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Yates JL, Katz LN, Levi AJ, Pillow JW, Huk AC. A simple
linear readout of MT supports motion direction-discrimination per-
formance. J Neurophysiol 123: 682–694, 2020. First published De-
cember 18, 2019; doi:10.1152/jn.00117.2019.—Motion discrimina-
tion is a well-established model system for investigating how sensory
signals are used to form perceptual decisions. Classic studies relating
single-neuron activity in the middle temporal area (MT) to perceptual
decisions have suggested that a simple linear readout could underlie
motion discrimination behavior. A theoretically optimal readout, in
contrast, would take into account the correlations between neurons
and the sensitivity of individual neurons at each time point. However,
it remains unknown how sophisticated the readout needs to be to
support actual motion-discrimination behavior or to approach optimal
performance. In this study, we evaluated the performance of various
neurally plausible decoders, trained to discriminate motion direction
from small ensembles of simultaneously recorded MT neurons. We
found that decoding the stimulus without knowledge of the interneu-
ronal correlations was sufficient to match an optimal (correlation
aware) decoder. Additionally, a decoder could match the psychophys-
ical performance of the animals with flat integration of up to half the
stimulus and inherited temporal dynamics from the time-varying MT
responses. These results demonstrate that simple, linear decoders
operating on small ensembles of neurons can match both psychophys-
ical performance and optimal sensitivity without taking correlations
into account and that such simple read-out mechanisms can exhibit
complex temporal properties inherited from the sensory dynamics
themselves.

NEW & NOTEWORTHY Motion perception depends on the ability
to decode the activity of neurons in the middle temporal area.
Theoretically optimal decoding requires knowledge of the sensitivity
of neurons and interneuronal correlations. We report that a simple
correlation-blind decoder performs as well as the optimal decoder for
coarse motion discrimination. Additionally, the decoder could match
the psychophysical performance with moderate temporal integration
and dynamics inherited from sensory responses.

MT; perceptual decision making; population coding; visual motion

INTRODUCTION

To make a decision about the direction of visual motion, a
primate observer likely integrates over large populations of
weakly correlated middle temporal area (MT) neurons (Cohen
and Newsome 2009; Shadlen et al. 1996). Such pooling over
neurons can be described in current parlance in terms of a
linear decoder (Haefner et al. 2013; Moreno-Bote et al. 2014).
In this simple read-out mechanism, the sign of the weights of
the decoder indicates a neuron’s membership to a pool and the
magnitude of the weight indicates each neuron’s contribution
to its respective pool and, ultimately, the decision. This
weighted sum of neural activity produces a univariate “deci-
sion variable,” which can then be compared with a threshold to
generate an estimate of the stimulus class (in this case, one of
two diametrically opposite directions of motion).

In theory, the amount an individual neuron should contribute
to a perceptual decision depends on how much information it
carries (i.e., its sensitivity) and its correlation with other
neurons (Moreno-Bote et al. 2014). Additionally, the correla-
tions between neurons may themselves contain information
about the stimulus that is not present in the rates alone (Latham
and Nirenberg 2005). Here, we define ‘the optimal linear
decoder’ to be a logistic regression decoding model fit via
maximum likelihood. This model pools information in a man-
ner that is sensitive to the correlations in multineuron re-
sponses. In contrast, suboptimal decoders that ignore the cor-
relation structure may perform as well as the optimal decoder
while being potentially simpler to implement and likely easier
to learn (Berens et al. 2012). Additional aspects of readout,
such as temporal integration, may also limit (or not limit)
performance on a specific psychophysical task depending on
the temporal structure of the neural responses (Levi et al. 2018;
Osborne et al. 2004). Which aspects of population responses
carry information about the stimulus, and whether that infor-
mation is used by downstream areas, is an unresolved question
in systems neuroscience.

In this study, we assess how simple the readout can be to
match the performance of whole observers and optimal stim-
ulus decoding, in the context of a coarse motion-discrimination
task, similar to that used in the development of classic “read-
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out” schemes (a.k.a., decoders). Prior work evaluating the
responses of pairs of neurons in the middle temporal area (MT)
found that a simple pooling model could account for the
psychophysical sensitivity (Shadlen et al. 1996). Follow-up
work also considered how limited temporal integration might
also be a part of the read-out scheme (Cohen and Newsome
2009). In the present study, we take advantage of newer
methods to record from ensembles of neurons and consider
how activity of up to 21 MT neurons recorded simultaneously
might be read out, either with respect to optimal decoding or to
quantitatively account for the animal’s performance in the task
(Katz et al. 2016; Yates et al. 2017).

Our decoding analyses, applied to simultaneously recorded
MT neurons, revealed that a read-out mechanism did not need
to know the full joint statistics of the population (i.e., interneu-
ronal correlations) to perform as well as an optimal decoder
(i.e., one that was correlation aware). We also found that a
temporally flat decoder could approximate optimal perfor-
mance, even though the MT responses that it integrated evenly
were themselves time varying. Such an architecture could
match the psychophysical performance of the animals using
roughly half of the stimulus duration.

Finally, using a computational model that considers the
effects of shared variability on stimulus encoding (Ecker et al.
2014), we provide a simple scheme that reconciles conflicting
experimental results about the role of neural correlations in
optimal decoding. These analyses highlight the potential role
of anesthesia-induced shared variability in complicating decod-
ing. Taken together, these results show that a relatively simple
linear decoder operating on small populations of MT neurons
exhibits performance that is quasi-optimal, and which is com-
parable to the psychophysical performance of the monkeys, in
terms of both the overall accuracy and the time-varying sen-
sitivity to different stimulus epochs. Thus the simple read-out
schemes posited in earlier work hold up in light of richer
multineuron measurements that are now attainable, despite
observations in such data of large interneuronal correlations
and time-varying sensitivity.

METHODS

Electrophysiological recordings. All surgical and electrophysio-
logical methods have been described previously (Katz et al. 2016;
Yates et al. 2017) and were performed in accordance with US
National Institutes of Health guidelines and the Institutional Animal
Care and Use Committee at The University of Texas at Austin.
Recordings were performed in two rhesus monkeys (Macaca mulatta;
one male, monkey P; one female, monkey N) aged 14 and 10 yr,
weighing 10 and 7.7 kg, respectively. Electrophysiological recordings
were performed using linear electrode arrays (Plexon Uprobe/Vprobe;
spacing 50–150 �m). For data from subject P, offline spike sorting
was performed by hand refinement of a standard clustering algorithm
(Plexon Offline Sorter v3). For data from subject N, spike sorting was
performed offline using custom MATLAB code by fitting a mixture of
Gaussian models to clipped waveforms in a reduced dimensional
space (Ecker et al. 2014). For data from both monkeys, sorting was
refined by maximum a posteriori estimation of a model where the
multielectrode voltage was the linear superposition of Gaussian white
noise and the spike waveforms (Pillow et al. 2008, 2013). Unit
isolation quality was established using waveform signal-to-noise ratio
(SNR) (Kelly et al. 2007) and interspike interval distributions (Hill et
al. 2011). We included both single units and well-defined multiunit
clusters in our analyses (130 units total).

MT was identified physiologically by depth and sulcal anatomy
(using gray/white boundaries) and functionally by receptive field size
and a preponderance of directionally selective neurons. Subject N had
a custom titanium chamber positioned over the right hemisphere (L9,
P2). Subject P had had a Cilux chamber (Crist Instruments) over the
left V1 for a posterior approach to MT (L17, P17). Both approaches
yielded small populations of MT neurons with overlapping spatial
receptive fields. The dorsal approach (subject N) produced more
heterogeneity in direction tuning than the posterior approach (subject
P), presumably because the dorsal penetrations traversed multiple
direction columns, whereas the posterior penetrations crossed cortical
lamina.

During each session, retinotopy and direction selectivity were first
mapped by hand using drifting dot stimuli. Selectivity was then
refined and quantified using a pair of protocols to confirm that all
simultaneously recorded units overlapped with the discrimination
stimulus. For 44 units, we used a dynamic flow field to measure the
direction preference and spatial receptive field (Mineault et al. 2012).
Spatial velocity fields were estimated using the spike-triggered aver-
age velocity at all spatial locations. For 96 MT units, we measured the
tuning function by presenting drifting 100% coherence dots in 12
evenly spaced directions and counting spikes. Tuning was estimated
by least-squares fitting of a von Mises function to the spike rate. We
mapped 23 MT units using both methods, which established a tight
correspondence between the measured direction tuning from both
approaches. The majority of these data have been described in
previous reports (Katz et al. 2016; Yates et al. 2017), with one
additional session that was subsequently collected in monkey N, and
the analyses described in the present report are novel with regard to
other publications.

Stimulus, apparatus, and task. Stimulus, apparatus, and task have
been described in full detail previously (Katz et al. 2016; Yates et al.
2017). Briefly, stimuli were presented using Psychophysics Toolbox
(Brainard 1997) and synchronized with electrophysiology using
PLDAPS (Eastman and Huk 2012). The liquid crystal display had a
resolution of 1,920 � 1,080 pixels and a refresh rate of 60 Hz and was
corrected to have a linear gamma. Monkeys viewed the stimulus from
a distance of 118 cm such that the 55-in. screen subtended 100° of
visual angle.

Monkeys were trained to discriminate the net direction of motion in
a field of flickering and drifting Gabor patches. A trial began with the
appearance of a fixation point. Once the monkey acquired fixation and
held it for 400–1,200 ms (uniform distribution), two targets appeared
and remained visible until the end of the trial. At 200–1,000 ms after
target onset, the motion stimulus appeared, centered at an eccentricity
of 5–7°. The motion stimulus consisted of seven consecutive motion
pulses, each lasting 9 or 10 video frames (150 or 166 ms; pulse
duration did not vary within a session). The strength and direction of
each pulse was varied by changing the proportion of Gabors that were
drifting in a given direction. Monkeys were rewarded for choosing the
target consistent with the sign of the sum of the individual pulses.
Each experimental session presented motion in directions that were
matched with the preferred null axis of the neurons we were recording
from; however, because the Gabors can only drift orthogonally to their
carrier orientation, we refer to that axis as “left” and “right” for
convenience.

Neurophysiological analyses. Population decoding required a suf-
ficient number of simultaneously recorded MT units. We included
sessions for analysis as long as there were five or more MT units with
sensitivity for direction (d-prime) � 0.2. This yielded 12 of 24
possible sessions. Spike times were binned at a 10-ms resolution. For
visualization purposes, the peristimulus time histograms (PSTHs) in
Fig. 2 were smoothed with a 50-ms boxcar filter. The tuning curves in
Fig. 2 were fit with a von Mises function of the form

r��� � a � bexp����cos�� � �pref� � 1��. (1)
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Spike count correlations (Rsc) were computed using the Pearson
correlation coefficient of the stimulus-conditioned spike counts. We
conditioned on the stimulus in two ways and report both. First, we
computed Rsc using trials that were generated with exactly the same
stimulus seed (i.e., frozen noise). Additionally, we computed Rsc by
z-scoring spike counts for each net motion strength and then pooled all
trials before computing the correlation coefficient. This second
method allowed us to directly compare the real data correlations with
shuffled data, both of which include a range of stimulus values.

Population decoder. We evaluated the population-level represen-
tation of motion direction using regularized logistic regression
(Bishop 2006). This decoder is optimal in a maximum-likelihood
sense for any case where the log-likelihood ratio is a linear function
of the neural responses. This includes Poisson noise and Gaussian
noise with fixed covariance as special cases. The probability that the
direction, y, on any trial, t, was rightward given the decoding weights,
w, and neural response, rt, is

p�yt � right�w, rt� �
1

1 � exp��wTrt�
, (2)

where wTrt is the dot product between a single trial vector of spike
counts (augmented by 1 to capture bias) and the weights. We esti-
mated the weights using L2 regularization via the glmnet toolbox
(Friedman et al. 2010):

ŵ � arg max
w

�
t

�ytw
Trt � ln�1 � exp�wTrt��� � 	��w��22, (3)

where r is a matrix of spike counts on each trial augmented by a
column of 1’s to capture a bias term, w is a vector of weights (one for
each neuron and one for the bias), y is a vector of the direction on each
trial (1 for right, 0 for left). The hyperparameter, 	, dictates how much
regularization is applied to the weights and was chosen using cross-
validation within the training set (Friedman et al. 2010).

The optimal decoder operated on the total spike count of each
simultaneously recorded neuron on each trial in a window from
motion onset to 100 ms after motion offset. We compared the
performance of this decoder with that of a correlation-blind (CB)
decoder that did not have knowledge of the joint spiking statistics of
the population. The CB decoder was estimated by shuffling the trial
identity for each neuron within each condition for the training set. The
CB decoder was then evaluated on data that were not shuffled
(Latham and Nirenberg 2005).

We also tested whether the inclusion of quadratic terms [e.g.,

	r�i�r�j�] improved decoding performance (Fig. 3D). Because the
instantaneous motion energy of our stimulus is known (Yates et al.
2017), we shuffled trials conditioned on the empirical signal strength
of each trial (as opposed to the expected). Our shuffling procedure is
as follows: First, we subdivided trials into conditions based on the net
signal strength (signed number of Gabors) into m conditions, where m
is the number of trials in the data set divided by the number of neurons
recorded. The resulting number of conditions ranged from 16 to 35,
with a median of 21.5 discretized signal strengths. Second, we
shuffled trials within each of these conditions, enforcing that no pairs
had spikes that came from the same trial. To ensure that we preserved
the sensitivity (mean response and variance) of each neuron while
only breaking the correlation structure, we reshuffled trials until there
was no significant change in d-prime for any neuron.

To evaluate the effect of temporal integration on decoding perfor-
mance, we trained the decoder with increasing window size in 10-ms
steps (Fig. 5). To evaluate the instantaneous sensitivity of the popu-
lation over time, we retrained the weights in 10-ms steps, counting
spikes over a sliding 100-ms window (Fig. 6). In each case, we trained
the decoders using the net direction of motion on each trial. To
evaluate the effect of correlations on the instantaneous decoder, we
shuffled spike counts (within the sliding 100-ms window) by condi-
tioning on the exact value of each pulse separately. This procedure

had the effect of shuffling correlations while matching the mean and
variance for a particular pulse. Of course, each individual pulse only
affects spike counts for a small time window (Yates et al. 2017), so we
repeated this shuffling for each pulse separately and then performed
our sliding window decoding analysis. These two steps produced
seven pulse-dependent shuffled-accuracy traces. We stitched the
seven traces together to form a single accuracy trace by extracting the
values from 50 to 200 ms after the onset of each pulse (this window
was selected based on the time-lagged effect of each pulse, estimated
using pulse-triggered reverse correlation; Yates et al. 2017). This
stitched accuracy trace was then directly compared with the instanta-
neous decoder trained on real (unshuffled) data.

To measure the optimal temporal weights (Fig. 6), we trained a
spatiotemporal decoder that had temporal weights for each neuron.
We used 50-ms time bins, which resulted in 25 temporal parameters
for each neuron. We regularized the estimates of the weights by
smoothing in time using a Gaussian prior over w, w �N(0,C), where
C�1 � wTDw and D is a block-diagonal derivative matrix such that
D penalizes the squared difference between parameters over time, but
not across neurons. We estimated 	 using cross-validation within the
training set. We resampled training data sets with replacement 1,000
times and evaluated decoding accuracy on the withheld data for each
sample. We then corrected for any potential overfitting using the
“.632� bootstrap” (Efron and Tibshirani 1997). This method provides
a low variance estimate of the true decoding performance (Yousef et
al. 2004). We generated 95% confidence intervals both for the weights
and accuracy from the bootstrap distribution.

We evaluated the performance of single neurons at different stim-
ulus strengths by evaluating the performance of a linear classifier
trained to discriminate the net direction of the stimulus using only the
spikes from that neuron in the same way that we measured the
population accuracy. This approach diverges from classic estimation
protocols for neurometric functions that typically use the area under
the receiver operating characteristic (ROC) curve to quantify percent
correct (Britten et al. 1992; Uka and DeAngelis 2004). In this task,
which only has one stimulus presentation per trial, the area under the
ROC curve would require the assumption of a hypothetical “anti-
neuron” to be interpreted as the percent correct. This assumption is
problematic for our population recordings, which often include neu-
rons of opposite preferred directions; thus it was unnecessary to
explicitly build in an “anti-population.”

Psychometric/neurometric threshold. To quantify psychophysical
and neuronal thresholds, we fit a cumulative Weibull function to the
accuracy of the monkeys and decoders:

p�correct� � 1 � 0.5exp
�� s


��
, (4)

where s denotes the net motion strength, 
 is the threshold on motion
strength (at the 82% level), and � is the slope of the function. We used
the fitted values of 
 for comparisons of neuronal and psychophysical
threshold. The cumulative Weibull was fit by maximizing the likeli-
hood of individual trials assuming Bernoulli distributed responses. For
the neural decoders, trial responses were stitched together using the
average response for each trial on the bootstrapped test sets.

Psychophysical/decoder kernel. To measure the contribution of
each pulse to the monkey’s choice (or the decoder output) on each
trial, we again used logistic regression. In this case, logistic regression
measures the psychophysical weights of the monkey for each pulse
(Katz et al. 2016; Yates et al. 2017). The probability of the monkey’s
choice on a single trial is given by

p�Y�X, �� �
exp�Yb�

1 � exp�b�
, (5)

where b � �0 � �i�1

7
�iXi and the choice Y � {0,1}. X is a vector of

the seven pulses. This model was fit using glmfit in MATLAB. Error
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bars were derived from the matrix of partial second derivatives (i.e.,
used the square root of the diagonal of the inverse Hessian). This
model is equivalent to the decoding model, except the weights are
over the motion pulses and the decoded value is the monkey’s choice
on each trial. We applied this analysis to the choice output from the
decoder to measure the contribution of each pulse to the decoder
output. This is analogous to the slope of a neurometric function except
expanded over time.

Shared variability simulation. To understand the effects of shared
variability on optimal linear decoding, we simulated neuronal popu-
lations under different amounts of stimulus-driven (i.e., information
limiting; Moreno-Bote et al. 2014) and stimulus-independent shared
noise. Our population model is inspired by the Gaussian-process
factor analysis model used to describe the effects of anesthesia in
Ecker et al. (2014). The response of n neurons on each trial, t, is an
[n � 1] vector of spike counts, y(t), resulting from a Poisson draw
from a vector of spike rates for that trial, r(t):

y�t� � Poisson�r�t��. (6)

Regardless of the number of neurons, the population spike rates are
driven by a mixture of only two scalar variables: the stimulus
value, s(t), and the stimulus-independent latent (e.g., level of
anesthesia), a(t), on each trial. Each neuron’s spike rate is a
weighted sum of these two inputs, which is then passed through a
static nonlinearity:

r�t� � f �AT�s�t� � �, 	a�t�� � b�, (7)

where � is a Gaussian random variable that adds shared noise to the
stimulus representation, � �N(0,
), a(t) is the value of a shared latent
on each trial, and A is a [2 � n] matrix that describes how each neuron
weighs the two latents (a and s). The total magnitude of anesthesia is
multiplied by a scalar, 	. b is an additive offset for each neuron that
scales the baseline firing rate. f is a quadratic nonlinearity, which was
chosen to match the square-root transform applied to the data in Ecker
et al. (2014). Expanding the quadratic reveals an interaction term
between the anesthesia and stimulus latents, indicating that they
interact both additively and multiplicatively to affect firing rates. For
the simulations in Fig. 7, s(t) was drawn randomly from two values
(left or right) with equal probability. a(t) was a Gaussian random
variable with zero mean. a was smoothed with a 100-trial Hanning
window to create slow fluctuations. A was generated from a random
uniform distribution size 2 by N neurons (N � 20 in our simulations
to match population sizes from recent empirical data (Chaplin et al.
2018; Yates et al. 2017)). b was fixed to 1 for all neurons, because our
results are independent of this term. We simulated 10,000 trials of
weak left or right motion and generated spike counts for populations
with different levels of shared stimulus noise (�) and stimulus-
independent noise (	). We then performed our primary decoding
analysis (train on real vs. train on shuffled, test on real) on these
simulated populations. We chose this model to simulate the effects of
anesthesia because it has been successful at describing the effects of
anesthesia in primary visual cortex with a single latent (Ecker et al.
2014) and because it allows us to directly parameterize information-
limiting noise along a single stimulus latent.

RESULTS

We measured the activity of up to 21 simultaneously-
recorded MT neurons (median � 10) while monkeys per-
formed a motion-discrimination task (Fig. 1A). On each trial,
the monkey indicated his or her choice about the net direction
of motion with an eye movement to one of two targets (Katz et
al. 2016; Yates et al. 2017). The units composing our popula-
tion exhibited responses during motion that are strongly de-
pendent on the net motion strength (Fig. 1B) and which closely
resemble the responses to low-coherence moving dots reported

previously (Britten et al. 1993). The sensitivity of neurons with
responses like these have been studied extensively in single-
unit or cell pair recordings during a similar motion-discrimi-
nation paradigm (Bair et al. 2001; Britten et al. 1992; Cohen
and Newsome 2009; Zohary et al. 1994).

A large proportion of MT neurons are directionally selective
when recorded with single electrodes (Albright 1984), and we
found a similar preponderance of directionally selective cells in
our array recordings. Figure 2A shows the responses of 16
simultaneously recorded neurons to different directions of
motion. These cells were also responsive in a direction-selec-
tive manner during the motion-discrimination task (Fig. 2B).
We used a generic population decoding approach (Berens et al.
2012; Georgopoulos et al. 1986) to study the representation of
motion in the joint activity patterns of simultaneously recorded
units. The logistic regression decoder we employed takes a
weighted sum of spike counts and passes that through a
sigmoid function to get the probability of a rightward direction
for each trial (Fig. 1C). The monkey’s task can be thought of
in the same classification framework (Bishop 2006): given the
noisy response of MT neurons, which of the two possible task
classes was most likely (e.g., left or right)? Figure 1D depicts
the conceptual framework.

A simple, correlation-blind, linear decoder performs as well
as the optimal decoder. Before evaluating whether a neural
readout could gain information from the correlation structure,
we first established that interneuronal correlations were present
in our data set. We analyzed 579 cell pairs from the 12 sessions
and found that spike count correlations calculated on frozen
noise trials were mostly positive (Fig. 3A), with the mean
correlation significantly larger than zero (r � 0.098; P �
0.001, t test). In theory, optimal linear decoding requires
knowledge of the covariance of neurons; however, it is possi-
ble that the accuracy of a decoder would be insensitive to
suboptimal weighting (Berens et al. 2012).

To investigate whether knowledge of the full joint statistics
of the population is required to maximize accuracy, we com-
pared a decoder trained on the real data with one that was
trained on shuffled data. Shuffling the trials of each neuron
within each stimulus condition has the effect of breaking the
covariance structure of the simultaneously recorded neural
ensemble (Graf et al. 2011). We shuffled trial identities for
each neuron within each motion strength. We confirmed that
mean spike count correlations for shuffled data were not statisti-
cally different from zero [mean shuffled Rsc � �0.001 	 0.0017,
P � 0.65414, signed rank (579) � 130,854], whereas within-
condition correlations on real data were indistinguishable from
those of frozen trials [mean Rsc � 0.094 	 0.0053, P � 0.1713,
paired signed rank (579) � 89,464]. Figure 3B shows the rela-
tionship between tuning preference similarity and spike count
correlations for our data and the same analysis after shuffling.

Figure 3C shows the decoder weights trained on shuffled
data compared with the weights trained on real data. The
difference in learned weight patterns for the full decoder and
the correlation-blind (CB) decoder were subtle, and the decod-
ers agreed on 95.5 	 0.81% of trials. These subtle differences
were not sufficient to produce a meaningful difference in
direction discrimination (decoding) accuracy. Figure 3D shows
the performance of the shuffled decoder compared with the
optimal decoder. The accuracy of the shuffled decoder was not
significantly different from that of the optimal decoder [geo-
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metric mean ratio: 1.0041 	 0.0041, signed rank(11) � 18,
P � 0.109] and did not differ on any individual session. We
also compared the optimal linear decoder to one with quadratic
terms and found that accounting for pairwise interactions
between neurons did not improve performance (Fig. 3E). We
confirmed this similarity in performance between the optimal
linear decoder and the CB decoder was not a product of
regularization by investigating the hyperparameters from our
fits. Cross-validated 	 values for the two models were small
(0.0868 [0.026,1.479] and 0.157 [0.029,2.292] for optimal and
CB, respectively; brackets indicate 95% confidence intervals)
and not significantly different from each other (P � 0.344,
bootstrapped t test).

With the assumption that the monkey uses one set of pooling
weights for all signal strengths, the above analyses indicate that
correlation-blind decoding is indistinguishable from optimal
decoding in this task. However, it is possible that using
different decoders at each signal strength could produce better
performance than a single global decoder. To test this, we
trained and tested separate decoders at five quantiles of the net
motion strength. We then evaluated that a correlation-blind
decoder performed the same as the optimal decoder at all stimulus
strengths. The geometric mean ratio of the optimal decoder to the
shuffled decoder was 1.008 	 0.2, 1.005 	 0.15, 1.01 	 0.017,
1.003 	 0.006, and 1.008 	 0.0049 for each of the five motion
strengths tested, from weak to strong, respectively. Across ses-

sions, the optimal decoder performed significantly better at the
strongest signal value [P � 0.0005, signed rank(11) � 78]; how-
ever, the other signal strengths showed no significant differences
[P � 0.677, signed rank(11) � 45; P � 0.791, signed
rank(11) � 43; P � 0.233, signed rank(11) � 55; P � 0.129,
signed rank(11) � 59]. Additionally, for individual sessions, the
optimal decoder was never outside the 95% confidence intervals
of the CB decoder for any stimulus value. There was a weak
but significant dependence of the optimal-to-blind accuracy
ratio on the number of neurons [linear model
�1 � 0.0022 	 0.0007, t(58) � 3, P � 0.00389], suggesting
that if we were to record from more neurons, it is possible
that we would see some dependence on correlations for
these local (stimulus dependent) decoders. We then com-
pared the performance of multiple stimulus-dependent de-
coders with that of a single, global decoder. To summarize
performance across signal strengths, we fit a cumulative
Weibull function to the trial-by-trial performance and esti-
mated the threshold. We compared the threshold stimulus
for the global decoder with the threshold for the local
decoders. The thresholds were not significantly different
[geometric mean ratio: 1.025 	 0.08, t(11) � 0.865, P �
0.405, 2-sided t test]. This was true for a correlation-blind
global decoder, as well [geometric mean ratio: 0.97 	 0.1,
t(11) � 0.4173, P � 0.685]. This indicates that a single set
of pooling weights performs indistinguishably from multiple
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stimulus-dependent decoders and that the global decoder can
ignore neural correlations. Having established that the decod-
ers we evaluated could effectively be insensitive to the joint
firing patterns of MT neurons despite conventional levels of
interneuronal correlation, we compared the performance of the
optimal linear decoder with the sensitivity of single neurons
and the psychophysical sensitivity of the monkeys.

Comparison of psychophysical and neurometric performance.
We compared the performance of the optimal linear decoder to
the monkey’s accuracy on each session. We did so in two
ways: by comparing total accuracy and by comparing thresh-
olds inferred by fitting the decoder output (on test data) with
psychometric functions. The first is a measure of total perfor-
mance, and the second reveals sensitivity to the stimulus.
Figure 4A shows the approach for an example session. Across
all sessions, the population decoder performance unsurpris-
ingly depended on the performance of the best single neuron

(linear model: �1 � 1.08 	 0.18, t � 5.9024, P � 0.0002), but
the population consistently outperformed the best single neu-
ron (Fig. 4B). The best single neuron provides a lower bound
on the performance of a neural population decoder, and our
results show that adding other neurons provides additional
information.

To establish a baseline for the range of sensitivities sup-
ported by the units in our data set, we compared the total
accuracy of each unit to the monkey’s behavior (Fig. 4C). We
also compared the ratio of the neurometric and psychometric
thresholds (Fig. 4D). Forty-five of 130 neurons had neuro-
metric-to-psychometric ratios � 10 and were excluded. The
geometric mean of the neurometric-to-psychometric ratio
for the remaining neurons was significantly greater than 1
[2.6608 	 0.36, t(83) � 10.2636, P � 1.971 � 10�16], indi-
cating that the monkey performed better than the individual
units, on average (even after exclusion of the worst-performing
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neurons, as described above). However, across sessions, the
threshold of the population decoder was not significantly dif-
ferent from the monkey’s performance [geometric mean ratio
of accuracy � 1.043 	 0.30, P � 0.677, signed rank(11) �
45.00, 2-sided Wilcoxon signed-rank test]. This was true of the
total accuracy, as well. The population accuracy was
0.99 	 0.04% of the monkey’s performance, on average. On
4/12 sessions, the population significantly outperformed the
monkey. On 3/12 sessions, the monkey significantly outper-
formed the neural population. These results support the insight
that although single units in our data set were not sufficiently
sensitive to support the psychophysical accuracy, small ensem-
bles of neurons could surpass the accuracy level of the
monkey.

One possible explanation for the neural decoders outper-
forming psychophysical accuracy is that the monkeys did not
use all of the stimulus to inform their choices (Cohen and
Newsome 2009; Kiani et al. 2008; Mazurek et al. 2003). Given
that possibility, we next evaluated the temporal integration

required to support the psychophysical behavior of the
monkey.

Consequences of temporal dynamics in MT for decoding
performance. Previous studies have demonstrated that primate
observers likely do not use the full time the stimulus is
available to make up their mind (Cohen and Newsome 2009;
Kiani et al. 2008; Mazurek et al. 2003). Because the decoders
we evaluated thus far have all used the entire motion epoch, it
is possible that the ability of a neural decoder to outperform the
monkey is due to suboptimal temporal integration by the
monkey (Cohen and Newsome 2009). However, in a parallel to
interneuronal correlations, the presence of temporal autocorre-
lation can limit benefits of integration, meaning that perfor-
mance saturates with time (Goris et al. 2018; Osborne et al.
2004). As such, we evaluated the amount of integration time
required to maximize performance and compared that to the
monkey’s performance.

We evaluated the performance of an optimal decoder on a
cumulative window from motion onset until 100 ms after
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motion offset (Fig. 5A). The decoder showed diminishing
returns for integration, saturating as early as 225 ms into
motion with a mean saturation time of 610 	 62 ms
(mean 	 SE). We then compared the cumulative decoder to the
psychophysical performance and found, on average, 548 	 94
ms were required to match the monkey’s performance, similar
to the typical average reaction time of monkeys performing a
similar motion-discrimination task (Cohen and Newsome
2009; Huk and Shadlen 2005; Kiani et al. 2008). Because our
stimulus has independent motion pulses, we were able to
characterize the pulses that contribute most to behavior, which
has been used in the past to constrain the temporal integration

of the animal during fixed duration tasks such as ours (Kiani et
al. 2008). Use of logistic regression to measure the psycho-
physical kernel revealed the monkeys used motion early in the
trial most to guide their choice (Fig. 5B), consistent with many
prior measurements of monkey behavior (Kiani et al. 2008;
Nienborg and Cumming 2009; Yates et al. 2017). We then ran
the same analysis on choices generated by the optimal neural
decoder that perfectly integrated MT (Fig. 5B). Although
perfect integration of MT might be expected to produce flat
psychophysical weighting, this decoder’s kernel exhibited sub-
stantial early weighting. This happens because MT activity has
effectively reweighted the stimulus, producing at least some of
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the time-varying weight pattern of the psychophysical kernel
(Yates et al. 2017).

Temporal sensitivity to motion. We reported previously that
direction selectivity in MT decays throughout motion viewing
(Yates et al. 2017), and in the present study we showed that
perfectly integrating real MT neurons produces early weight-
ing. To further explore early weighting in MT, we evaluated
the temporal information available in the population by decod-
ing from the instantaneous spike rate in a 100-ms sliding
window. We performed this analysis using a fixed set of
weights trained on the trial spike count and using weights that
were retrained in each time bin. We additionally confirmed the
results of our shuffling analysis at this finer temporal resolution
using a decoder that was trained on spikes that were shuffled by
the value of each pulse independently. Shuffling each pulse
produced seven accuracy traces, which we stitched together
after accounting for the time lags affected by each pulse (see
METHODS). Figure 6A shows the stitched shuffled accuracy
compared with the instantaneous decoder as well as the fixed
decoder. Even at a fine temporal resolution, the correlation-
blind decoder performed indistinguishably from the optimal
decoder. The geometric mean ratio of accuracy was 0.993 	
0.002, and across sessions there was no significant difference
[P � 0.85775, t(1,715) � �0.17927, t test, tested on all time
points from all sessions]. The fixed decoder showed similar
temporal fluctuations to the instantaneous decoder (Fig. 6A),
and the fixed weights performed almost as well as the instan-
taneous weights (97 	 0.2% of fixed). This similarity was due
to the stability of the representation of direction in MT across
time. Regardless of when we trained a decoder (as long as it
was during motion), the performance across time was roughly
the same (Fig. 6B).

The instantaneous decoding analysis revealed that the pop-
ulation appeared most sensitive immediately following motion
onset (Fig. 6, A and B). This is not due to the stimulus itself,

which was equally informative about the net direction over
time, but rather reflects the dynamics of the representation in
MT. Across our sessions, the peak performance was reached,
on average, 285 ms after motion onset, and all sessions reached
peak performance within the first 500 ms (Fig. 6C). To assess
the relative sensitivity of motion early in the trial compared
with late in the trial, we evaluated the cross-validated accuracy
of a decoder trained on the first half of motion and compared
it with one trained on the second half. Figure 6D shows that in
almost all sessions (10/12), responses from the first half of
motion viewing were significantly more sensitive to the net
direction than responses from the second half.

We wondered whether this change in sensitivity would make
early-stopping or overweighting spikes early in the stimulus
epoch optimal based solely on the sensitivity of the population.
To test this, we trained a decoder with temporal weights for
each neuron. If the pattern of weights decreased over time, we
would conclude that the optimal weighting pattern to read out
the population was early weighting. In contrast to this, the
temporal weights were largely flat, suggesting the optimal
weight pattern for decoding direction is to integrate all time
with roughly equal weight (Fig. 6E).

Shared variability explains when correlation-blind decoding
is optimal. To date, at least three other empirical studies have
asked whether correlation-blind decoding is optimal for corti-
cal neural populations (Berens et al. 2012; Chaplin et al. 2018;
Graf et al. 2011). To our knowledge, both studies performed
with anesthetized animals found that correlation-blind decod-
ing is not optimal (Chaplin et al. 2018; Graf et al. 2011),
whereas both studies of awake animals (including this study)
found that correlation blind decoding is effectively optimal.

To understand the potential effects of anesthesia on the
optimal decoding weights, we extended a model from Ecker et
al. (2014) to simulate the effects of anesthesia on shared
variability. We then ran our primary decoding analyses on the
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simulated data. Figure 7A shows the shared variability model
for our simulations. The population response on any trial is an
N-dimensional vector, where N is the number of neurons. The
firing rate of each neuron is a weighted combination of two
latent variables: stimulus and anesthesia. Regardless of the
number of neurons in the population, only mixtures of these
two latent variables (and independent Poisson noise) contribute
to their responses. Thus different values of the stimulus will
drive the entire population along a one-dimensional vector
embedded in the high-dimensional population space. We refer
to this vector as the “stimulus axis.” Similarly, the level of
anesthesia drives the population response along a one-dimen-
sional “anesthesia axis.” As a result of this formulation, we can
add noise (variability) to the latent value of the stimulus or
anesthesia independently. However, because of the quadratic
nonlinearity, f(x), anesthesia can both add and act as a gain on
the stimulus-driven response of a neuron. Importantly, only
noise along the stimulus axis limits performance of the de-
coder. Noise added to the stimulus latent (i.e., adding variabil-
ity along the stimulus axis) will be indistinguishable from the
stimulus itself. Therefore, additional variability along the stim-
ulus axis cannot be accounted for by the optimal linear decoder
and will impair its performance (Kanitscheider et al. 2015;
Moreno-Bote et al. 2014). This has the additional effect that the
decoder can ignore this correlation structure because it cannot
be separated from signal (Pitkow et al. 2015).

To illustrate this point, we visualized how variability along
the stimulus and anesthesia axes affects the optimal decoding
weights for a population of only two neurons. Figure 7B shows
an example case where variability induced by anesthesia
changes the optimal decoder. The joint responses for two
neurons are shown for two stimuli and two levels of anesthesia.
In this example, neuron 2 is selective for the stimulus, whereas
neuron 1 is not (the stimulus axis is parallel to the firing rate
axis for neuron 2). Without anesthesia, the optimal decoder
would weigh neuron 2 and ignore neuron 1. The addition of
anesthesia [f(a)] induces variability that drives both neuron 1
and neuron 2 to fire together, which increases the total
variability and adds positive noise correlation. Because this
variability is independent of the stimulus axis and drives both
neurons, the optimal decoding weights can account for its
influence on neuron 2 by looking at neuron 1. Thus the optimal
decoder now includes a weight for neuron 1, even though alone
that neuron carries no information about the stimulus. In this
way anesthesia-induced covariance can shift the optimal de-
coder. In contrast, if anesthesia (or any other source of vari-
ability) is orthogonal to the stimulus axis (Fig. 7C), the optimal
decoder does not shift because there is no way to discriminate
anesthesia effects from the stimulus.

We explored the effects of these two sources of variability
for a population of 20 simulated neurons (population size
picked to match published data sets). The purpose of this
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exercise was to explore whether the simple intuition presented
in Fig. 7, B and C, can explain the discrepancy in results
between anesthetized and awake monkeys for realistic empir-
ical populations. We built in an assumption that anesthesia
affects all neurons to different degrees, but with the same sign,
as was true of most neurons in Ecker et al. (2014). This means
their spike rates move up and down together (i.e., anesthesia
induces positive noise correlations). Figure 7D demonstrates
how spike count correlations (Rsc) depend on additional vari-
ability along the stimulus and/or anesthesia axis. More of either
source of variability increases the average Rsc in the popula-
tion. The dashed white lines show the range of noise correla-
tions that are consistent with our data set. Of course, because
our monkeys were awake and behaving, the anesthesia axis is
really any stimulus-independent shared variability. The range
indicates that the observed noise correlations in our data are
consistent with a range of stimulus-axis noise and anesthesia-
axis noise. We then ran our decoding analysis on the simulated
population responses for each of these variability levels. We
trained both optimal and correlation-blind decoders on the
stimulated responses. Both decoders were tested on the same
trials and only differed by whether the training set was shuffled
or not. Figure 7E shows the performance of the optimal
decoder depends heavily on the amount of stimulus noise and
a small amount on the level of anesthesia. In contrast, the
performance of the correlation-blind decoder depends much
more on the amount of anesthesia (Fig. 7F) because it does not
account for the covariance induced by anesthesia. Taking the
ratio of these two decoders shows that they only perform
differently when the variability from anesthesia is greater than
the stimulus-dependent variability (Fig. 7G). In other words, if
information-limiting correlations are present at a greater level
than stimulus-independent shared variability, correlation-blind
decoding is effectively optimal. A similar result has been
described analytically (Pitkow et al. 2015), but our simulations
exhibit the exact pattern of results observed in existing data
sets, reconciling the different conclusions.

DISCUSSION

We analyzed the performance of a simple read-out scheme
(i.e., a population decoder) that relied on the activity of an
ensemble of MT neurons to perform a direction discrimination
task. We found that reading out direction from the multineuron
MT response was quantitatively unaffected by whether or not
the decoder was trained with the use of data that preserved or
removed the correlations between neurons. This suggests that
the brain mechanisms for performing direction discrimination
can be relatively simple, i.e., without access to estimates of the
interneuronal correlation structure.

Several previous studies have focused on whether decoding
performance is limited by correlations (MorenoBote et al.
2014; Pitkow et al. 2015; Zohary et al. 1994) or improved
(Franke et al. 2016; Zavitz et al. 2019; Zylberberg 2017;
Zylberberg et al. 2016). Our findings do not conflict with that
foundational point. The decoder is not improved by being
“correlation aware,” but the performance of increasingly large
populations would be bounded if the population covariance
contained information-limiting structure (Moreno-Bote et al.
2014). In contrast, the question we addressed in the present
study is whether there was extra information to be gleaned in

the joint responses of neurons. Although we did not find
evidence for this in our analyses, it is entirely possible that
sensitivity of the correlation structure could be useful in other
tasks or decoding exercises.

In addition, we found that a population decoder with simple
temporal properties could also approximate both optimal de-
coding and the performance of the observers. Moderate tem-
poral integration was sufficient to account for the perceptual
sensitivity of the monkeys, even though the activity of single
units was not. This core finding thus generalizes earlier work
that had related motion discrimination performance to the
activity of single neurons (Britten et al. 1992; Parker and
Newsome 1998). That prior work generally found that the
activity of individual neurons was close to perceptual sensitiv-
ity, although it considered only well-targeted neurons for
whom the stimulus was optimized (Cohen and Newsome
2009). In contrast, we considered larger samples of neurons, all
of which were driven selectively, but often suboptimally, by
the stimulus (because, of course, a single stimulus could not be
perfectly suited to the selectivities of all individual neurons).

We have previously reported a decrease in direction selec-
tivity throughout motion viewing (Yates et al. 2017), and our
present decoding analyses confirm a corresponding population-
level increase in sensitivity early in motion viewing, which
may be boosted by a variance quenching immediately follow-
ing the stimulus onset (Churchland et al. 2010). Thus even a
simple (i.e., temporally stationary) decoder exhibited better
performance early in trials compared with late, but this was
inherited simply from the time-varying sensitivity of the neu-
rons. Although our observation of increased sensitivity early in
motion viewing may provide additional motivation for decision
processes that preferentially weigh early parts of the stimulus
(e.g., Drugowitsch et al. 2012; Mazurek et al. 2003), we found
that the accuracy of optimal temporal integration was only
modestly different from that of a simpler, temporally stationary
decoder. Thus it seems reasonable to conclude that the brain
can implement temporally flat decoding, because it is not far
from optimal in this task. This temporally flat scheme still
exhibits the time-varying signature of the MT responses evi-
dent in its output, at the level of psychophysical behavior.

Prior work on MT during direction discrimination has fa-
mously focused on the relation between MT responses and
choices (Britten et al. 1996; Cohen and Newsome 2009;
Haefner et al. 2013; Shadlen et al. 1996). Although an analo-
gous set of decoding exercises similar to what we have per-
formed for stimulus direction could be performed to “decode”
choice, there are a number of reasons why we have eschewed
that exercise in the present study. First, our primary goal was
to assess how simple decoders might approximate optimal
performance, a concept that is not applicable to the prediction
of choice from neural responses. Second, since the publication
of the original reports of choice-correlated fluctuations of MT
response, a number of alternative interpretations of this relation
have been put forth (Bondy et al. 2018; Lange and Haefner
2017; Nienborg and Cumming 2009). Likewise, the mathemat-
ical frameworks for relating the activity of neural ensembles to
choices have become increasingly sophisticated (Panzeri et al.
2017). Both of these issues point to the use of a variety of
distinct analyses that are not as simple as linear readout of the
responses of MT, and which even question the assumption that
the choice-correlated components of MT responses are reflec-
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tions of a feedforward read-out scheme. For these reasons, the
value of multineuron recordings for understanding the relation
between MT and choices will need to be addressed in a
separate report.

In contrast to our findings, prior work in anesthetized mon-
keys has found that knowledge of the correlation structure was
necessary to optimally decode orientation from V1 (Graf et al.
2011) and direction from MT (Chaplin et al. 2018). In the
present work, we put forth one explanation for this difference
in results, demonstrating that shared covariance can render
correlation-blind decoding effectively optimal. Specifically,
we show that correlation-blind decoding matches the perfor-
mance of an optimal decoder when information-limiting cor-
relations are substantial. If, on the other hand, anesthesia
induces covariance that is not information limiting, an optimal
(correlation aware) decoder can outperform a simpler decoder
by discounting these effects.

There are of course limitations to our approach. Previous
studies have modeled the effects of anesthesia explicitly with
shared gain (Ecker et al. 2014; Goris et al. 2014), we instead
used a latent variable model. This offered the advantage of
explicitly modeling the dimensionality of the stimulus encod-
ing, but additive and multiplicative effects are entangled in this
formulation. Although the intuitions from our model are likely
to be general, more detailed characterizations of the effects of
anesthesia will surely alter matters quantitatively. Future stud-
ies using recent methods to recover such latent variables from
data will undoubtedly be useful for addressing questions about
how neural variability contributes to perceptual decisions
(Zhao and Park 2017).

Taken together, these results apply richer multineuron data
to bolster the theoretical framework for reading out direction
from MT that was developed in the context of single-neuron
recordings. The seminal preceding studies were critical for
developing a quantitative framework and considering the im-
pacts of statistical structure and read-out schemes. Our popu-
lation decoding exercises reinforce this framework by consid-
ering simultaneous measurements of multiple neurons and
confirm the basic idea that simple readout of MT for estimating
coarse direction is quantitatively near optimal and accounts for
various aspects of psychophysical sensitivity. It remains to be
seen if simple schemes for readout generalize to other stimulus
features and tasks, even within MT (Purushothaman and Brad-
ley 2005).
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