + const

where

�(x1, z1) = Eq(z)[log p(x1 | z1, ✓)] =
X

k

q(z1 = k) log p(x1 | z1 = k, ✓)

�(xt, xt�1, zt) = Eq(z)[log p(xt | xt�1, zt, ✓)] =
X

k

q(zt = k) log p(xt | xt�1, zt = k, ✓)

�(xt, zt, zt+1) = Eq(z)[log p(zt+1 | zt, xt, ✓)] =
X

k

X

j

q(zt = k, zt+1 = j) log p(zt+1 = j | zt = k, xt, ✓)

�(xt, yt, zt) = Eq(z)[log p(yt | xt, zt, ✓)] =
X

k

q(zt = k) log p(yt | xt, zt = k, ✓).

The above derivation was written in full generality. If the emission potential does not depend on the discrete state then
the emission potential simplifies to �(xt, yt, zt) = log p(yt | xt, ✓). Also, if there are no recurrent dependencies (as in a
standard SLDS) then the transition term log p(zt+1 | zt, xt, ✓) is equal to log p(zt+1 | zt, ✓) and therefore the transition
potential �(xt, zt, zt+1) no longer depends on xt.
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We require the Hessian matrix for the Laplace approximation. This matrix is given by

r2
xL(x) = r2

xEq(z)[log p(x, z, y | ✓)]

= r2
x�(x1, z1) +

TX

t=2

r2
x�(xt, xt�1, zt) +

T�1X

t=1

r2
x�(xt, zt, zt+1) +

TX

t=1

r2
x�(xt, yt, zt)

where

r2
x�(x1, z1) =

X

k

q(z1 = k)r2
x log p(x1 | z1 = k, ✓)

r2
x�(xt, xt�1, zt) =

X

k

q(zt = k)r2
x log p(xt | xt�1, zt = k, ✓)

r2
x�(xt, zt, zt+1) =

X

k

X

j

q(zt = k, zt+1 = j)r2
x log p(zt+1 = j | zt = k, xt, ✓)

r2
x�(xt, yt, zt) =

X

k

q(zt = k)r2
x log p(yt | xt, zt = k, ✓).

Therefore, we can compute the Hessian by computing the contributions to the Hessian of the dynamics, emission, and
transition potentials.

The Hessian has size TD ⇥ TD for a time series of length T with latent dimensionality D but has a sparse, block
tridiagonal structure with blocks of size D ⇥D. The terms in the Hessian from the initial state, transition, and emission
potentials only contribute terms to the primary block diagonal. The dynamics potentials contribute terms to both the
primary and first off-diagonal blocks. Throughout, we only represent and store the main and lower diagonal blocks of
the Hessian. This reduces storage from the full (TD)2 to (2T � 1)D2 such that it is linear in T . For linear solves and
matrix inversions of the Hessian, we also use algorithms that exploit the block tridiagonal structure.

To find the most likely latent path x
?, we use Newton’s method with a backtracking line search. However, we can

also use optimization routines that require only gradient information (lBFGS) or require only gradient information and
Hessian-vector products (Newton-CG or trust-region Newton-CG).

B.3 Update parameters

We update the model parameters by approximately optimizing the ELBO with respect to the parameters

✓
? = argmax

✓
Eq(z)q(x)[log p(x, z, y | ✓)� log q(z)q(x)]. (5)

Instead of optimizing the expectation under the full distribution of q(x) we optimize

✓
? = argmax

✓
Eq(z)[log p(x̂, z, y | ✓)] (6)

where x̂ is a sample from q(x) and we have dropped terms that do not depend on ✓. Conditioned on x̂, the update
consists of M-steps on the transition, dynamics, and emission parameters. We use either exact updates (where appli-
cable) or lFBGS to implement the M-steps. Finally, we set the parameters at iteration i via a convex combination of the
new parameters ✓

? and the parameters at the previous iteration

✓i = (1� ↵) ✓? + ↵ ✓i�1. (7)

We note that we can also update the parameters using stochastic gradient ascent with samples from q(x).
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B.4 Initialization

We can exploit the known structure of the 1D and 2D accumulation-to-bound models to initialize some of the param-
eters. For the 1D and 2D accumulation-to-bound models we set the emission parameter d to the mean spike counts
across trials in the first three time bins. In the 1D model, we set the emission parameter C using the firing rate at the
end of trials with strong input to the upper (�UB) and lower (�LB) boundaries. Given those values for each neuron and
the fact that the boundaries are at ±1 for this model, we set C = 1

2(�UB � �LB). In the 2D model, for each neuron
we initialized the elements of C as the difference between the firing rate at the end of trials with strong net input and
the mean rate d. We did this for each dimension of the input and corresponding element in C. For the models and
data in this paper, we did not identify procedures to reliably estimate the initial underlying latent dynamics parame-
ters. Therefore we randomly initialized the input weights and dynamics variance and set the initial dynamics matrix to
Aacc = I.

C Particle EM

We compared vLEM with a particle EM inference method. The first step of this method is to use a Rao-Blackwellized
particle filter to obtain S Monte Carlo samples from the marginal posterior over the latent continuous states

x
s
1:T ⇠ p(x1:T | y1:T , ✓) (8)

for s = 1, ..., S and for each time series. The second step is to use the samples from the posterior to estimate the
expected log joint probability

Ep(x,z|y,✓)[log p(x, z, y | ✓)] ⇡ 1

S

SX

s=1

Ep(z|xs,y,✓)[log p(x
s
, z, y | ✓)], x

s ⇠ p(x1:T | y1:T , ✓) (9)

= Êp(x,z|y,✓)[log p(x, z, y | ✓)] (10)

where we have dropped the subscripts denoting the entire time series. Finally, we update the parameters by maximizing
the sample expectation of the log joint

✓
? = argmax

✓
Êp(x,z|y,✓)[log p(x, z, y | ✓)]. (11)

We used the L-BFGS optimizer to maximize this objective.

C.1 Particle filter

Here we describe the Rao-Blackwellized particle filter used in the particle EM algorithm. The posterior over the time
series x is

p(x1:t | y1:t) / p(x1:t, y1:t) (12)
= p(yt | x1:t, y1:t�1) p(xt | x1:t�1, y1:t�1) p(x1:t�1|y1:t�1) (13)
= p(yt | xt) p(xt | x1:t�1) p(x1:t�1 | y1:t�1). (14)

Let q(x1:t | y1:t) be the importance sampling density used in the particle filter. If we propose particles according to the
prior distribution, q(xt | x1:t�1, y1:t�1) = p(xt | x1:t�1), then the particle filter weights are

w
s
t /

p(xs1:t | y1:t)
q(xs1:t | y1:t)

(15)

9



=
p(yt | xst ) p(xst | xs1:t�1) p(x

s
1:t�1 | y1:t�1)

q(xst | xs1:t�1, y1:t�1) q(xs1:t�1 | y1:t�1)
(16)

= p(yt | xst )ws
t�1. (17)

The proposal can be written via a marginalization over zt

p(xt | x1:t�1) =
X

zt

p(xt | zt, xt�1) p(zt | x1:t�1). (18)

Therefore we can sample from p(xt | x1:t�1) with

zt ⇠ p(zt | x1:t�1) (19)
xt ⇠ p(xt | zt, xt�1) (20)

and ignoring zt. This procedure requires the ‘look-ahead’ posterior p(zt | x1:t�1) which can be computed using the
filtered posterior p(zt | x1:t�1) and transition probabilities

p(zt | x1:t�1) =
X

zt�1

p(zt | zt�1, xt�1) p(zt�1 | x1:t�1). (21)

We compute and store the filtered posterior p(zt | x1:t) for each time point t.

The final Rao-Blackwellized particle filter is given in Algorithm 1.

Algorithm 1 Rao-Blackwellized particle filter for rSLDS
1: Input: observations y, inputs u, and number of particles S

2: Initialize particles x
s
1, weights w

s
1, and initial p(z1 | xs1) for s = {1, ..., S}.

3: for t = 2 to T do
4: for s = 1 to S do
5: Compute look-ahead posterior using transition matrix

p(zt | xs1:t�1) =
X

zt�1

p(zt | zt�1, x
s
t�1) p(zt�1 | xs1:t�1)

6: Sample from look-ahead posterior and dynamics model

zt ⇠ p(zt | xs1:t�1)

x
s
t ⇠ p(xt | zt, xst�1)

7: Compute posterior

p(zt | xs1:t) / p(xst | zt)
X

zt�1

p(zt | zt�1, x
s
t�1) p(zt�1 | xs1:t�1)

8: Compute likelihood p(yt | xst )
9: Multiply weight ws

t = w
s
t�1 p(yt | xst )

10: end for
11: Normalize weights w

s
t = w

s
t /
P

tw
s
t

12: Resample particle indices (I1, ..., IS) ⇠ Mu(S, (w1
t , ..., w

S
t ))

13: For each index assign x
s
1:t = x

Is
1:t and p(zt | xs1:t) = p(zt | xIs1:T )

14: end for
15: Return x

s
1:T , ws

1:t for all s
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