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Abstract

A major difficulty in studying the neural mechanisms underlying olfactory percep-
tion is the lack of obvious structure in the relationship between odorants and the
neural activity patterns they elicit. Here we use odor-evoked responses in piriform
cortex to identify a latent manifold specifying latent distance relationships between
olfactory stimuli. Our approach is based on the Gaussian process latent variable
model, and seeks to map odorants to points in a low-dimensional embedding space,
where distances between points in the embedding space relate to the similarity of
population responses they elicit. The model is specified by an explicit continuous
mapping from a latent embedding space to the space of high-dimensional neural
population firing rates via nonlinear tuning curves, each parametrized by a Gaus-
sian process. Population responses are then generated by the addition of correlated,
odor-dependent Gaussian noise. We fit this model to large-scale calcium fluores-
cence imaging measurements of population activity in layers 2 and 3 of mouse
piriform cortex following the presentation of a diverse set of odorants. The model
identifies a low-dimensional embedding of each odor, and a smooth tuning curve
over the latent embedding space that accurately captures each neuron’s response to
different odorants. The model captures both signal and noise correlations across
more than 500 neurons. We validate the model using a cross-validation analysis
known as co-smoothing to show that the model can accurately predict the responses
of a population of held-out neurons to test odorants.

1 Introduction

Odorants are physically described by thousands of features in a high-dimensional chemical feature
space. Previous studies have focused on reducing the dimensionality of this chemical feature space
[1], or on identifying dimensions of olfactory perceptual space using psychophysical measurements
in humans [2, 3]. However, the dimensions of olfactory space underlying neural representations in
the brain remain largely unknown. Here we take a latent variable modeling approach to the problem
of identifying a low-dimensional manifold of olfactory stimuli. Our approach is unsupervised in
that it makes no use of chemical features, but seeks to identify a latent embedding of odorants from
measurements of odor-evoked neural population activity in mouse piriform cortex. This approach
aims to provide insight into odor encoding in the brain by identifying an olfactory space that relates
smoothly to changes in large-scale neural firing patterns.

Recent work in computational neuroscience has focused on the development of sophisticated model-
based methods for identifying low-dimensional latent manifolds underlying neural population activity
[4–12]. Here we extend such methods to the problem of neural coding in the olfactory system.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Specifically, we develop a Gaussian process based latent variable model (GPLVM) [13] for identifying
latent structure underlying population activity in the olfactory cortex. The model is defined by a
latent olfactory space, which serves as a low-dimensional embedding space. This latent space seeks
to preserve the similarity relationships between odors on the basis of similarities in evoked neural
activity patterns. The latent olfactory space is mapped to the space of high-dimensional neural activity
patterns via a set of nonlinear tuning curves, one for each neuron, each governed by a Gaussian process
prior. The output of these tuning curves specifies a vector of mean responses to an odorant, and we
model the neural activity patterns as Gaussian with a low-rank plus diagonal covariance, modulated
by an odor-dependent scaling factor. This results in a matrix normal model of the population response
across odorants, defined by a diagonal odorant covariance and a low-rank plus diagonal neuron
covariance matrix. The main novelty of this work from a modeling perspective consists of extending
the GPLVM to incorporate structured noise for capturing correlated, odor-dependent variability in
multi-trial population responses to repeated stimuli. Although we have applied it here to the piriform
cortex, we feel that this model could be used to gain insights into the latent organization of neural
population activity in a wide variety of other brain areas where coding is mixed or poorly understood,
e.g., prefrontal cortex [14, 15], parietal cortex [16–18], or entorhinal cortex [19].

In the following, we formulate the multi-trial Gaussian process latent variable for correlated neural
activity (Sec. 2) and describe an efficient variational expectation maximization (EM) inference method
based on black-box variational inference (Sec. 3). We then describe a validation procedure based
on co-smoothing, in which we predict the response of a subset of the neural population to a test
odor using the tuning curves and the latent embeddings estimated from training data (Sec. 4). We
validate our model and inference methodology using a simulated experiment, which reveals that
repeated stimulus presentations are necessary to obtain accurate estimates of the structured noise
covariance (Sec. 6). Finally (Sec. 7), we apply the model to multiple multi-neuron recordings of
population activity from layer 2 (L2) and layer 3 (L3) mouse piriform cortex, each with more than
500 simultaneously recorded neurons. The model allows us to infer a low-dimensional embedding of
66 odorants, and smooth, low-dimensional neural tuning curves that account for the mean response
of each neuron across odorants, and covariance matrices that account for both signal and noise
correlations in neural activity patterns across neurons and odorants.

2 Multi-trial Gaussian process latent variable with structured noise

We consider simultaneously measured calcium fluorescence imaging responses from N neurons
in response to D distinct odorants, each presented T times. Let Y ∈ RT×D×N denote the tensor
of neural responses, with neurons indexed by n ∈ {1, ..., N}, odorants indexed by d ∈ {1, ..., D}
and repeats indexed by t ∈ {1, ..., T}. Our goal is to build a generative model characterizing a
low-dimensional latent structure underlying this data, and assume each odor is associated with a
latent variable xd ∈ RP×1 in a P -dimensional latent space.

Latent space: Let X = [x1, ...,xD]> ∈ RD×P denote the matrix of latent locations for the D
odorants in a P -dimensional latent embedding space. Let xp denote the p’th column of X, which
carries the embedding location of all odorants along the p’th latent dimension. We place a standard
normal prior to the embedding locations, xp ∼ N (0, ID) for all p, reflecting our lack of prior
information from the chemical descriptors for each odorant.

Nonlinear latent tuning curves: Let f : RP×1 → R denote a nonlinear function mapping from
the latent space of odorant embeddings {xd} to a single neuron’s firing rate. These functions differ
from traditional tuning curves in that their input is the latent (unobserved) vector xd of an odorant,
as opposed to an observable stimulus feature (e.g., or orientation of a visual grating, or chemical
features of an odorant). Let fn(x) denote the tuning curve for the n’th neuron, which we parametrize
with a Gaussian Process (GP) prior:

fn(x) ∼ GP(m(x), k(x,x′)), n = {1, ..., N} (1)

wherem(x) = bn
>x is a linear mean function with weights bn, and k(x,x′) is a covariance function

that governs smoothness of the tuning curve over its P -dimensional input latent space. We use the
Gaussian or radial basis function (RBF) covariance function: k(x,x′) = ρ exp(−||x− x′||22/2σ2),
where x and x′ are arbitrary points in the latent space, ρ is the marginal variance and σ is the length
scale controlling smoothness of the latent tuning curve.
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Figure 1: Schematic diagram of the multi-trial Gaussian process latent variable with structured noise.

Let fn ∈ RD×1 denote a vector of firing rates for neuron n in response the D odorants, with the
d’th element equal to fn(xd). The GP prior over fn(·) implies that fn has a multivariate normal
distribution given X:

fn | X ∼ N (mn,K), n = {1, ..., N} (2)

where mn is a D × 1 mean vector for neuron n, and K is a D × D covariance matrix generated
by evaluating the covariance function k(·, ·) at all pairs of rows in X. We assume the mean vector
to be mn = Xbn with weights bn ∈ RP×1 giving a linearly mapping of the P -dimensional latent
representation for the mean of the firing rate vector fn. If we assume a prior distribution over
bn : p(bn) = N (0, β−1IP ) for n = {1, ..., N} with β as the precision, we can integrate over bn to
get the distribution of fn conditioned on X only:

fn|X ∼ N (0,K + β−1XX>), n = {1, ..., N} (3)

where the covariance is a mixture of a linear kernel and a nonlinear RBF kernel. The precision
value β plays a role as the trade-off parameter between two kernels. For simplicity, we will denote
K + β−1XX> as K in the following sections, and we will differentiate the RBF kernel and the
mixture kernel in the experimental section. Horizontally stacking fn for N neurons, we get a firing
rate matrix F ∈ RD×N with fn on the n’th column. Let f̃ = vec(F) be the vectorized F, we can
write the prior for f̃ as,

f̃ ∼ N (0, IN ⊗K) (4)

Observation model: For each repeat in the olfaction dataset, we have the neural population response
to all odors, denoted as Yt ∈ RD×N . Instead of taking the average over {Yt}Tt=1 and modeling the
averaged neural response as noise corrupted F, we use all the repeats to estimate latent variable and
noise covariance. First we collapse neuron dimension and odor dimension together to formulate a 2D
matrix Ỹ ∈ RT×(DN), with the row vectors {ỹt ∈ R(DN)×1}Tt=1. Given the vectorized firing rate f̃ ,
{ỹt}Tt=1 are i.i.d samples from

ỹt |̃f ∼ N (f̃ ,∆), t = {1, ..., T} (5)

where ∆ ∈ R(DN)×(DN) is the noise covariance matrix. When ∆ is a diagonal matrix, the model
implies the observed response yt,d,n = fd,n+ εt,d,n with εt,d,n ∼ N (0, δ2d,n) for the n’th neuron and
d’th odor in repeat t. When we assume the noise correlation exists across multiple neuron and odor
pairs, ∆ is a non-diagonal matrix. In the olfaction dataset, there is a very small amount of repeats but
a large neural population, which implies that Ỹ locates in a small-sample and high-dimension regime.
Such a dataset is insufficient to provide strong data support to estimate parameters for a full rank ∆
matrix. Moreover, inverting ∆ requires O(D3N3) computational complexity prohibiting an efficient
inference when N is large. Therefore, our solution is to model the noise covariance matrix with a
Kronecker structure, i.e., ∆ = ΣN ⊗ΣD, where ΣN is the noise covariance across neurons and
ΣD is the noise covariance across odors. Fig. 1 provides a schematic of the model. When applying
multi-trial GPLVM to the olfactory data, each repeat of presentations of all odorants is one trial to fit
the model.

Marginal distribution over F: Since we have normal distributions for both data likelihood (eq. 5)
and prior for f̃ (eq. 4), we can marginalize out f̃ to derive the evidence for X. There are multiple ways
of deriving the integration. Here, we provide one formulation consisting of multiple multivariate
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normal distributions and treating the mean and the cross-trial information as random variables:

p(ỹ1, ..., ỹT |K) = N

 1√
T

T∑
j=1

ỹj |0,∆ + T I⊗K

 T−1∏
t=1

N

 1√
t(t+ 1)

t∑
j=1

ỹj −
√

t

t+ 1
ỹt+1|0,∆

 . (6)

More derivation details can be found in the supplement (Appendix A). The evidence distribution
consists of two parts: 1) normal distributions for the cross-trial random variables with the noise
covariance as its covariance, and 2) a normal distribution for the average of all repeats with a
covariance formed as a sum of the noise covariance and the GP prior covariance. For single-trial data,
the evidence distribution is reduced to the first normal distribution only in eq. 6, which is insufficient
to be used to estimate a full noise covariance with a Kronecker structure as well as a kernel matrix.
Therefore, the cross-trial statistics should be considered for structured noise estimation.

3 Efficient variational inference

Given the evidence in eq. 6 and the normal prior for X, we estimate the latent variable X in K and
model parameters consisting of noise covariance ∆ and hyperparameters in the kernel function. The
joint distribution is written as,

p(Y,X|∆, θ) = p(Y|X,∆, θ)p(X) (7)

where θ = {ρ, σ} is the hyperparameter set, references to which will now be suppressed for
simplification. This is a Gaussian process latent variable model (GPLVM) with multi-trial Gaussian
observations and structured noise covariance. Due to the non-conjugacy of the data distribution and
the prior over X, we employ a variational distribution to approximate the posterior of latent variable
using the Black Box Variational Inference (BBVI) [20] and optimize both latent variable and model
parameters using a variational Expectation-Maximization (EM) algorithm. More details can be found
in the supplement (Appendix B).

In E-step, we need to evaluate the log marginal likelihood for eq. 6 and calculate the inversion
of (DN) × (DN) covariance matrices, which is the computational bottleneck of the evaluation.
However, we can efficiently evaluate it with the nice property of Kronecker product. For the
noise-only normal distributions, their covariance ∆ = ΣN ⊗ ΣD is a Kronecker product of two
smaller matrices. The inversion of ∆ is achieved by ∆−1 = Σ−1N ⊗ Σ−1D . The log determinant
is log |∆| = N log |ΣD| + D log |ΣN |. For the normal distribution with both latent variable and
noise, its covariance matrix is a sum of two Kronecker products. In general, efficient evaluation
can be carried out for such a formulation. The key idea is to transform the summation of two full
matrices into one full matrix plus a diagonal matrix and then invert the summation using eigenvalue
decomposition.

Let ΣD = UDΛDU>D and ΣN = UNΛNU>N be the eigen-decompositions of ΣD and ΣN . The
covariance matrix C can be factorized as

C = T IN ⊗K + ΣN ⊗ΣD

=
(
UNΛ

1
2

N ⊗UDΛ
1
2

D

)(
(TΛ−1N )⊗ (Λ

− 1
2

D U>DKUDΛ
− 1

2

D ) + IN ⊗ ID

)(
Λ

1
2

NU>N ⊗Λ
1
2

DU>D

)
. (8)

The complexity of inverting the first and the third terms in eq. 8 is O(D3 + N3). The bottleneck

is now inverting the second term in eq. 8. We define new notations K̃ = Λ
− 1

2

D U>DKUDΛ
− 1

2

D and
C̃ = TΛ−1N ⊗ K̃ + IN ⊗ ID.

The problem is thus reduced to inverting the matrix C̃. The second step is to exploit the compatibility
of a Kronecker product plus a constant diagonal term with eigenvalue decomposition. Let TΛ−1N =

UTΛTU>T and K̃ = UKΛKU>K be the eigen-decompositions of TΛ−1N and K̃. Thus,

C̃ = TΛ−1N ⊗ K̃ + IN ⊗ ID = (UT ⊗UK) (ΛT ⊗ΛK + IN ⊗ ID)
(
U>T ⊗U>K

)
, (9)

Finally, combining eq. 8 and eq. 9 to get

C =
(
UNΛ

1
2

N ⊗UDΛ
1
2

D

)
(UT ⊗UK) (ΛT ⊗ΛK + IN ⊗ ID)

(
U>T ⊗U>K

) (
Λ

1
2

NU>N ⊗Λ
1
2

DU>D

)
. (10)
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Inverting C now has only O(D3 + N3) computational complexity instead of O(D3N3). More
detailed derivations can be found in the supplement (Appendix C). With this efficient evaluation of
the log conditional likelihood, we can run BBVI fast for E-step to learn the optimal approximate
posterior q(X|λ†) ≈ p(X|Y,∆, θ) given a fixed set of ∆ and θ with λ† as the optimal approximation
parameters.

In M-step, model parameters are optimized using the ELBO given the optimal variational distribution
learned from E-step:

∆†, θ† = argmax∆,θ Eq(X|λ†) [log p(Y|X,∆, θ)] (11)

where the expectation can also be approximated by Monte Carlo integration.

After the optimization, we can derive the posterior distribution for firing rates F given the neural
response Y and optimal X, ∆ and θ as

p(F|Y,X,∆, θ) = N

(
f̃ |(IN ⊗K)(∆ + T IN ⊗K)−1

T∑
t=1

ỹt, (IN ⊗K)(∆ + T IN ⊗K)−1∆

)
. (12)

Similar to the evaluation in E-step, the posterior mean of firing rates can be efficiently calculated
using the same Kronecker trick in eq. 10.

4 Prediction with co-smoothing

We propose a model to learn latent representations for odors and tuning curves for neurons as well
as structured noise covariance with multi-trial neural responses. Next, we employ a co-smoothing
idea to evaluate its performance. The question to ask is when presenting an unseen odor to neural
populations, can we use partially observed neurons’ responses to learn the odor’s latent representation,
then predict the neural responses of the unobserved neurons given their tuning curves and the latent
representation?

Firing rate prediction: We first use the training odors to estimate the firing rates and the latent
representations of these training odors as shown in sec. 3. For a new odor, we collect some repeats of
neural responses from partially observed neural ensembles Y∗o ∈ RT×1×No where T is the number
of repeats, No is the number of observed neurons and ∗ indicates the test odor. We use Y∗o as well as
the optimal firing rates F and latent variables X to estimate the latent representation x∗ for the test
odor. We use the same variational EM algorithm to learn q(x∗) ≈ p(x∗|Y∗o ,Y,X,∆, θ) by fixing
the latent variables and noise covariance from the training data as well as the hyperparameters while
changing the latent variable and noise variance related to the test odor. Finally, the predictive firing
rate for the test odor from the partially unobserved neural ensembles, denoted as F∗u ∈ RNu×1 with
Nu as the number of unobserved neurons, is calculated as

F∗u = (ΓNu,N ⊗K∗)(∆ + T IN ⊗K)−1
T∑
t=1

ỹt, (13)

where K∗ ∈ R1×D is the kernel matrix evaluated between the test odor’s latent representation x∗ and
the training odors’ latent representations X, and ΓNu,N ∈ RNu×N is a zero-one matrix indicating
the indices of the unobserved neurons in the entire neural ensemble. We can also calculate the firing
rates for the observed neurons F∗o ∈ RNo×1 using a similar expression as eq. 13. For experimental
evaluation purpose, we can compare the predictive firing rate F∗u with the averaged true response∑T
t=1 Y∗u,t. We will show the firing rate prediction in the olfaction data experiment.

Single-trial neural activity prediction: When the number of repeats is large enough to render a
mean response resembling the underlying firing rate, single-trial and trial-average models can both
provide good estimations for latent variables and firing rates for test odors by using the co-smoothing
approach. The advantage of our multi-trial model will be suppressed when only evaluating the
predictive performance for firing rates when there are many repeats. Thereby, we can take another
step forward to predict single-trial neural activities given the estimated firing rates where the estimated
noise covariance encodes trial-by-trial deviations from the noise-free firing rate.
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Figure 2: A)R2 values for single-trial prediction for 8 different noise covariance structures comparing
between trial-average and multi-trial models. The top two rows indicate the combinations of neuron
noise covariance and odor noise covariance parametrization. The y-axis indicates the R2 values. B)
Data covariance/correlation (top) and model-recovered covariance/correlation (bottom) for signal
(columns 2-3) and noise (columns 4-5). The true kernel matrix in the GP prior is presented at the top
in the 1st column and the estimated kernel matrix is presented at the bottom in the 1st column.

Let ΣD and ΣN denote the noise covariance matrices for all odors and all neurons. We can partition
them into the following forms:

ΣD =

[
Σ11
D Σ12

D

Σ12
D
>

Σ22
D

]
, ΣN =

[
Σ11
N Σ12

N

Σ12
N
>

Σ22
N

]
. (14)

ΣD is partitioned according to the training odors and the test odor. Σ11
D is the noise covariance for

the training odors estimated during the training stage; Σ12
D is the cross noise covariance between

the training odors and the test odor estimated during the co-smoothing stage; and Σ22
D is the test

odor noise covariance estimated during the co-smoothing stage. ΣN is partitioned according to the
observed neurons and the unobserved neurons. Σ11

N is the noise covariance for the observed odors;
Σ12
N is the cross noise covariance between the observed neurons and the unobserved neurons; and

Σ22
N is the unobserved neuron noise covariance. The entire ΣN matrix is learned during the training

procedure and is partially used to do co-smoothing. We also denote the single-trial neural response
for training as Yt, the single-trial neural response added for co-smoothing as Y∗o,t and the single-trial
neural response from the unobserved neurons for the test odor as Y∗u,t. Then we can write down the
mean of the posterior distribution for Y∗u,t, i.e., p(Y∗u,t|Yt,Y

∗
o,t,F,F

∗
o,F

∗
u,ΣD,ΣN ), as

vecŶ∗u,t = vecF̂∗u +

Σ12
D⊗
[
Σ12
N

Σ22
N

]
Σ22
D ⊗Σ12

N

> Σ11
D ⊗ΣN Σ12

D ⊗
[

Σ11
N

Σ12
N
>

]
Σ12
D
>⊗ [Σ11

N Σ12
N ] Σ22

D ⊗Σ11
N

−1[ vecYt − vecF
vecY∗o,t − vecF∗o

]
(15)

We will show the predictive performance comparing Ŷ∗u,t and Y∗u,t using single repeats in the
simulated experiment.

5 Simulated data

First, we consider a simulated dataset to illustrate the effect of our multi-trial GPLVM model with
structured noise covariance on single-trial predictive performance. We create a simulated example
with T = 10 repeats, N = 50 neurons and D = 20 odors according to the generative model
described in sec. 2. We generate 2-dimensional latent variables from a normal prior and construct a
covariance matrix from the latent using an RBF kernel function, and then i.i.d sample tuning curves
for 50 neurons from a Gaussian process prior with a zero mean and the covariance matrix. Then we
generate two structured noise covariance matrices with rank = 2 for neurons and odors respectively.
Finally, we generate 10 samples from eq. 5 using the sampled tuning curves and the structured noise
covariances.

We compare multiple combinations of structures for neuron noise covariance ΣN and odor noise
covariance ΣD. Each one can take one of three forms: an identity matrix, a diagonal matrix with
heterogeneous noise variances on the diagonal and a low-rank full matrix plus a heterogeneous
diagonal (indicated in Fig. 2A)). Moreover, we compare between trial-averaged neural response and
multi-trial neural response in order to show that it requires more statistics to learn structured noise
variance. The trial-average results in Fig. 2A) are achieved by fitting the mean response only to
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Figure 3: A) 2D latent representations of 22 odors in functional and local odor sets analyzed by
PCA and multi-trial GPLVM. Odors from different functional groups are color-coded. B) Inferred
two-dimensional latent tuning curves for five example neurons. C) Mean response to each of the 22
individual odors for these same example neurons. Traces show observed mean spike count for each
odor (blue) and inferred latent tuning curve value (red).

multi-trial GPLVM to learn structured noise. Our quantitative comparison covers the noise models
for GP from [21] and [22]. The R2 values of the single-trial prediction performance is shown in
Fig. 2A). The red and blue error bars represent trial-average and multi-trial respectively. When fitting
a full noise covariance matrix for odors, a trial-average model is poor. When fitting the 8th column
with full matrices for both neurons and odors, it prefers the multi-trial model and achieves the best
predictive performance with structured noise covariance matrices. We also show that the best model
(the 8th column) effectively captures noise structures and signal structures for both neuron and odor
from the data (Fig. 2B)). The kernel matrix for the prior is also well recovered in Fig. 2B).

6 Olfaction data

Two-photon calcium imaging of piriform cortex was performed in awake mice previously infected
with the GCaMP6s activity reporter. Imaging volumes through piriform layers 2 and 3 were ac-
quired at 7 volumes/sec using a custom microscope equipped with a resonant galvo and high-speed
piezo actuator. Detection of active neurons, segmentation, and extraction of fluorescence signal
was performed using Suite2p software. Extracted fluorescence traces were corrected for neuropil
contamination. For each cell, responses to odor presentations constituted a single delta F/F0 value
where F is the average fluorescence signal over 2 seconds immediately following odor onset and F0 is
fluorescence signal preceding odor onset. Monomolecular odors were diluted in di-propylene glycol
(DPG) according to individual vapor pressures obtained from www.thegoodscentscompany.com, to
give a nominal concentration of 500 ppm. This vapor-phase concentration was further diluted 1:5
by the carrier airflow to yield 100 ppm at the exit port. Odor presentations lasted for two seconds
and were interleaved by 30 seconds of blank (DPG) delivery. The order of presentation of odors was
pseudo-randomized for each experiment, such that on any given repeat, odors were presented once
in no predictable order. Three different odor sets, each consisting of 22 odorants, were presented
to multiple awake mice with 10 repeats for each odor. For each odor set, we have calcium imaging
neural responses collected from about 200 neurons in both layer 2 (L2) and layer 3 (L3) in the
piriform cortex of 3 mice leading to a dataset with about 500 L2 neurons and 500 L3 neurons for
each odor set. Therefore, we deal with three datasets, each with T = 10 repeats, D = 22 odorants,
N ≈ 500 L2 neurons and N ≈ 500 L3 neurons.

We standardize each repeat response across neurons and apply principle component analysis (PCA)
and our model with a 2-dimensional latent embedding to these datasets. For PCA, we find the first
two principal components of the D × (NT ) response matrix. For our model, the kernel in eq. 3 is
an RBF function without a linear component. We set the noise covariances for odors and neurons
to be a heterogeneous diagonal matrix and a full matrix with a low-rank structure as described in
Fig. 2A). We fit the model to three different odor sets {"functional", "local", "global"} using both L2
neurons and L3 neurons sharing the same 2D latent variables. Fig. 3A) shows the 2-dimensional latent
variables for 22 odors in the functional and local odor sets. More latent representations discovered by
t-SNE [23] and multidimensional scaling (MDS) [24] can be found in the supplementary (Appendix
D).
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Figure 4: A) R2 and correlation metric criteria for predictive performance for 5 different noise
covariance structures comparing between trial-average and multi-trial models as well as an RBF
kernel vs a mixture of kernels. The top two rows indicate the combinations of neuron noise structure
and odor noise structure. The influence of the rank of noise covariance is also presented for two
criteria. B) Data covariance/correlation (top) and model-recovered covariance/correlation (bottom)
for signal (the first two columns) and noise (the last two columns).

The functional odor set contains distinct odors sharing one of six chemical functional groups. Odors
sharing the same functional group should be more closely related in chemical space than odors
harboring different functional groups. The local odor set contains straight chain aliphatic odorants
that harbor 1 of 4 carbonyl functional groups and range 3-8 carbons in length. PCA cannot discover
the functional class nor identify the linearized embeddings effectively for both sets. Our model (multi-
trial GPLVM) can identify 2-dimensional clusters with clear linear boundaries for the functional set
and linearized curves of groups of odors for the local set, without knowing any information regarding
the chemical features (Fig. 3A)). Odors from the same functional group have the same color. We
learn the 2D latent variables by imposing L2 and L3 sharing the same latent space, but the tuning
curves are estimated separately with different length scales for the GP priors. We observe that L3
neurons have a bigger length scale value than L2 neurons. This implies wider tuning curves for L3
which leads to better performance for L3 at discriminating different functional groups and identifying
the latent odor embeddings. Fig. 3B) shows some example 2D tuning curves from L3 in both odor
sets. Fig. 3C) presents averaged firing rates for individual neurons. The blue curves are the mean
responses across repeats which can be considered as empirical tuning curves (signal). The red curves
are estimated tuning curves. This comparison suggests that our model can identify the signal and
fit the data pretty well. Moreover, 1D empirical curves are plotted along the indices of the odors
which are not that smooth nor interpretable. We can see that the model can effectively capture a
set of smooth 2D neural turning curves for individual neurons which explicitly map the 2D latent
representations of odors to high-dimensional neural activities.

The 2D illustration indicates the strength of our proposed model in discovering nonlinear latent
embedding for neural ensembles. We can find more interpretable 2D tuning curves than just taking
the average across multiple repeats for single neurons. Thereby, such a 2D space can be interpreted
as an underlying embedding of neural populations. Next, we will employ the co-smoothing idea
described in sec. 4 to evaluate the predictive power of our model with different noise structures. The
better the predictive performance is, the better the data is fit and explained by the noise structure.
For evaluating purpose, we leave one odor out for each odor set, train on 21 odors using L3 neurons
and compute the predicted neural activities, an Nu by 1 vector, for the test odor within the odor
set. In total, we carry out a training and predicting procedure for 66 times (leaving one odor out at
each time) and take the average. Given the predicted neural activity vector, we use two evaluating
criteria: r-squared value (R2) and correlation metric. R2 reveals how close the true neural activities
are to the predicted ones. It emphasizes single-neuron performance. However neurons in the piriform
cortex are known for encoding correlation information of odors at the population level rather than
individual neurons. The correlation/similarity between odors represented in neural space is more
informative. We propose another correlation-based metric. We compare the correlation between
the predicted neural activity of the test odor and the training odors to obtain a 21 by 1 vector and
compare this vector with the true 21 by 1 vector constructed from the true neural activities using
another r-squared comparison. This is saying whether the similarity between the test odor and the
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training odors estimated by the model resembles the true correlation in neural space. The correlation
metric should have higher r-squared values than R2 employed on the predictive neural activity vector
since noisy neurons are smoothed out in the correlation metric.

Fig. 4A) presents both R2 and correlation metric (y-axis) on 5 different noise models. For both
metrics, the higher the y value is, the better the performance is. The structures of the models are
indicated in the top two rows. When fitting the olfaction data, we don’t assume a low-rank matrix for
odor noise covariance. Since the presentation of odors were randomized, odors across repeats don’t
imply each other. The red and blue error bars represent trial-average and multi-trial respectively. It’s
clear that trial-average has much poor performance, especially for non-identity ΣN matrices. When
ΣN is an identity matrix (the 3th column), the trial-average values almost catch up with the multi-trial
performance. The circle represents a single RBF kernel, and the square is a mixture of RBF and linear
kernels with precision β estimated as an element in the hyperparameter set. Among all the models,
the 5th model outperforms the others with a full-matrix ΣN and a non-identity ΣD. This essentially
suggests that there exists correlated noise variability among neurons which cannot be ignored and
contribute to information encoding in the piriform cortex. Odorants are more independent in neural
space but require odor-specific noise variances. This result validates our prior knowledge about the
olfactory neurons. Fig. 4B) shows that the best model (the 5th column) effectively captures noise
structures and signal structures for both neuron and odor from the data.

There are two dimensionality parameters we need to tune in the model. One is the dimensionality
of the latent space, and the other is the rank of the low-rank component in the structured noise
matrix. We automate the selection of the number of latent dimensions via an automatic relevance
determination (ARD) kernel [25] version of RBF over the latent variables, i.e. K in eq. 2 achieved by
k(x,x′) = ρ exp(−

∑P
i

(xi−x′i)
2

2σ2
i

). Each latent dimension has its own length scale σ2
i , and they are

independent of each other. By fitting the length scale σ2
i , the model automatically learns a sparse

latent space with most σ2
i s approaching to infinity and a few small σ2

i s. As a result of ARD, irrelevant
latent dimensions are effectively turned off by selecting large length scales for them. We initially set
the dimensionality to be 100, and the model returns 10-15 effective dimensions for all the data. For
the rank r of the low-rank structure, we run experiments with r = {1, 2, 4, 8, 12}. Fig. 4A) shows
that r = 2 has the best predictive performance using both R2 and correlation metric suggesting the
noise correlation is pretty strong with a low-dimensional subspace.

7 Conclusion
We have proposed a multi-trial Gaussian process latent variable model with structured noise, and used
it to infer a latent odor manifold underlying olfactory responses in the piriform cortex. The resulting
model maps odorants to points in a low-dimensional embedding space, where the distance between
points in this embedding space relates to the similarity of population responses they elicit. The
model is specified by an explicit continuous mapping from a latent embedding space to the space of
high-dimensional neural population activity patterns via a set of nonlinear neural tuning curves, each
parametrized by a Gaussian process, followed by a low-rank model of correlated, odor-dependent
Gaussian noise. We used multiple repeats for analysis instead of trial-average responses for the sake
of structured noise covariance estimation. We applied this model to calcium fluorescence imaging
measurements of population activity in layers 2 and 3 of mouse piriform cortex following presentation
of a diverse set of odorants. We showed that we can learn a low-dimensional embedding of odorants
and a smooth tuning curve over the latent embedding space that accurately captures neural responses
to different odorants. The model captured both signal and noise correlations across more than 500
neurons. Finally, we performed a co-smoothing analysis to show that the model can accurately predict
responses of a population of held-out neurons to test odorants.

In the future, we will further investigate the biological interpretability of the 10-15 effective latent
dimensions for olfactory perceptual space and the rank-2 structured neural noise covariance. Moreover,
we will explore the relationship between chemical features of these odorants and their learned latent
embeddings in order to understand which chemical features are most important for determining an
odorant’s location within the neural manifold for olfactory representations.
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Appendix A: derivation for the marginal distribution in eq. 6

First, we show a general derivation for the marginal distribution over F. First, we concatenate
{ỹt}Tt=1 vertically to get a big vector ŷ ∈ R(TDN)×1 resulting in the following distribution

ŷ|̃f ∼ N (h⊗ f̃ , IT ⊗∆) (16)

where h is a T × 1 vector of ones. We can replace h with a (TDN) × (DN) matrix H such that
Hf̃ = h⊗ f̃ . The marginal distribution of ŷ can be written as

p(ŷ|K) =

∫
N (ŷ|Hf̃ , IT ⊗∆)N (f̃ |0, IN ⊗K)df̃

=
1

Z

∫
exp

(
−1

2
(ŷ −Hf̃)>(IT ⊗∆)−1(ŷ −Hf̃)− 1

2
f̃>(IN ⊗K)−1f̃

)
df̃

=
1

Z ′
exp

(
−1

2
ŷ>
(
IT ⊗∆ + H(IN ⊗K)H>

)−1
ŷ

)
= N (ŷ|0, IT ⊗∆ + H(IN ⊗K)H>) (17)

The new covariance IT⊗∆+H(IN⊗K)H> is a (TDN)×(TDN) matrix which is computationally
not invertible in practice. However the heavy inversion can be resolved by applying matrix inversion
lemma and the property of Kronecker product when calculating the log-likelihood.

Here, we provide another way of marginalizing out F which consists of multiple multivariate normal
distributions with smaller scale covariance matrices. Instead of vectorizing Ỹ matrix into ŷ and
dealing with one multivariate normal with a big covariance matrix, we work on the integration with
the Gaussian distribution for data in eq. 5. The marginal distribution can be written as

p(ỹ1, ..., ỹT |K) =

∫
N (f̃ |0, IN ⊗K)

T∏
t=1

N (ỹt |̃f ,∆)df̃ (18)

Given a set of data observations {ỹt}Tt=1, we can write the probability density function ofN (ỹt |̃f ,∆)

as N (f̃ |ỹt,∆) which is just an exponential function of a negative quadratic function. According to
the property of the product of Gaussian densities, let Nx(m,Σ) denote a density of x, then

Nx(m1,Σ1)Nx(m2,Σ2) = ccNx(mc,Σc), cc = Nm1
(m2,Σ1 + Σ2),

mc = (Σ−11 + Σ−12 )−1(Σ−11 m1 + Σ−12 m2), Σc = (Σ−11 + Σ−12 )−1. (19)

We can apply the property to the integration in eq. 18 in a chain style from N (f̃ |ỹ1,∆) all the way
to N (f̃ |0, IN ⊗K):
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(1). P1 = Nf̃ (ỹ1,∆)Nf̃ (ỹ2,∆) = c1Nf̃

(
1

2
(ỹ1 + ỹ2),

1

2
∆

)
,

c1 = Nỹ1
(ỹ2, 2∆),

(2). P2 = c1Nf̃

(
1

2
(ỹ1 + ỹ2),

1

2
∆

)
Nf̃ (ỹ3,∆) = c1c2Nf̃

(
1

3
(ỹ1 + ỹ2 + ỹ3),

1

3
∆

)
,

c2 = N 1
2 (ỹ1+ỹ2)(ỹ3,

3

2
∆),

(3). P3 = c1c2Nf̃

(
1

3
(ỹ1 + ỹ2 + ỹ3),

1

3
∆

)
Nf̃ (ỹ4,∆) = c1c2c3Nf̃

(
1

4
(ỹ1 + ỹ2 + ỹ3 + ỹ4),

1

4
∆

)
,

c3 = N 1
3 (ỹ1+ỹ2+ỹ3)(ỹ4,

4

3
∆),

...

(T − 1). PT−1 =

T−2∏
t=1

ctNf̃

(
1

T − 1

T−1∑
t=1

ỹt,
1

T − 1
∆

)
Nf̃ (ỹT ,∆)

T−1∏
t=1

ctNf̃

(
1

T

T∑
t=1

ỹt,
1

T
∆

)
,

cT−1 = N 1
T−1

∑T−1
t=1 ỹt

(ỹT ,
T

T − 1
∆),

(T ). PT =

T−1∏
t=1

ctNf̃

(
1

T

T∑
t=1

ỹt,
1

T
∆

)
Nf̃ (0, IN ⊗K) =

T∏
t=1

ctNf̃ (·, ·) ,

cT = N 1
T

∑T
t=1 ỹt

(0,
1

T
∆ + IN ⊗K)

Therefore, we can write eq. 18 as

p(ỹ1, ..., ỹT |K) =

∫
Nf̃ (ỹ1,∆)Nf̃ (ỹ2,∆)...Nf̃ (ỹT ,∆)Nf̃ (0, IN ⊗K)df̃ =

∫
PT df̃

=

∫ T∏
t=1

ctNf̃ (·, ·) df̃ =

T∏
t=1

ct

∫
Nf̃ (·, ·) df̃ =

T∏
t=1

ct
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Its log likelihood is

log p(ỹ1, ỹ2, ..., ỹT ) =

T∑
t=1

log ct (20)

=

T−1∑
t=1

−1

2
log | t+ 1

t
∆| − 1

2
(ỹt+1 −

1

t

t∑
j=1

ỹj)
>(
t+ 1

t
∆)−1(ỹt+1 −

1

t

t∑
j=1

ỹj)


−1

2
log | 1

T
∆ + I⊗K| − 1

2T

T∑
t=1

ỹ>t (
1

T
∆ + I⊗K)−1

1

T

T∑
t=1

ỹt (21)

=

T−1∑
t=1

−DN
2

log(
t+ 1

t
)− 1

2
log |∆| − 1

2
(

√
t

t+ 1
ỹt+1 −

1√
t(t+ 1)

t∑
j=1

ỹj)
>∆−1(

√
t

t+ 1
ỹt+1 −

1√
t(t+ 1)

t∑
j=1

ỹj)


−1

2
log | 1

T
∆ + I⊗K| − 1

2T

T∑
t=1

ỹ>t (
1

T
∆ + I⊗K)−1

1

T

T∑
t=1

ỹt (22)

= −DN
2

log(T ) +

T−1∑
t=1

−1

2
log |∆| − 1

2
(

√
t

t+ 1
ỹt+1 −

1√
t(t+ 1)

t∑
j=1

ỹj)
>∆−1(

√
t

t+ 1
ỹt+1 −

1√
t(t+ 1)

t∑
j=1

ỹj)


−1

2
log | 1

T
∆ + I⊗K| − 1

2T

T∑
t=1

ỹ>t (
1

T
∆ + I⊗K)−1

1

T

T∑
t=1

ỹt (23)

=

T−1∑
t=1

logN

√ t

t+ 1
ỹt+1|

1√
t(t+ 1)

t∑
j=1

ỹj ,∆

− 1

2
√
T

T∑
t=1

ỹ>t (∆ + T I⊗K)−1
1√
T

T∑
t=1

ỹt −
1

2
log |∆ + T I⊗K|

=

T−1∑
t=1

logN

 1√
t(t+ 1)

t∑
j=1

ỹj |
√

t

t+ 1
ỹt+1,∆

+ logN

 1√
T

T∑
j=1

ỹj |0,∆ + T I⊗K


Thus the marginal distribution is

p(ỹ1, ..., ỹT |K) = N

 1√
T

T∑
j=1

ỹj |0,∆ + T I⊗K

 T−1∏
t=1

N

 1√
t(t+ 1)

t∑
j=1

ỹj −
√

t

t+ 1
ỹt+1|0,∆


Appendix B: black box variational inference

The log marginal likelihood for eq. 7 can be lower bounded by introducing any distribution over
latent variable which has support where true posterior p(X|Y,∆, θ) does, and then appealing to
Jensen’s inequality (due to the concavity of the logarithm function):

log p(Y|∆, θ) = log

∫
p(Y|X,∆, θ)p(X)dX ≥

∫
q(X|λ) log

p(Y|X,∆, θ)p(X)

q(X|λ)
dX (24)

where q(X|λ) is the variational approximating distribution for the true posterior controlled by some
free variational parameters λ. We assume q(X|λ) to be a standard normal distribution. In E-step, we
optimize the Evidence Lower BOund (ELBO),

L(λ)
∆
= Eq(X|λ) [log p(Y|X,∆, θ) + log p(X)− log q(X|λ)] (25)

A standard gradient descent method can be used to maximize the ELBO over the variational parameter
with analytic computation of the expectation. However, the expectation of the first term in eq. 25
doesn’t have a closed-form solution. Therefore, we will employ the Black Box Variational Inference
(BBVI) [20] to maximize the ELBO with stochastic optimization. The BBVI algorithm requires the
computation of noisy unbiased gradients of the ELBO with Monte Carlo samples from the variational
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distribution,

∇λL(λ) ≈ 1

l

l∑
i=1

∇λ log q(Xl|λ)(log p(Y|Xl,∆, θ) + log p(Xl)− log q(Xl|λ)), where Xl ∼ q(X|λ). (26)

This gradient involves calculating the log likelihood of p(Y|X,∆, θ) with (DN)×(DN) covariance
matrices, which is the computational bottleneck of the evaluation. However, we can efficiently
evaluate it with the nice property of Kronecker product.

Appendix C: inverting the covariance matrix

The key problem is to invert the covariance matrix C = T IN ⊗K + ΣN ⊗ΣD.

Let ΣD = UDΛDU>D and ΣN = UNΛNU>N be the eigen-decompositions of ΣD and ΣN . The
covariance matrix C can be factorized as

C = T IN ⊗K + ΣN ⊗ΣD

= T IN ⊗K + (UNΛNU>N )⊗ (UDΛDU>D)

= T IN ⊗K + (UNΛ
1
2

NΛ
1
2

NU>N )⊗ (UDΛ
1
2

DΛ
1
2

DU>D)

= T IN ⊗K +
(
UNΛ

1
2

N ⊗UDΛ
1
2

D

)(
Λ

1
2

NU>N ⊗Λ
1
2

DU>D

)
=

(
UNΛ

1
2

N ⊗UDΛ
1
2

D

)((
UNΛ

1
2

N ⊗UDΛ
1
2

D

)−1
(T IN ⊗K)

(
Λ

1
2

NU>N ⊗Λ
1
2

DU>D

)−1
+ IN ⊗ ID

)
(
Λ

1
2

NU>N ⊗Λ
1
2

DU>D

)
=

(
UNΛ

1
2

N ⊗UDΛ
1
2

D

)(
(TΛ−1N )⊗ (Λ

− 1
2

D U>DKUDΛ
− 1

2

D ) + IN ⊗ ID

)(
Λ

1
2

NU>N ⊗Λ
1
2

DU>D

)
. (27)

The complexity of inverting the first and the third terms in eq. 27 is O(D3 +N3). The bottleneck

is now inverting the second term in eq. 27. We define new notations K̃ = Λ
− 1

2

D U>DKUDΛ
− 1

2

D and
C̃ = TΛ−1N ⊗ K̃ + IN ⊗ ID.

The problem is reduced to inverting the matrix C̃. Therefore the second step is to exploit the
compatibility of a Kronecker product plus a constant diagonal term with eigenvalue decomposition.
Let TΛ−1N = UTΛTU>T and K̃ = UKΛKU>K be the eigen-decompositions of TΛ−1N and K̃. Thus,

C̃ = TΛ−1N ⊗ K̃ + IN ⊗ ID = (UT ⊗UK) (ΛT ⊗ΛK + IN ⊗ ID)
(
U>T ⊗U>K

)
, (28)

Finally, combining eq. 27 and eq. 28 together to get

C =
(
UNΛ

1
2

N ⊗UDΛ
1
2

D

)
(UT ⊗UK) (ΛT ⊗ΛK + IN ⊗ ID)

(
U>T ⊗U>K

) (
Λ

1
2

NU>N ⊗Λ
1
2

DU>D

)
. (29)

Appendix D: more 2D latent representations for 22 odors
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Figure 5: We analyzed the same
dataset with t-SNE and MDS, and
present the results obtained in the
figures. Note that neither method
is able to identify the class struc-
ture of the functional or local
odor set (compared to Fig. 3 in
the main paper).
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