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SUMMARY

Neurons in LIP exhibit ramping trial-averaged re-
sponses during decision-making. Recent work
sparked debate over whether single-trial LIP spike
trains are better described by discrete ‘‘stepping’’
or continuous ‘‘ramping’’ dynamics. We extended
latent dynamical spike train models and used
Bayesian model comparison to address this contro-
versy. First, we incorporated non-Poisson spiking
into both models and found that more neurons
were better described by stepping than ramping,
even when conditioned on evidence or choice. Sec-
ond, we extended the ramping model to include a
non-zero baseline and compressive output nonline-
arity. This model accounted for roughly as many
neurons as the stepping model. However, latent dy-
namics inferred under this model exhibited high
diffusion variance for many neurons, softening the
distinction between continuous and discrete dy-
namics. Results generalized to additional datasets,
demonstrating that substantial fractions of neurons
are well described by either stepping or nonlinear
ramping, which may be less categorically distinct
than the original labels implied.

INTRODUCTION

Perceptual decision-making provides an opportunity to probe

the role of different brain regions in cognitive tasks (Gold and

Shadlen, 2007; Hanks and Summerfield, 2017). In direction

discrimination tasks with choices conveyed by a saccadic eye

movement (Newsome and Paré, 1988; Britten et al., 1992,

1996), macaque lateral intraparietal area (LIP) responses exhibit

positive correlation with choice (Shadlen and Newsome, 1996,
2001). An important series of papers provided support for the

idea that the firing rates of LIP neurons reflect the accumulation

of sensory evidence in favor of a ‘‘preferred’’ choice target; this

hypothesis unified neural responses and behavior under a single

theoretical framework known as the drift-diffusion or accumula-

tion-to-bound model (Roitman and Shadlen, 2002; Mazurek

et al., 2003; Gold and Shadlen, 2007; Shadlen and Kiani,

2013). An extensive literature has examined this hypothesis in

a variety of experimental and theoretical settings (Huk and Shad-

len, 2005; Palmer et al., 2005; Ditterich, 2006a, 2006b; Hanks

et al., 2006; Kiani et al., 2008; Churchland et al., 2008; Kiani

and Shadlen, 2009; de Lafuente et al., 2015).

Although the trial-averaged responses in LIP typically

resemble ramps, the average responses do not directly reveal

a neuron’s single-trial dynamics. This shortcoming has moti-

vated recent work to determine the single-trial dynamics of LIP

responses in direction discrimination tasks (Churchland et al.,

2011; Bollimunta et al., 2012; Latimer et al., 2015). In particular,

Latimer et al. (2015) compared a discrete switching process or

‘‘stepping’’ model and an accumulation-to-bound or ‘‘ramping’’

model of LIP dynamics, both of which can give rise to ramping

trial-averaged activity. They found that the majority of LIP cells

were better explained by the stepping model. However, subse-

quent literature has sparked debate over the interpretation of

these results (Shadlen et al., 2016; Zylberberg and Shadlen,

2016; Chandrasekaran et al., 2018; Latimer et al., 2017; Zhao

and Kording, 2018).

In this paper, we aim to settle the debate about single-trial LIP

dynamics using improved models and model comparison

methods. We have extended the classic ramping and stepping

models of LIP dynamics in several important ways. First,

we incorporated spike-history dependencies into both models

to account for departures from Poisson spiking. Second, we

investigated nonlinear ramping models with a non-zero baseline

firing rate and several possible nonlinear relationships between

the latent variable and firing rate. We compared these models

using a principled, fully Bayesian information criterion and

Bayesian leave-one-out cross-validation.
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Figure 1. Latent Variable Models for LIP Spike Responses during Decision-Making

(A) Schematics of extended ramping (above) and stepping (below) models. For the ramping model, the stimulus coherence sets the drift rate of a latent diffusion-

to-bound process; this process is transformed by a rectifying nonlinearity fð ,Þ and added to a baseline firing rate b. For the stepping model, stimulus coherence

determines the distribution over time and direction of a discrete step to one of two possible latent firing rates. In both models, the latent firing rate is multiplied by

the exponentiated output of a spike history filter, allowing it to capture non-Poisson firing statistics.

(B) Visualization of how example latent diffusion paths (top) are mapped to firing rates (bottom) by each of the output nonlinearities considered for the extended

ramping model. The upper boundary is given by b + fðgÞ, where the ramping model parameter g is chosen separately for each nonlinearity such that the firing

rates terminate at the same boundary.
In our analyses, the steppingmodel outperformed the ramping

model for a majority of neurons when both models were

extended to incorporate spike history. This result was robust to

partitioning of the data by choice or sensory evidence level,

showing that (in contrast to recent analyses in Zylberberg and

Shadlen, 2016) model selection was not driven by anti-preferred

choice or evidence trials. On the other hand, an extended ramp-

ing model with a non-zero baseline firing rate and a decelerating

nonlinearity outperformed the stepping model for slightly more

than half the neurons in our population. The latent firing rates in-

ferred under this model, however, often exhibited high diffusion

variability. This makes the distinction between continuous and

discrete models less sharp and weakens the connection be-

tween the continuous models of the spike trains and continuous

diffusion models of the behavior. These analyses revealed that

spike responses in LIP are more complex than simple ramping

or stepping models, while confirming that discrete dynamics

provide the best account for a substantial fraction of neurons

in LIP.

RESULTS

We formulated explicit statistical models of latent dynamics un-

derlying single-trial spike trains in area LIP during perceptual de-

cision-making and used two different statistical methods to

compare them.Our analysis builds on Latimer et al. (2015), which

formulated the ramping and stepping latent variable models of

LIP spike trains. The basic ramping model, often referred to as

the drift-diffusion or accumulation-to-bound model, consists of

a continuous latent diffusion process that is passed through a

soft-rectifying nonlinearity to obtain a Poisson firing rate. The

basic stepping model, on the other hand, consists of a discrete
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switching process that jumps from an initial firing rate to one of

two levels with a probability that depends on the stimulus.

Here, we extended these two models in order to incorporate

non-Poisson spike-history effects and to allow additional forms

of nonlinearity in the ramping model (Figure 1).

To compare thesemodels, we used two different methods: the

Watanabe-Akaike information criterion (WAIC, STAR Methods;

Watanabe, 2010; Gelman et al., 2014) and Bayesian leave-one-

out cross-validation (Vehtari et al., 2017). The WAIC has multiple

features that make it robust for model comparison. First, it uses

the full posterior over the parameters for model evaluation and

therefore does not rely on a point estimate of the parameters

(which is the case for other model-selection criteria, e.g., AIC,

BIC, or DIC). Also, the penalty term in the WAIC is stable and

guaranteed to be non-negative, in contrast with the DIC (Gelman

et al., 2014; Vehtari et al., 2017). Finally, theWAIC has solid theo-

retical grounding as it is asymptotically equivalent to Bayesian

leave-one-out cross-validation (Gelman et al., 2014; Vehtari

et al., 2017). We find these benefits are realized empirically, as

the WAIC outperforms the DIC at identifying the true model in

simulations (Figure S2B).

Incorporating Spike-History Dependencies
The basic ramping and stepping models from Latimer et al.

(2015) described spiking as Poisson conditioned on the latent

ramping or stepping process, which ignores spike-history ef-

fects present in real spike trains (e.g., refractoriness, bursting,

or spike-rate adaptation). We therefore extended both models

to include autoregressive spike-history filters, like those in the

generalized linear modeling (GLM) framework (Figure 1A, STAR

Methods). These filters capture non-Poisson spike-history de-

pendencies (Truccolo et al., 2005; Weber and Pillow, 2017) and
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Figure 2. Comparison of Experimental Data and Simulated Data from the Fitted Models

Trial-averaged firing rates (top) and spike count variances (bottom) for different motion coherence levels, aligned to motion onset and averaged across neurons

(left), along with trial-averaged responses and spike count variances simulated from models considered in this paper (right). Here, ‘‘ + b’’ indicates inclusion of a

non-zero baseline, and ‘‘linear’’ and ‘‘sqrt’’ indicate the choice of nonlinearity in the extended ramping model. The R2 values are the fraction of variance explained

in the population PSTHs and spike-count variances by the simulated data from the models. With a mechanism to generate choices, the models also match the

population choice-conditioned PSTHs (Figure S1).
allow for a dissociation of latent dynamics from spiking activity

that can be explained more parsimoniously by past spikes.

We fit the stepping and ramping models both with and without

spike history to the responses of 40 LIP cells during a variable-

duration random dot motion task (STAR Methods; Meister

et al., 2013). Simulated data from the fitted models captured

the shape of the experimental population PSTHs and spike-

count variances for different coherence levels (Figure 2). Next,

while the models were not fit to the choices, augmented models

that also generate choices captured the trends observed in the

choice-conditioned PSTHs (Figure S1).

We verified that motion coherence had an effect on the neural

responses when conditioning on choice by comparing the in-

ferred latent ramping trajectories in the rampingmodel with spike

history across different coherence levels for the same choice.

The slopes of the latent ramping trajectories were more positive

for coherence levels with stronger motion toward the in-RF

target (Figure S1B). The posterior distribution over the bound-

hit times of the ramping models provided evidence in favor of

the LIP cells hitting a constant upper boundary, as 29 out of 40

cells hit the boundary during our analysis window on a majority

of in-RF choice trials (Figure S1C).

The inferred spike history filters typically exhibited short-time-

scale inhibition (or refractoriness) and longer-timescale self-

excitation, although there was substantial variability across

neurons (Figure 3A). These filters conferred a dramatic improve-

ment in the ability to capture temporal auto-correlations in

spiking activity under both models (Figure 3B). Intriguingly, the

history filters were nearly identical between the stepping and

ramping models for the majority of neurons (Figure 3A; the

Euclidean distances between the filters for the two models

across cells were in the range ½0:0032;0:45� with median

0:098). This suggests that the filters captured similar structure

across models and were not strongly influenced by model-spe-

cific assumptions about the latent dynamics. Spike-history filters
substantially improved prediction accuracy under both models

for the vast majority of neurons, giving better WAIC for 38 out

of 40 cells (Figure 3C).

Stepping Model Robustly Outperforms Linear Ramping
Model with Zero Baseline
Model comparison using the WAIC and cross-validation re-

vealed that the stepping model with spike history outperformed

the linear ramping model with spike history for 28 out of 40 cells

(Figures 4A and S4A). We quantified uncertainty in the model

comparison using the standard error of the WAIC difference

across trials (STAR Methods). For the 26 cells whose WAIC dif-

ferences were more than the standard error from zero, 21

favored the stepping model. This result was not driven by the

penalty term in the WAIC, as the stepping model had higher pre-

dictive accuracy for 33 of the 40 cells (higher lppd, STAR

Methods, Equation 68).

To examine how different trial conditions contributed to the

model comparison across cells, we then compared the models

across subsets of trials partitioned by the motion coherence

and choice. For each coherence and choice, the stepping model

with spike history outperformed the linear ramping model with

spike history for the majority of cells (Figures 4B and S4B). The

negative-high-coherence trials had the largest median differ-

ence between cells, which is consistent with previous observa-

tions about the inability of the ramping model to handle strong

negative drifts in firing rate (Shadlen et al., 2016; Zylberberg

and Shadlen, 2016). However, the median difference favored

stepping for each coherence level, including those for weak or

strong motion into the RF. Also, with the negative-high-coher-

ence or all negative-coherence trials excluded, the stepping

model still outperformed the rampingmodel for amajority of cells

(26 out of 40). This suggests that the overall comparison did not

depend on the negative-coherence trials and that the dynamics

were consistent across stimulus conditions and choice.
Neuron 102, 1249–1258, June 19, 2019 1251
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Figure 3. Models with Spike-History Dependence Outperformed Classic Stepping and Ramping Models

(A) Spike-history filters for three example neurons, and the average spike-history filter across neurons, for extended stepping (blue) and extended ramping (red)

models. Inferred filters were remarkably similar between models, implying that spike-history effects did not vary with the choice of latent dynamics model.

(B) Spike train autocorrelations of LIP neurons and models with and without spike-history filters, revealing that classic stepping and ramping models could not

account for the temporal statistics of real spike trains.

(C) Models with spike-history filters performed better than classic stepping (above) and ramping models (below) for the majority of LIP neurons, as quantified by

WAIC. Positive WAIC differences favor the model with spike history.
We next evaluated the possibility that model fitting was influ-

enced by a subset of trials, which would also affect the model

comparison. We re-fit themodels to three different subsets of tri-

als (Figures 4B and S4B). The first contained all zero-coherence

trials, which putatively have long integration times (and therefore

might be expected to have the slowest or most gradual ‘‘ramp-

like’’ dynamics). The other two re-fits used data from all posi-

tive-coherence trials and data from all in-RF choice trials, in

which the animal made a saccade to the ‘‘preferred’’ target.

These latter two fits restricted analysis to trials with putatively

positive values of accumulated sensory evidence. For all three
A B

trials in each condition. Positive differences favor the stepping model. (Right)

coherence, or in-RF trials, normalized by the number of trials in each condition. S

S3, S5, and S6.

1252 Neuron 102, 1249–1258, June 19, 2019
analyses, model comparison favored the stepping model with

spike history for more than half the neurons: 21/40 for zero-

coherence trials, 25/40 for positive-coherence trials, and 27/40

for in-RF choice trials.

Recent work has argued that trials with strong initial negative

diffusion and termination at non-zero rates might bias model

comparison in favor of the stepping model (Zylberberg and

Shadlen, 2016). The competing-accumulators model assumes

that these trials occur most prevalently during negative-coher-

ence trials or out-RF choice trials (Mazurek et al., 2003). These

are trials where either the presented or perceived evidence is
Figure 4. Stepping Model with Spike History

Outperforms Linear Ramping Model with

Spike History for a Majority of Cells across

Conditions

(A) Sorted WAIC differences between the stepping

and linear ramping models with spike history for all

neurons (error bars indicate ± 1SEM). Blue (red)

lines indicate cells for which the stepping (ramping)

model had a better WAIC value. Colored numbers

indicate the number of cells where the WAIC dif-

ference favored stepping or ramping by more than

the standard error.

(B) (Left) WAIC differences computed for subsets of

trials conditioned onmotion coherence and choice.

The differences were normalized by the number of

WAIC differences for models fit only to data from zero coherence, positive

imilar results were obtained with cross-validation (Figure S4). See also Figures
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Figure 5. Comparison of Extended Ramping Models

(A) Comparison of nonlinear ramping models with non-zero baseline firing

rates and spike history against the classic (linear) ramping model. Positive

values indicate improvements relative to the classic linear ramping model in

terms of WAIC difference. The box color indicates the choice of nonlinearity

and ‘‘+b’’ refers to models with a non-zero baseline.

(B) The fraction of cells for which each model (all with non-zero baseline and

spike history) achieved the best WAIC, showing that the square root nonline-

arity performed best for more than half the population.

(C) WAIC differences between the stepping model with spike history and the

linear (left) and square root (right) ramping models with baseline and spike

history (error bars indicate +/�SEM). See Figure S5 for comparable analysis

using cross-validation instead of WAIC and see Figure S4 for a comparison of

WAIC values on experimental versus simulated data.
to the target outside the RF of the LIP neuron and therefore are

trials where the LIP neurons are more likely to decrease their

firing rates throughout a trial. Given that assumption and the

analyses performed above, we conclude that the comparison

between the ramping and stepping models with history fit to all

trials was not driven by these trials, even though a mechanism

such as a baseline firing rate to stop strongly going negative

rates was not included.

Nonlinearities and Non-zero Baselines Improve the
Ramping Model
Although the ramping model formulated in Latimer et al. (2015,

2017) was motivated to capture the hypothesized linear relation-

ship between a biased diffusion-to-bound process and single-

neuron firing rates, neurons might exhibit nonlinear relationships

between a putative latent diffusion process and their firing

rates. To investigate this possibility, we fit nonlinear ramping
models with a variety of different nonlinearities: a soft-rectified

square root function (‘‘sqrt’’), a soft-rectified quadratic function

(‘‘quad’’), or an exponential function (‘‘exp’’) (STAR Methods).

These models can capture varying degrees of nonlinear

response saturation or acceleration as a function of the latent

variable (Figure 1B). We also included a non-zero baseline firing

rate parameter b that acts as a (non-absorbing) lower bound on

the firing rate (STAR Methods). This prevents firing rate from

going to zero when the drift term is strongly negative (Shadlen

et al., 2016; Zylberberg and Shadlen, 2016; Latimer et al., 2017).

For each nonlinearity, we fit the ramping model with and

without an additive baseline and spike-history filters. We

compared each model to the original linear ramping model

without spike history from Latimer et al. (2015) (Figure 5A).

Including the non-zero baseline improved all models, and

models with the largest median improvements over the linear

ramping model included both the non-zero baseline and spike-

history filters. Across all nonlinear ramping models with

baseline, the model with square root nonlinearity performed

best, achieving the best WAIC for more than 50% of neurons

(Figure 5B).

As the linear and square root ramping models with non-zero

baseline and spike history were the best-performing among all

models with continuous latents, we performed a direct compar-

ison with the stepping model with spike history. These extended

ramping models closely matched the performance of the step-

ping model with spike history (Figures 5C and S4C). The

square-root-ramping model with non-zero baseline and spike

history achieved better WAIC than the steppingmodel with spike

history for more than half of the cells, although they each had an

equal number of cells with WAIC differences greater than the

standard error from zero.

We tested the goodness of fit of these models for a subset of

cells by computing the WAIC on simulated datasets with the

same trial parameters as in the experimental data. We found

that the WAIC values computed on the experimental data were

in the range of WAIC values computed on simulated datasets

for the stepping-and-linear-ramping-with-non-zero-baseline

models with spike history for three of the four cells. Finally, while

the model comparison results were negatively correlated with

the modulation in firing rate across in-RF or out-RF choices,

we did not observe a systematic bias in the model comparison

as a function of the overall firing rate (Figure S6).

Inferred Single-Trial Trajectories of Nonlinear Ramping
Models Are More Discrete
In the previous section, we showed that the linear and square

root ramping models with non-zero baseline outperformed the

linear rampingmodel for themajority of cells. We therefore inves-

tigated how these extensions affected different aspects of the

model behavior. First, we observed that including a non-zero

baseline helped to capture the steep initial decrease in the

average firing rate for negative-coherence trials via steeper

negative drift rates, which the simpler rampingmodel was unable

to capture (Figures 2C and 6B).

Second, we observed that single-trial trajectories sampled

from the models with non-zero baseline looked more discrete,

exhibiting more rapid jumps to maximal or minimal firing rate
Neuron 102, 1249–1258, June 19, 2019 1253
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Figure 6. Analysis of Latent Firing Rates un-

der Different Latent Dynamical Models

(A) Simulated latent firing rate paths for example

cell #1 from the fitted ramping models and step-

ping model. Both ramping models with non-zero

baseline and spike history can produce latent

trajectories with high variability. For example, the

simulated trajectories denoted with arrows quickly

evolved from the baseline to the upper boundary.

(B–D) Scatterplots comparing latent firing rate

dynamics under the linear ramping model with a

zero baseline and the linear and square root

ramping models with a non-zero baseline. Each

point corresponds to a pair of model fits for a

single neuron and cell #1 is marked by an (x).

(B) Drift rates for the highest negative-coherence

stimulus are more negative in themodels with non-

zero baseline than without. This indicates that

adding a non-zero baseline allows the firing rate to

ramp downward more rapidly for negative-coher-

ence motion (Zylberberg and Shadlen, 2016). (C)

Diffusion variance increased with the addition of

the non-zero baseline. (D) The fraction of time the

simulated latent firing rates were equal to the

baseline rate or upper absorbing boundary in-

creases with the non-zero baseline.
than trajectories from the linear ramping model without baseline

(Figure 6A). Adding a non-zero baseline led to an increase in

diffusion variability for most of the cells (Figure 6C), which

allowed for larger changes in firing rate between time bins. Simu-

lated trajectories also spent larger fractions of the time at the

lower and upper boundaries compared to the models with a

zero baseline (Figure 6D). Because the lower bound is non-

absorbing, the firing rate can hit the lower bound and still evolve

to the upper bound during the course of the trial; examples of

these trials are indicated by arrows in Figure 6A.

Overall, these findings suggest that including a non-zero base-

line rate can improve the rampingmodel in multiple ways. It does

help the rampingmodel capture strong negative going rates (Zyl-

berberg and Shadlen, 2016). However, with these modifications,

the ramping model produced highly variable latent trajectories,

which transitioned rapidly to minimal or maximal rates, making

them qualitatively less similar to the gradually drifting rates ex-

pected from a perfect accumulator. Put simply, inclusion of a

non-zero baseline moved both linear and nonlinear ramping

models closer to discrete dynamics.

Generalization to Two Additional Decision-
Making Tasks
To see if the results for this dataset generalized to recordings

from LIP in other direction discrimination tasks, we repeated a

subset of our analyses on recordings during a discrete-pulse

accumulation task (n = 115, Yates et al., 2017) and a reaction-

time (RT) task (n = 16, Roitman and Shadlen, 2002; STAR

Methods). The trial-averaged responses of neurons in both tasks

resembled gradual ramps (Figures 7 andS7). However, statistical

comparison of the stepping and ramping models yielded results

consistent with our findings above (Figures 7, S7, and S8). For

both additional datasets, spike-history filters improved the fits

of both ramping and stepping models. The linear ramping model
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performed better with inclusion of a non-zero baseline, and the

square-root-ramping-with-non-zero-baseline model (sqrt+bl-

ramping model) outperformed the linear-ramping-with-non-

zero-baseline model (both with history) for the majority of units

in both datasets: 62/115 in the discrete-pulse task and 9/16 in

the RT task. The stepping model with spike history outperformed

the linear-ramping and square-root-ramping models with non-

zero baseline and spike history for a large majority of units in

the discrete-pulse task. In the RT task, the models were evenly

split, with models in the ramping class favored for cells with

WAIC differences greater than the standard error from zero.

It is worth summarizing the comparison between the stepping

model and the square-root-ramping model with non-zero base-

line (both with spike history), as neither model outperformed the

other across all datasets. Between the two models, the stepping

model with spike history was favored for slightly less than half of

cells in the variable duration task (16/40), a majority of cells in the

discrete-pulse task (74/115), and exactly half of cells in the RT

task (8/16). However, for cells with WAIC differences greater

than the standard error from zero, the stepping model with spike

history was favored for exactly half of cells in the variable dura-

tion task (13/26), a majority in the discrete-pulse task (54/83),

and a minority in the RT task (2/8). In this view, across datasets,

these two models achieved relatively equal performance.

Shared Latent Models for Simultaneously Recorded
Neurons
The discrete-pulse dataset contains groups of simultaneously

recorded neurons, which allows us to investigate whether shared

latent structure is useful for describing the data and whether the

model comparison results generalize to themulti-neuron setting.

We fit shared latent stepping and ramping models to 29 groups

of simultaneously recorded neurons with the same target prefer-

ences (2–9 neurons per group with a median of 3 neurons,
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Figure 7. Analysis of LIP Responses in a Discrete-Pulse Task

(A) Population PSTH and simulated data from the fitted models, averaged across neurons.

(B) Model comparison of extended ramping models and linear ramping model using the WAIC.

(C)WAIC differences between the steppingmodel with spike history and the rampingmodels with spike history (error bars indicate +/�SEM). See Figure S7 for an

analysis of data from a reaction-time task and Figure S8 for a comparable analysis using cross-validation.
n = 100 neurons in total). In these models, on each trial, the

groups of neurons share the same latent step time and direction

or ramping trajectory but have different mappings from the latent

states to the firing rate (STAR Methods). We fit these models to

each group of neurons, and we used the WAIC both to compare

the shared latent models against the models fit to individual neu-

rons (independent latent models) and to compare the shared

latent models against each other.

First, we simulated spike trains from the fitted shared latent

models to confirm their ability to capture coherence-dependent

trends in the firing rate (Figure 8A). Next, we compared the

shared latent models with independent latent models for each

model class; this revealed that shared latent models were

favored for a majority of groups of neurons for both the stepping

model and sqrt+bl-ramping model (Figure 8B). The shared-

latent-linear-ramping-with-non-zero-baseline model was also

favored over the corresponding independent latent model for

the majority of groups of neurons (19/29, not shown). This pro-

vides evidence that shared latent structure is useful for

describing the responses ofmost of the simultaneously recorded

neurons. However, the observed qualitative discrepancies be-

tween the true and simulated PSTHs in Figure 8A suggest that

more analyses would be useful for definitively answering this

question.

Finally, we investigated whether the model comparison be-

tween the shared latent models matched the model comparison

between the independent latent models. We found that a major-

ity of groups of neurons were better described by the stepping
model than the sqrt+bl-ramping model (18/29, Figure 8C). The

shared latent steppingmodel also outperformed the linear ramp-

ing model with (19/29) and without (24/29) a non-zero baseline

for a majority of groups of neurons. Thus, for the discrete-pulse

data, the results of the model comparison between the shared

latent stepping and ramping models were similar to the model

comparison results of the respective single-neuron models.

DISCUSSION

Our study strengthens the evidence for discrete-state models of

the single-trial dynamics of many LIP cells during decision-mak-

ing. Importantly, we found that LIP dynamics are heterogeneous,

with discrete stepping and continuous diffusion-to-bound

models both accounting for a substantial fraction of neurons

(Meister et al., 2013; Park et al., 2014; Latimer et al., 2015).

Our findings are supported by dynamical models that account

for spiking autocorrelation and that allow for nonlinear mappings

from diffusion-to-bound to firing rate in the ramping model. We

obtained the same results when using a fully Bayesian informa-

tion criterion and leave-one-out cross-validation.

Although we have significantly extended the models consid-

ered in Latimer et al. (2015), which allowed for more accurate

descriptions of spike trains in LIP, there are a variety of other pro-

posed extensions that we have not yet explored. For example, in

the ramping model, we could incorporate a random start time to

the diffusion process on each trial (Churchland and Kiani, 2016).

Next, one could formulate a ramping model in which negative
Neuron 102, 1249–1258, June 19, 2019 1255
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Figure 8. Shared Latent Analysis of the Discrete-Pulse Data

(A) The population PSTH of the simultaneously recorded groups of LIP neurons with the same target preferences (left) and simulated data from the multi-neuron

models fit to each group of neurons (right).

(B) The shared latent models are favored over the independent (ind.) latent single-neuron models for a majority of groups of neurons for the stepping and sqrt+bl-

ramping models (error bars indicate +/�SEM).

(C) The shared latent stepping model is favored over the shared latent square-root-ramping model with a non-zero baseline for a majority of groups.
drift rates are stopped by a competing accumulator on each trial,

rather than by a non-zero baseline that is constant across trials

(Mazurek et al., 2003; Zylberberg and Shadlen, 2016; Latimer

et al., 2017). However, this would require a two-dimensional

latent diffusion process, which would be computationally more

demanding than the one-dimensional models we have consid-

ered here, and might prove more difficult to identify with

single-neuron data. Fitting such a model using multi-neuron re-

cordings therefore presents one promising direction for future

work. Importantly, while we did not model random start or stop

times, we found that the model comparison was robust to

random start and stop times in simulations (Figure S3).

We also could extend the stepping model to a general hidden

Markov model, allowing for more than three discrete firing rates,

with more flexible transition dynamics that allow for more than

one transition per trial (Bollimunta et al., 2012). Such a model

would have more flexibility than the stepping model we consid-

ered, which might allow better generalization to alternate tasks

(Janssen and Shadlen, 2005; Yang and Shadlen, 2007; Kira

et al., 2015; Morcos and Harvey, 2016). Finally, fitting models

that share statistical power across neurons and sessions, such

as hierarchical models, could be useful for investigating if the

observed heterogeneity is due to separate sub-populations of

neurons or to noise.

Our findings appear to contradict a recent study fromZhao and

Kording (2018), which reported that the best model of LIP re-

sponses, according to a cross-validation analysis, was a model

with a constant firing rate on every trial. Although the specific
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models differed from those we have considered here in multiple

ways, we believe the discrepancy is likely due to the fact that

Zhao and Kording (2018) treated latent firing rates as parameters

to be estimated, instead of latent variables to be marginalized.

This resulted in models with one fitted parameter per trial

(a step time, ramp slope, or constant firing rate), making for hun-

dreds of parameters per neuron, which is far more than the

models we have considered here.We suspect that this approach

therefore suffered fromoverfitting, leading to the dubious conclu-

sion that firing rates are constant over time (a result that is incon-

sistentwith the basic ramping apparent in trial-averaged activity).

Wehave shownhere thatWAICandcross-validation give virtually

identical results when integrating over the unobserved latent

firing rates. Nonetheless, the suggestion from Zhao and Kording

(2018) that baseline firing ratesmay vary stochastically across tri-

als is interesting and consistent with recent findings about spike

count variability (Goris et al., 2014; Charles et al., 2018). Incorpo-

rating slow changes in gain or excitability over trials therefore

represents an additional promising direction for future work.

Some authors have raised the concern that animals perform-

ing the task might employ a strategy that involves integration

over a shorter time period than the entire trial, which could

produce discrete-looking neural dynamics even in neurons that

reflect accumulating evidence (Shadlen et al., 2016). Further,

alternative strategies without accumulation can also match

some behavioral features of evidence accumulation (Ditterich,

2006b; Stine et al., 2018). We recognize the ambiguity in deter-

mining behavioral strategy, and in future work, we expect that



including the time-varying evidence stream in the models could

help identify the behavioral strategies used by the animals (Brun-

ton et al., 2013).

While the statistical models primarily used in this study and in

Latimer et al. (2015) are single-trial models of the responses of

single neurons, we are highly interested in developing single-

trial models of the activity of populations of neurons during

decision-making. The shared latent stepping and ramping

models considered in Figure 8 are a first step in this direction.

We also expect that more flexible latent dynamics models

such as those described in Linderman et al. (2017) will be useful

for describing populations of neurons during decision-making,

especially during more complex tasks. Next, the GLM frame-

work we have used to incorporate spike-history effects could

naturally be expanded to include regressors for experimental

variables related to the stimulus or behavior of the animal. A

worthwhile future direction would be to fit latent variablemodels

with GLM regressors in tasks with structured stimuli, so as to

better disentangle latent dynamics from sensorimotor variables

that affect neural activity on single trials (Brunton et al., 2013;

Hanks et al., 2015; Morcos and Harvey, 2016; Katz et al.,

2016; Scott et al., 2017; Yates et al., 2017; Huk et al., 2017).

As behavioral paradigms become richer, and as the numbers

of recorded neurons increase, we expect that population latent

variable models with regressors and GLM outputs will provide

a powerful framework for studying the neural computations

underlying sensory decision-making in a wide variety of tasks

and brain areas.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study analyzed neural data from three different previously published experiments. In the variable-duration random dot motion

experiment, responses were recorded from two adult, male rhesus monkeys (Macaca mulatta; monkey J and monkey P; described

inMeister et al., 2013). In the discrete-pulse experiment, responseswere recorded from two adult rhesusmonkeys, onemale and one

female (monkey P and monkey N, respectively; described in Katz et al., 2016 and Yates et al., 2017). We note that monkey P partic-

ipated in both the variable-duration and discrete-pulse experiments. In the reaction-time experiment, responses were recorded were

from two rhesus monkeys (described in Roitman and Shadlen, 2002).

METHOD DETAILS

Data
We analyzed the responses of LIP cells during three motion-discrimination tasks. In each dataset and throughout the paper, we only

analyzed behaviorally-complete trials in which the animal made a correct or incorrect decision. Our primary analyses were performed

on the responses of 40 LIP cells (single-units) recorded from two rhesusmonkeys during a variable-duration random dotmotion task,

originally described in Meister et al. (2013). In the task, a random dot motion stimulus was presented for durations uniformly drawn in

the range 500–1000 ms after a variable delay. The dot motion coherence, or the expected percentage of dots moving in the true di-

rection at each time point, on each trial was taken from the set of values: 0.0, 3.2, 6.4, 12.8, 25.6, or 51.2%. The monkey reported its

estimate of the dot motion direction via a saccade to one of two targets. One saccade target was placed in the response field of the

neuron (‘‘in-RF’’) while the other was placed outside of the response field (‘‘out-RF’’). The animal had to wait for 500ms after the stim-

ulus was extinguished before it could indicate its choice. The original study recorded from 80 LIP neurons and the 40 LIP cells used in

this study were the 40 most choice-selective responses during the period 200-700 ms after motion onset, determined by the d0 cri-
terion (Latimer et al., 2015). For analysis, the trials were grouped into five coherence levels: zero included 0% trials, positive/negative

low included 3.2%, 6.4%, and 12.8% trials, and positive/negative high included 25.6% and 51.2% trials, where positive motion is

toward the target in the response field. The coherence-dependent PSTHs for each unit in the variable duration task were smoothed

using a Gaussian filter with 20 ms standard deviation.

We analyzed two additional datasets. The first consisted of 16 LIP cells (single-units) recorded from two rhesus monkeys during a

reaction-time (RT) version of the random dotmotion task (Roitman and Shadlen, 2002), where themonkey chooses when to respond.

The details for the selection of the 16 LIP cells are in (Latimer et al., 2015). We also divided the trials in this dataset into the five levels

described above. We included spikes starting at 200 ms after stimulus onset and up to 50 ms before the saccade for analysis. The

final spike bin contained the time point 50 ms before the saccade and we included all spikes that fell into this bin. We only included

trials in which we had 100 ms of data in this period (Latimer et al., 2015).

The second additional dataset consisted of 115 LIP units (single- andmulti-units) from two rhesus monkeys performing a discrete-

pulse accumulation task (Yates et al., 2017). In this task, the animal viewed a set of Gabor patches that either flickered or drifted dur-

ing seven discrete portions of the trial (pulses). In each pulse, all of the drifting Gabor patchesmoved in the same direction. The task of
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the animal was to report the net motion direction across the seven pulses with a saccade to one of two targets. In this task, the net

motion levels did not map directly to discrete-coherence levels, as each trial could have a different amount of net pulses in either

direction. Therefore, we partitioned the data for each experimental session into six levels by sectioning the net pulses in each direc-

tion into thirds. We selected neurons with d0 statistic magnitudes larger than 0.2 for analysis (Yates et al., 2017). For the multi-neuron

analyses, we analyzed 29 groups of neurons (n = 100) that were simultaneously recorded and had the same target preference. The

number of neurons in each group was in the range [2, 9] and the median number of neurons in a group was 3.

Ramping model with history
In the rampingmodel, the firing rate is linked to a latent diffusion process (Latimer et al., 2015). In the following, we describe the gener-

ative model. Individual trajectories in the latent space are initiated with a sample from a Gaussian with mean x0 and variance u2. The

trajectory then evolves according to drift-diffusion dynamics with a diffusion variance u2 and drift bc. The drift bc depends on the

coherence c of the current trial. The latent trajectory is scaled by a factor of g and passed through a nonlinearity fðxÞ to map it to

a positive firing rate space. In the linear ramping model, the nonlinearity is the softplus function fðxÞ = logð1 + expðxÞÞ. The output

of the nonlinearity is multiplied by history dependence gt such that the firing rate in spikes per second is lt = fðxtgÞ gt. If the trajectory

crosses an absorbing upper boundary at 1 in the latent space then the firing rate is held fixed for the remainder of the trial at the

boundary rate. The generative model for a trial of length T is

x1 � N �x0;u2
�

(Equation 1)
�

xt + 1 � N xt + bc;u

2
�
; t > 1 (Equation 2)
�

yt � Poissonðfðxt gÞ gt DÞ; t < t

PoissonðfðgÞ gt DÞ; tR t
(Equation 3)

where t is the first time bin that xtR1 (otherwise t = N) and D= 0:01s is the bin size. The bin size is equal to one frame of the stim-

ulus in Meister et al. (2013).

The history dependence modulates the firing rate through a multiplicative interaction. At time t, the history dependence gt is the

exponential of the weighted sum of the previous H bins of spiking activity of the neuron

gt = exp

 XH
h=1

whyt�h

!
(Equation 4)

with w= ½w1;/;wH�T a vector of weights. In the models without history gt = 1 for all t. We used H= 10 bins for 100 ms of history

dependence.

The ramping model parameters are Q= fb1:C; x0;u2;g;wg where C is the number of coherence levels. The latent variables in the

ramping model x are the latent diffusion trajectories for each trial.

Nonlinear ramping models
The nonlinear ramping models are linked to the latent diffusion process of the ramping model through alternative nonlinearities. We

used three alternative nonlinearities: a soft square root fðxÞ= logð1+ expðxÞÞ1=2 (sqrt), a soft quadratic fðxÞ= logð1+ expðxÞÞ2 (quad),
and an exponential fðxÞ= expðxÞ (exp). The parameters and latent variables of the nonlinear ramping models are unchanged from the

ramping model.

Non-zero baseline firing rate
In the linear and nonlinear rampingmodels with non-zero baseline rates, the output of the nonlinearity is shifted by a positive baseline

firing rate parameter b before multiplication with the history term (Zylberberg and Shadlen, 2016; Latimer et al., 2017) such that the

firing rate is lt = ðfðxtgÞ + bÞ gt. The generative model is

x1 � N �x0;u2
�

(Equation 5)
�

xt +1 � N xt + bc;u

2
�
; t > 1 (Equation 6)
�

yt � Poissonððfðxt gÞ + bÞ gt DÞ; t < t

PoissonððfðgÞ + bÞ gt DÞ; tR t:
(Equation 7)

The parameters of the ramping and nonlinear ramping models with non-zero baseline areQ = fb1:C;x0;u2;g;b;wg, where C is the

number of coherence levels. The latent variables in the model with the non-zero baseline are the latent diffusion trajectories x.
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Stepping model with history
In the stepping model, the initial firing rate starts at a state a0. During the trial, the state can either remain constant or it can switch to

one of two other states, a down state a1 or an up state a2 (Latimer et al., 2015). The step direction d is sampled from a Bernoulli dis-

tribution such that the probability of a step to a2 is fc and the probability of a step to a1 is 1� fc. The step time z is drawn from a

negative binomial (NB) distribution with a shape parameter r and coherence-dependent mean step time mc. Both the step direction

and step time vary from trial to trial. The steppingmodel firing rate is the product of the state and the spike-history-dependent gain gt.

The generative model for a trial of coherence c is

z � NBðmc; rÞ (Equation 8)
d � BernoulliðfcÞ (Equation 9)
8

yt �

<
:

Poissonða0 gt DÞ; t% z
Poissonða1 gt DÞ; t > z;d = 1
Poissonða2 gt DÞ; t > z;d = 2:

(Equation 10)

The stepping model parameters areQ = fa0;a1;a2;m1:C;f1:C;r;wg. The latent variables in the stepping model, x, are the step times

z and step directions d on each trial. The bin size is D = 0:01s. The history-dependence has the same parameterization as the ramp-

ing models. This stepping model is a reparameterization of the stepping model in (Latimer et al., 2015), which used scale parameters

pc instead ofmc, where pc =
mc

mc + r
. We used the mean step time parameterization because the parameters r andmc are less corre-

lated than r and pc, which improved mixing in the MCMC algorithm described below.

Model inference: prior distributions
We used the following priors on the parameters of the ramping and nonlinear ramping models

pðx0Þ=N �x0;mx; s
2
x

�
(Equation 11)
�

pðbcÞ=N bc;mb;s

2
b

�
(Equation 12)
�
2
�

p u = Inv�Gamma
�
u2;au;bu

�
(Equation 13)
pðgÞ=Gamma
�
g;ag;bg

�
(Equation 14)
pðbÞ=Gammaðb;ab;bbÞ (Equation 15)
pðwiÞ=N �wi;mh; s
2
h

�
: (Equation 16)

For all models, the priors on the diffusion drifts and variancewere mb = 0, sb = 0:1, au = 1:1, and bu = 1e� 3. Inmodels with a zero

baseline, we set mx = 0 and sx = 10. In models with a non-zero baseline, we set mx = 0:5 and sx = 0:5 and used ab = 1 and bb = 0:01 for

the prior on the baseline parameter. The prior on the bound height varied for each nonlinearity. We used ag = 2 and bg = 0:05 for the

softplus, ag = 1 and bg = 1e� 4 for the soft square root, ag = 3 and bg = 0:5 for the soft quadratic, and ag = 3 and bg = 3 for the expo-

nential. The parameters for the prior on the history weights were mh = 0 and s2h = 10.

The priors on the stepping model with history were

pða0Þ=Gammaða0;aa;baÞ (Equation 17)
pða1;a2Þf1ða2 >a1ÞGammaða1;aa; baÞGammaða2;aa;baÞ (Equation 18)
pðmcÞ=Gammaðmc;am; bmÞ (Equation 19)
pðrÞ=Gammaðr;ar ;brÞ (Equation 20)
pðfcÞ=Beta
�
fc;af;bf

�
(Equation 21)
pðwiÞ=N �wi;mh;s
2
h

�
(Equation 22)
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where 1ð ,Þ is the indicator function. The joint prior on the rates pða0;a1;a2Þ=pða0Þpða1;a2Þ enforces identifiability and we set

aa = 1 and ba = 0:01. The prior over the mean step times was am = 2 and bm = 0:02. This prior has a peak at 50, a mean of 100,

and it places significant mass over a broad range of m.The prior over the step direction probabilities was uniform over ½0;1� with

af = 1 and bf = 1. The prior over r used ar = 2 and br = 1. The history weights had the same prior as in the ramping model with

mh = 0 and s2h = 10. For the stepping model without history, the priors were those specified in (Latimer et al., 2015).

Model inference: MCMC overview
We usedMarkov chain Monte Carlo (MCMC) methods to obtain approximate samples from the posterior of the model parametersQ

given the data y, pðQ j yÞ. Specifically, we used MCMC to approximately sample from the joint posterior of the parameters and the

latents pðQ; x j yÞ and ignored the samples of the latents to obtain samples from pðQjyÞ.
The following is an overview of the MCMC methods we used to obtain samples from pðQ j yÞ (Latimer et al., 2015). First, we

sampled a value for each latent variable given the parameters and the observed spike counts from the distribution pðx jQ; yÞ.
Then, conditioned on the new value of the latent variables and the data, we sampled new parameter values from pðQ j x; yÞ. By
repeating this procedure many times we obtained samples from the distribution pðQ;xjyÞ. We marginalized over x to obtain the pos-

terior distribution over the parameters pðQ j yÞ by simply discarding the values of x.

For each MCMC simulation, we simulated a chain of 60000 samples from pðQ j yÞ. We discarded the first 10000 samples from the

chain as a burn in period. We then thinned the MCMC chain by keeping every fifth sample after the burn in period, which provided us

with S= 10000 samples from the posterior distribution over the parameters. For each posterior sample fQsgs= 1:S we computed the

likelihood of the data given the posterior sample pðy jQsÞ by marginalizing over the latent variables. In the ramping models, we used

5000 Monte Carlo samples of the latent trajectories given Qs to compute the likelihood. In the stepping model, we performed the

marginalization by integrating over the step times and step directions on a grid (Latimer et al., 2015). The computational costs of

this procedure and of storing the log-likelihood values for each sample and trial was our motivation for thinning the MCMC chain

(Link and Eaton, 2012).

For the variable duration dataset, we simulated two MCMC chains for the ramping, linear ramping with non-zero baseline, square

root rampingwith non-zero baseline, and steppingmodels (all with spike history) to examine convergence in theMCMCchains before

comparing these models. We assessed convergence using the potential scale reduction factor (PSRF) convergence diagnostic (Gel-

man et al., 2013) on the trial likelihoods from the two chains. We chose to monitor the convergence of the likelihoods because our

model comparison is based solely on the likelihoods. If the diagnostic indicated that the two chains had not converged to the same

likelihood distribution (PSRF > 1.1), we simulated additional chains until we obtained two chains that passed the diagnostic. This

required increasing the number of burn in samples for a few cells.

Model inference: MCMC for ramping models
The MCMC sampling procedure for the ramping and nonlinear ramping models proceeded as follows. We first initialized the param-

eters toQð1Þ. We set b1:C by sampling C values from the distribution Nðbc;0;0:001Þ and sorting the values in the order of the coher-

ence levels. We set the initial bound height g to be a sample from a Gaussian distribution with mean equal to the average spike rate in

the final time bin of in-RF choice trials and with unit variance. We sampled the initial x0 from a Gaussian with mean equal to the

average spike rate in the first time bin divided by the initial g and with standard deviation 0.01. We constrained the initial x0 to be

in ½0:1; 0:9�. We sampled the initial variance u2 uniformly in the range ½5e� 4;5e� 3�. We sampled the initial history weights

w
ð1Þ
h � Nðwh;0;0:1Þ. With a non-zero baseline, we sampled the initial baseline parameter bð1Þ � N ðb;0:5; 0:01Þ and also subtracted

the baseline from the mean of the distribution for sampling g.

After initializing the parameters, we alternated between sampling the latent diffusion paths conditioned on the current parameters

and sampling new values of the parameters conditioned on the previous latent path. Formally, we obtained the sth sample, for

s > 1, with

xðsÞ � p
�
x jQðs�1Þ; y

�
(Equation 23)
ðsÞ
�

b1:C � p b1:C j xðsÞ; xðs�1Þ
0 ;u2;ðs�1Þ

�
(Equation 24)
�

x
ðsÞ
0 � p x0 j xðsÞ;bðsÞ

1:C;u
2;ðs�1Þ

�
(Equation 25)
�

u2;ðsÞ � p u2

�� xðsÞ; bðsÞ
1:C; x

ðsÞ
0

�
(Equation 26)
gðsÞ;bðsÞ;wðsÞ � p
�
g;b;w j xðsÞ; y

�
: (Equation 27)
e4 Neuron 102, 1249–1258.e1–e10, June 19, 2019



For step (23), we used a particle filter to estimate the distribution of latent paths below the boundary and the distribution of bound-

ary crossing times (Latimer et al., 2015). Given those two distributions, we used a backward sampling scheme to sample the latent

paths xðsÞ. We modified the firing rate observation likelihood in this step for each model to include the appropriate nonlinearity, base-

line, and history dependence. We exploited conjugacy in steps (24), (25), and (26) for Gibbs steps, which were identical to those pre-

sented in Latimer et al. (2015).

For the final step (27), we used a manifold Metropolis-adjusted Langevin (MMALA) step to jointly sample the parameters q=

½g;b;w�T (Girolami and Calderhead, 2011; Latimer et al., 2015). The vector of parameters q has dimension J = 2 + H, where H is

the number of history weights. In the following derivation, for models with a subset of the parameters q, the terms unrelated to

the subset of parameters are disregarded. Each Metropolis step consisted of sampling a new value of the parameters q+ from a pro-

posal distribution qðq+ �� qðs�1Þ; y; xðsÞÞ and accepting the newly sampled values (that is, set qðsÞ = q+) with probability

paccept =min

 
1;

p
�
q+
�� xðsÞ; y

�
p
�
qðs�1Þ �� xðsÞ; y

� q�qðs�1Þ �� q+; y; xðsÞ�
q
�
q+
�� qðs�1Þ; y; xðsÞ�

!
: (Equation 28)

If the proposed values were not accepted then we set qðsÞ = qðs�1Þ. The proposal distribution used the gradient of the log likelihood

plus log prior VqLðqÞ and the Fisher information matrix plus Hessian of the log prior GðqÞ

q
�
q+
�� qðs�1Þ; y; xðsÞ�=N

�
q+; qðs�1Þ + e2r

1

2
G�1

�
qðs�1Þ�VqL

�
qðs�1Þ�; e2rG�1

�
qðs�1Þ�	 (Equation 29)

where VqLðqÞ = ½ðv=vq1ÞLðqÞ; ðv=vq2ÞLðqÞ;/; ðv=vqJÞLðqÞ�T. The step size er was initialized to 0.05 and gradually increased to 1

during the burn in period.

We define the firing rate function

l
�
x
ðsÞ
i;t ; q

�
=
�
f
�
x
ðsÞ
i;t g

�
+b
�
gi;t (Equation 30)

that is in general a function of g, the baseline parameter b, the sampled latent path, and the history for trial i and time t. The log

likelihood plus log prior is a sum over N trials and Ti time points on each trial

LðqÞ = log p
�
y j xðsÞ; q

�
+ log pðqÞ (Equation 31)
 
N Ti � � �
=
X
i = 1

X
t = 1

yi;t log l x
ðsÞ
i;t ; q D� l x

ðsÞ
i;t ; q

�
D� logG

�
yi;t + 1

�!
+ log pðqÞ: (Equation 32)

The gradient of LðqÞ is defined by the derivatives with respect to each parameter qj

v

vqj
LðqÞ =

0
@XN

i = 1

XTi
t = 1

l0qj
�
x
ðsÞ
i;t ; q

�0@ yi;t

l
�
x
ðsÞ
i;t ; q

�� D

1
A
1
A+

v

vqj
log pðqÞ (Equation 33)

where l0qjðxðsÞi;t ; qÞ is the derivative of the rate function with respect to qj. The J3J matrix GðqÞ is

Gj;kðqÞ = � Ey j xðsÞ ;q



v2

vqj vqk
LðqÞ

�
= � v2

vqj vqk
log pðqÞ+

XN
i = 1

XTi
t = 1

D
l0qj
�
x
ðsÞ
i;t ; q

�
l0qk
�
x
ðsÞ
i;t ; q

�
l
�
x
ðsÞ
i;t ; q

� : (Equation 34)

The derivatives v=vqjlðxðsÞi;t ; qÞ for each parameter are

v

vg
l
�
x
ðsÞ
i;t ; q

�
= f 0g

�
x
ðsÞ
i;t ;g

�
gi;t (Equation 35)
� �
v

vb
l x

ðsÞ
i;t ; q = gi;t

v

vwh

l
�
x
ðsÞ
i;t ; q

�
=
�
f
�
x
ðsÞ
i;t ;g

�
+ b
�
gi;t yi;t�h

(Equation 36)

where f 0gðxðsÞi;t ;gÞ is the derivative of each nonlinearity with input x
ðsÞ
i;t ;g with respect to g
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f 0g
�
x
ðsÞ
i;t ;g

�
=

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

x
ðsÞ
i;t

1+ exp
�
� x

ðsÞ
i;t g
�; softplus ðlinearÞ

1

2

�
log
�
1+ exp

�
x
ðsÞ
i;t g
����1=2 x

ðsÞ
i;t

1+ exp
�
� x

ðsÞ
i;t g
�; soft sqrt

2log
�
1 + exp

�
x
ðsÞ
i;t g
�� x

ðsÞ
i;t

1+ exp
�
� x

ðsÞ
i;t g
�; soft quad

x
ðsÞ
i;t exp

�
x
ðsÞ
i;t g
�
; exponential:

The derivative and second derivative of the log prior on g are

v

vg
log pðgÞ = v

vg

�
ag log

�
bg

�� logGðagÞ+ ðag � 1Þlog g� bgg
�
=
ag � 1

g
� bg (Equation 37)
2 �

v

vg2
log pðgÞ = v

vg

ag � 1

g
� bg

	
= � ag � 1

g2
: (Equation 38)

Similarly, for the baseline b these quantities ares

v

vb
log pðbÞ = ab � 1

b
� bb (Equation 39)
2
v

vb2
log pðbÞ = � ab � 1

b2
: (Equation 40)

The first two derivatives of the log likelihood of the history weights wh are

v

vwh

log pðwhÞ = v

vwh

 
� 1

2
log 2p� 1

2
log s2

h �
1

2

ðwh � mhÞ2
s2
h

!
= �wh � mh

s2
h

(Equation 41)
2
v

vw2
h

log pðwhÞ = v

vwh

�
�wh � mh

s2
h

	
= � 1

s2
h

: (Equation 42)

Each of the priors are independent and therefore the prior terms contributing to the off-diagonal elements of Gj;kðqÞ are zero.

Model inference: MCMC for stepping models
In the stepping model we alternated between sampling the latent step times z and directions d and sampling the parameters of the

modelQ. We first initialized the parameters toQð1Þ. We set a
ð1Þ
0 to the firing rate in the first time bin, a

ð1Þ
1 to the firing rate in the final time

bin of out-RF choice trials, and a
ð1Þ
2 to the firing rate in the final time bin of in-RF choice trials. We then added Gaussian noise to each

a
ð1Þ
0:2. We sampled rð1Þ � N ðr; 1; 0:0025Þ, mð1Þ

c � Nðmc; 30;25Þ, fð1Þ
c � Nðfc; 0:5;0:05Þ, and w

ð1Þ
h � Nðwh;0; 0:1Þ.

After initialization, we performed the following sequence of steps to obtain the sth > 1 sample

zðsÞ;dðsÞ � p
�
z;d jQðs�1Þ; y

�
(Equation 43)
ðsÞ ðsÞ �

a0:2;w � p a0:2;w j zðsÞ;dðsÞ; y

�
(Equation 44)
ðsÞ �

f1:C � p f1:C jdðsÞ� (Equation 45)
ðsÞ �

m1:C � p m1:C j zðsÞ; rðs�1Þ� (Equation 46)
�

rðsÞ � p r j zðsÞ;mðsÞ

1:C

�
: (Equation 47)

We sampled the step directions and step times (step 43) by sampling from the distribution computed on a grid, truncated at 1500

time bins (Latimer et al., 2015), with the history dependence included in the observation likelihood. We employed Beta-Bernoulli con-

jugacy to directly sample the step direction probabilities (step 45) using a Gibbs’ step.
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Sampling the rates and spike history filters

We used an MMALA step in the stepping model to sample the rates a0:2 and history weights w with proposal distribution

q
�
q+
�� qðs�1Þ; y; zðsÞ;dðsÞ�=N

�
q+; qðs�1Þ + e2s

1

2
G�1

�
qðs�1Þ�VqL

�
qðs�1Þ�; e2sG�1

�
qðs�1Þ�	 (Equation 48)

where q = ½a0:2;w�T. The step size es was gradually increased from 0.05 to 1 during the burn in period. The firing rate for trial i and

time t is

l
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�
=a
�
z
ðsÞ
i ;d

ðsÞ
i ; t

�
gi;t (Equation 49)

where

a
�
z
ðsÞ
i ;d

ðsÞ
i ; t

�
=

8><
>:

a0; z
ðsÞ
i R t

a1; z
ðsÞ
i < t;d

ðsÞ
i = 1

a2; z
ðsÞ
i < t;d

ðsÞ
i = 2:

(Equation 50)

The MMALA step uses LðqÞ;v=vqLðqÞ, and GðqÞ. The log likelihood plus log prior is

LðqÞ = log p
�
y j zðsÞ;dðsÞ; q

�
+ log pðqÞ (Equation 51)
 
N T
=
X
i =1

Xi

t = 1

yi;t log l
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�
D� l

�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�
D� logG

�
yi;t + 1

�!
+ log pðqÞ: (Equation 52)

The gradient of the log likelihood plus log prior is

v

vqj
LðqÞ =

0
@XN

i =1

XTi
t =1

l0qj
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�0@ yi;t

l
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�� D

1
A
1
A+

v

vqj
log pðqÞ: (Equation 53)

The elements of the Fisher information matrix plus the Hessian of the log prior are

Gj;kðqÞ = � v2

vqj vqk
log pðqÞ+

XN
i =1

XTi
t = 1

D
l0qj
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�
l0qk
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�
l
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

� : (Equation 54)

The derivative of the rate function given z
ðsÞ
i and d

ðsÞ
i is

v

vaj

l
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�
=

(
gi;t; a

�
z
ðsÞ
i ;d

ðsÞ
i ; t

�
= aj

0; otherwise:
(Equation 55)

The derivative with respect to the history weights is

v

vwh

l
�
z
ðsÞ
i ;d

ðsÞ
i ; q; t

�
=a
�
z
ðsÞ
i ;d

ðsÞ
i ; t

�
gi;t yi;t�h: (Equation 56)

When evaluating the first and second derivatives of the log prior for the proposal distribution in (53) and (54), we used independent

priors on a1 and a2

qða1Þ=Gða1;aa;baÞ (Equation 57)
qða2Þ=Gða2;aa;baÞ: (Equation 58)

This simplifies computation of the gradient and Hessian for the proposal distribution. The derivatives of the log prior for a0:2 andw

have the same form as g and w in the ramping model.

We note that if across all trials the cell was never in state aj then ðv=vajÞLðqÞ is zero and the row and column ofGðqÞ corresponding
to aj is zero. This matrix must be nonsingular such that we can use its inverse in the proposal distribution. Therefore, if this occurred,

although rare, we set the diagonal element of each zero row and column to one.

Sampling step time means and shape

We sampled the meanm1:C and shape r parameters of the negative binomial distribution over the step times using Metropolis steps.

The probability of a step time zi on trial i with coherence ci in terms of mci and r is

p
�
zi j r;mci

�
=

Gðzi + rÞ
Gðzi + 1ÞGðrÞ

�
mci

mci + r

	zi
�

r

mci + r

	r

: (Equation 59)
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We alternated between sampling each mc conditioned on r and sampling r conditioned on each mc.

The proposal distribution for each mc is

q
�
m+

c

��mðs�1Þ
c ; rðs�1Þ; zðsÞ

�
=N

�
m+

c ; m
ðs�1Þ
c +

1

2
e2mG

�1
�
mðs�1Þ

c

� v

vmc

L�mðs�1Þ
c

�
; e2mG

�1
�
mðs�1Þ

c

�	
: (Equation 60)

We gradually increased em from 0.05 to 1 during the burn in period. The log likelihood of mc plus log prior is the sum of the likeli-

hoods of the step time zi for each trial with coherence c

LðmcÞ=
X

i˛ci = c

log p
�
zi j r;mci

�
+ log pðmcÞ (Equation 61)
X 
 � 	

=

i˛ci = c

zi log
mci

mci + r
+ r log

�
r

mci + r

	�
+ log pðmcÞ+ const: (Equation 62)

The derivative of the log likelihood of mc plus log prior with respect to mc is

v

vmc

LðmcÞ=
X

i˛ci = c

"
zi

r

mci

�
mci + r

�� r

mci + r

#
+

v

vmc

log pðmcÞ: (Equation 63)

The Fisher information plus the Hessian of the log prior is

GðmcÞ = � Ez jmc ;r



v2

vm2
c

LðmcÞ
�
= � v2

vm2
c

log pðmcÞ+
X

i˛ci = c

"
r

mci

�
mci + r

�# (Equation 64)

where we have used Ezi jmci
;r½zi� = mci.

The proposal distribution for r is

q
�
r+
�� rðs�1Þ;mðsÞ

1:C; z
ðsÞ
�
=N

�
r+; rðs�1Þ +

1

2
e2

v

vr
L�rðs�1Þ�; e2	 (Equation 65)

and the log likelihood of r plus log prior is a sum over all trials

LðrÞ=
XN
i = 1



logGðzi + rÞ � logGðrÞ+ zi log

�
mci

mci + r

	
+ r log

�
r

mci + r

	�
+ log pðrÞ+ const: (Equation 66)

The derivative of the log likelihood plus log prior with respect to r is

v

vr
LðrÞ = v

vr
log pðrÞ+

XN
i = 1



jðzi + rÞ � jðrÞ � zi

mci + r
+ log

�
r

mci + r

	
+

mci

mci + r

�
(Equation 67)

where c is the digamma function jðrÞ = G0ðrÞ=GðrÞ. The step size ewas initialized to 0.075 and was adjusted throughout the burn in

period, after which it was fixed.

Shared latent models
The latent dynamical structure of the shared latent stepping and ramping models are identical to the single-neuron models; these

models were only modified to have multiple output parameters mapping from the shared latents to the firing rate for each neuron.

In the rampingmodels, neurons shared the latent ramping trajectories but each neuron had different scale parameters g and baseline

rates b (if included in themodels). In the stepping model, each neuron shared the same step time and direction but had different firing

rates for the different states (per-neuron a0:2 parameters). All shared latent models also included per-neuron spike-history filters.

We fit the models using the MCMC algorithms described in the previous sections, with two extensions. First, when sampling the

latent ramping trajectory or latent step time and direction for each trial, we conditioned on the observed spikes of each of the neurons

being fitted instead of only one neuron. Second, we sampled the per-neuron firing rate and spike-history parameters for each neuron

sequentially using the same steps as described above, as the firing rate parameters for different neurons are independent when con-

ditioning on the latent variables.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model Comparison: WAIC
Weused theWAIC to compare themodels (Watanabe, 2010; Gelman et al., 2014; Vehtari et al., 2017; Piironen and Vehtari, 2017). The

WAIC estimates the expected generalization of a fit model to new data from the true data generating distribution. This corresponds to
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an estimate of howwell themodel would predict spike trains recorded on new trials. As generally the experimenter neither has access

to unlimited data nor the true data generating distribution, the WAIC and other information criterion methods estimate the expected

generalization using how well the model describes the in-sample data with a correction factor.

The WAIC is a function of the probability of the data given each posterior sample, fpðyi jQsÞgs= 1:S, for each trial i. We used the

formula in (Gelman et al., 2014) to compute the WAIC across N trials as

WAIC = � 2

0
BBBBBB@
XN
i = 1

log

 
1

S

XS
s= 1

pðyi jQsÞ
!

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lppd

�
XN
i = 1

Var½log pðyi jQÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pWAIC

1
CCCCCCA: (Equation 68)

The first term is the log pointwise predictive density (lppd) and it describes howwell themodel predicts the data to which it was fit. A

strength of the WAIC is the lppd averages over the posterior rather than conditioning on a point estimate of the parameters. The sec-

ond term pWAIC is a penalty that corrects the bias induced by estimating the expected generalization to new data from the lppd. The

penalty term pWAIC is computed for each trial as the variance of the log likelihoods of a trial across the posterior samples fQsgs=1:S,

and therefore is guaranteed to be non-negative because it is a sum of variances, another strength of the WAIC (Gelman et al., 2014).

Additional advantages of the WAIC are theoretical results showing its asymptotic equivalence to Bayesian leave-one-out cross-vali-

dation, its applicability to singular statistical models, and its computational efficiency when compared to leave-one-out cross-vali-

dation (Watanabe, 2010; Gelman et al., 2014; Piironen and Vehtari, 2017). For all of these reasons we used it to compare the relative

fits of the models.

In model comparison, we computed the WAIC difference between two models

DWAIC = WAICmodel 1 �WAICmodel 2: (Equation 69)

Since lower WAIC values are better, a positive difference favors model two while a negative difference favors model one. In some

cases, we normalized theWAIC by the number of trials to put comparisons with differing numbers of trials on the same scale. We also

considered the WAIC difference on subsets of trials by only summing across trials of certain conditions. We set the stepping model

with spike history as model 2 in model comparison with other models. Therefore, positive WAIC differences favor the stepping with

spike history model over the alternative model in these comparisons.

We quantified uncertainty in the model comparison using standard errors of the WAIC differences across trials

seðDWAICÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N VarðDWAICiÞ

p
(Equation 70)

where DWAICi is the WAIC difference computed for trial i.

Simulated Data
We computed simulated latent trajectories and PSTHs from a fit model using the following procedure. For 40 random samples from

the posterior over the parameters, we simulated a spike train for each trial conditioned on the pre-trial spiking activity and parameters

of the model. For a few cells, simulated spike trains from the models with spike history generated unrealistically large numbers of

spikes due to self-excitation. We enforced realistic spike trains in these cases by setting the multiplicative history gain to unitary

whenever the generated spike history effect was larger than the largest inferred history gain in the data. The largest inferred history

gain was calculated as the maximum history gain across all time points and trials, conditioned on a set of history weights and the

observed spike trains. We averaged the simulated spike trains corresponding to each coherence to compute the coherence-depen-

dent simulated PSTHs. We computed the variance of the spike counts in each time bin across simulated trials of the same coherence

to compute the simulated spike-count variances (PSTV) for each cell.

We computed the autocorrelation of the observed and simulated data for each neuron with the normalized autocorrelation function

RðtÞ = 1

m

 
1

Nt

X
t

ytyt�t

!
�m (Equation 71)

where yt is the spike count at time t and m is the mean spike count. The sum was computed over all valid time bins and Nt is the

number of valid time bins.

For computing the fraction at the boundaries in (Figure 6), we used the following criterion. A time point t was classified as at a

boundary if xt%0 or xtR1.

Computing variance explained
We computed the variance explained of the population PSTH and spike-count variance PSTV using the following formula (Latimer

et al., 2015)
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R2 = 1�
X5

c= 1

X50

t = 1
ðMc;t � PSTHc;tÞ2X5

c= 1

X50

t = 1

�
PSTH � PSTHc;t

�2 (Equation 72)

where Mc;t is the simulated population PSTH for coherence c at time bin t and PSTH is the average rate across conditions and

time bins

PSTH=
1

5

1

50

X5
c= 1

X50
t = 1

PSTHc;t: (Equation 73)

Here, t = 1 corresponds to 205ms after motion onset and each time bin is 10ms. For this analysis, we used a sliding boxcar window

of 50 ms to compute the PSTH and PSTV for each cell before averaging across cells to compute the population PSTH and PSTV.

DATA AND SOFTWARE AVAILABILITY

Custom model-fitting code will be made available online at http://pillowlab.princeton.edu/code.html. Code for further analyses and

data are available from the authors upon request.
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