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Abstract

An influential framework within systems neuroscience posits that neural com-
putations can be understood in terms of low-dimensional dynamics in recurrent
circuits. A number of methods have thus been developed to extract latent dynamical
systems from neural recordings, but inferring models that are both predictive and
interpretable remains a difficult challenge. Here we propose a new method called
Low-rank Inference from Neural Trajectories (LINT), based on a class of low-rank
recurrent neural networks (lrRNNs) for which a link between connectivity and dy-
namics has been previously demonstrated. By fitting such networks to trajectories
of neural activity, LINT yields a mechanistic model of latent dynamics, as well as a
set of axes for dimensionality reduction and verifiable predictions for inactivations
of specific populations of neurons. Here, we first demonstrate the consistency of
our method and then apply it to two use cases: (i) we reverse-engineer “black-box”
vanilla RNNs trained to perform cognitive tasks, and (ii) we infer latent dynam-
ics and neural contributions from electrophysiological recordings of nonhuman
primates performing a similar task.

1 Introduction

As large-scale neural recordings in behaving animals are becoming commonplace, a pressing question
is how computational principles can be extracted from the electrical activity of thousands of cells.
An influential framework posits that neural computations rely on latent low-dimensional dynamics
[54, 60] distributed across populations of neurons [66, 43]. In line with this proposal, a number of data-
analysis methods have been developed to infer latent dynamics from neural recordings [65, 25, 36, 32,
12, 31, 24, 33, 10, 19, 16, 40, 41, 45, 22] (reviewed in [11]). While these statistical approaches often
provide compelling descriptions of the recorded data, they generally lack a mechanistic interpretation
that would, for instance, allow them to make predictions for responses to novel interventions on the
underlying neural circuits. How to identify mechanistic, predictive models from neural data thus
currently remains an important challenge.

Recurrent neural networks (RNNs) have emerged as key models for studying neural computations
[64]. Indeed, RNNs can be trained to solve various cognitive tasks, and lead to dynamics surprisingly
similar to those observed in neural recordings [29, 56, 5, 61, 39], and have also successfully been
trained to reproduce the activity of neurons recorded in vivo [38, 6, 14, 35]. While potentially
predictive, the obtained networks are however typically challenging to understand mechanistically [55,
28, 27, 26, 63, 57], and ongoing research directions aim at reducing them to simplified, interpretable
models, for example through the use of linearized dynamical systems [12, 19, 50] or through "network
distillation" methods [44, 22].
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Here, we exploit a particular class of interpretable RNNs, namely low-rank RNNs (lrRNNs) [30, 3,
9, 46, 47, 58], to develop a new method that extracts mechanistic and predictive low-dimensional
models from observed neural activity, and can be applied to both artificial and biological neural
networks. Previous work has performed theoretical analyses of low-rank RNNs, either designed or
trained on specific tasks [30, 9], but has not introduced methods for fitting them to neural activity.
Our method, Low-rank Inference from Neural Trajectories (LINT) infers a minimal rank lrRNN
from a dataset and then exploits the theory of low-rank networks to relate the obtained connectivity
with low-dimensional dynamics and computations. It produces three outputs: a set of axes for
dimensionality reduction of neural population activity, an effective connectivity that implements a
latent dynamical system, and predictions for inactivations on specific subsets of recorded neurons
(fig. 1a).

Our contributions can be summarized in three steps: first, we verify the consistency of LINT by
applying it to data simulated from lrRNNs, and show that it recovers the effective part of the
connectivity that reproduces the dynamics and computations. Second, we apply LINT to data
generated from full-rank RNNs trained on cognitive tasks, and demonstrate that the resulting lrRNNs
can capture their dynamics and offer mechanistic insights into how they function. Notably, we
identify a novel population-based mechanism enabling context-dependent switching in a vanilla RNN,
and verify it by targeted inactivation experiments. Finally, we apply LINT to electrophysiological
recordings in nonhuman primates performing a context-dependent decision making task [29]; this
reveals that a rank-1 network can capture most aspects of the dynamics present in the data, and
that computations in this neural circuit appear to be supported by a small proportion of all recorded
neurons.

2 Approach

Here we describe our method for extracting an interpretable low-dimensional projection and dynami-
cal model from neural trajectories by fitting a low-rank recurrent network to data.

Low-rank RNNs (lrRNNs). We start from rate-based recurrent neural networks of N units, each
characterized by an activation variable xi which follows the dynamics:

τ
dxi

dt
= −xi +

N∑
j=1

Jijϕ (xj) +

Nin∑
s=1

I
(s)
i us(t) + ηi(t). (1)

Here J represents the network connectivity matrix and ϕ is a nonlinear transfer function defining
the neural firing rate ϕ(xi), which we take here to be tanh. Each network also receives Nin input
signals us(t) via a set of weights I(s) that we refer to as input vectors.

Low-rank RNNs represent a subclass of models in which the connectivity matrix is constrained to
be of finite rank R ≪ N [30, 3, 9]. In this case, J can be written as a sum of outer products of
connectivity vectors n(r) and m(r):

Jij =
1

N

R∑
r=1

m
(r)
i n

(r)
j . (2)

To define a unique representation, we take as m(r) the left singular vectors of the connectivity matrix,
and as n(r) the right singular vectors with an appropriate normalization.

Network inference. We infer lrRNNs from data by training the connectivity parameters to reproduce
recorded neural trajectories (either single-trial or condition-averaged trajectories). Specifically, we
use back-propagation on connectivity vector parameters n(r)

i and m
(r)
i and input parameters I(s)i to

minimize the squared difference between target and reproduced trajectories:

L =

C∑
c=1

N∑
i=1

T∑
t=1

(ϕ(x
(c)
i (t))− ϕ(x̂

(c)
i (t)))2 (3)

where x
(c)
i (t)) represents the target trajectory in condition c, for neuron i and timestep t and x̂

(c)
i (t)

the corresponding trajectory produced by the model.
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Figure 1: a. LINT pipeline: Low-rank RNNs are fitted to either simulated or recorded neural
trajectories. The obtained lrRNNs provide interpretable low-dimensional dynamics as well as
a computational mechanism based on an effective connectivity structure. b-c. LINT tested on
trajectories simulated from a rank-1 lrRNN trained to perform the CDM task (see Table 1 for results
across tasks). b. For each pair of neurons, relationship between the original (Jij) and inferred (Ĵij)
synaptic connectivity (5122 pairs, r = 0.57). c. For the same networks, relationship between the
original effective connectivity (Jeff

ij , see text) and the inferred one (Ĵeff
ij , r = 0.99)

Dimensionality reduction. One property of lrRNNs is that, in the absence of noise, they constrain
the activity vector x(t) to evolve in a low-dimensional subspace spanned by the R connectivity
vectors m(r) and the Nin input vectors I(s) [3]. The trial-averaged trajectories therefore explore at
most R+Nin dimensions and can be parametrized as:

x(t) =

R∑
r=1

κr(t)m
(r) +

Nin∑
s=1

vs(t)I
(s), (4)

where vs(t) are the low-pass filtered input signals us(t) (see Appendix A), and κr are a set of
latent variables generated by recurrent activity. Thus, lrRNNs provide by design a reduction of
N -dimensional neural activity to at most R + Nin dimensions that can be directly interpreted in
terms of components on a recurrent subspace spanned by the connectivity vectors m(r) and on an
input subspace spanned by inputs vectors I(s) [61].

Latent dynamics. In lrRNNs, the latent variables κr(t) form a non-linear low-dimensional dynamical
system, described by:

d

dt
κ(t) = F (κ(t),u(t)) (5)

where κ(t) = {κr(t)}r=1..R is an R-dimensional vector representing the activity on the recurrent
subspace, u(t) represents the input signals, and F is a non-linear function that can be directly
determined from network connectivity parameters [3, 9] (Appendix A). Moreover, it can be shown
that rank-R networks are universal approximators of R-dimensional dynamical systems [3], and thus
that the function F can approximate any non-linear mapping in R dimensions.

Task-optimized RNNs. We applied our method first to trajectories produced by task-optimized
RNNs, which produce an output signal z(t) from the recurrent dynamics (1) via a linear readout:

z(t) =

N∑
i=1

wiϕ(xi(t)) (6)

In task-optimized networks, the parameters are trained with backpropagation through time to minimize
the squared error between the output z(t) and a target z∗(t). In this work, we consider four cognitive
tasks: Decision Making (DM), Working Memory (WM), Context-Dependent Decision Making (CDM,
fig. 2a) and Delayed Match-to-Sample (DMS) (see Appendix B for task definitions). To analyze the
computations underlying these tasks, we generated neural trajectories from both low-rank (in section
3.1) and full-rank (see section 3.2) task-optimized RNNs. All networks were implemented in pytorch
[34]; training details can be found in Appendix C.
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Table 1: Synthetic data validation results for LINT
(CC: connectivity correlation, ECC: effective connectivity correlation)

Task Rank Trajectory R2 CC ECC

Decision Making (DM) 1 0.97 0.50 0.99
Working Memory 2 0.96 0.43 0.93
Context-dependent DM 1 0.91 0.57 0.99
Delayed Match-to-Sample 2 0.98 0.39 0.63

3 Results

3.1 Validation with synthetic data and effective aspects of connectivity

We first validated the capacity of the LINT method to recover low-rank connectivity features and
reproduce neural trajectories on data simulated from lrRNNs trained on cognitive tasks. For this,
we first trained lrRNNs with 512 neurons to produce a correct behavioral output on four systems
neuroscience tasks, each time retaining the minimal rank solution [9] (see Table 1). For each task-
optimized lrRNN, we then generated simulated trajectories corresponding to trials in the trained
task, and applied our method to fit these trajectories using equivalent models with the same rank and
number of neurons. We found that the inferred networks were able to reliably reproduce the original
trajectories when fed with the same inputs, as quantified by the R2 scores between original and fitted
trajectories. Although the inferred networks were not explicitly trained on behavioral outputs, they
were able to perform their task accurately when plugged to the original readout vector, implying that
they also captured behavioral aspects of the original networks.

The output of LINT is an inferred low-rank connectivity that we compared with the original one.
We noted that the inferred connectivity weights are not identical to the original ones, although a
certain degree of correlation is present (fig. 1b and Table 1, column CC for connectivity correlation).
However, from a theoretical point of view, a range of different connectivity matrices can lead to
identical dynamics [37, 13, 3]. The low-rank framework allows for a precise characterization of the
relevant part of the connectivity, and in particular allows us to define an effective connectivity matrix
J eff that captures the minimal features required to obtain certain dynamics. Indeed, for this class of
networks, the low-dimensional dynamics described by equations (4)-(5) depend on the exact entries
on the m(r) and I(s) vectors, but not on the individual entries on the n(r) vectors. Instead, n(r)

vectors influence the dynamics only through their global projections on the m(r) and I(s) vectors (see
details in Appendix A). Thus, the components of n(r) orthogonal to the space spanned by m(r) and
I(s) are irrelevant for the dynamics, and removing them leads to an effective connectivity matrix J eff

which captures the minimal features required for obtaining particular dynamics. Our results on the
synthetic data showed indeed a very high degree of similarity between original and inferred effective
connectivities, demonstrating that LINT recovered the relevant aspects of the neural connectivity
(Table 1, ECC for Effective Connectivity Correlation, and fig. 1c).

In conclusion, LINT is able to accurately fit neural trajectories generated by low-rank RNNs, to infer
networks that give rise to similar trajectories and behavioral performance, and to recover the essential
features of the connectivity.

3.2 Application to reverse-engineering full-rank RNNs

We next ask to which extent our method can infer computational mechanisms from activity generated
by unconstrained, full-rank networks. Indeed, RNNs trained on simple tasks without a rank constraint
often exhibit low-dimensional dynamics that can be related to the way computations unfold in the
network [55, 28, 27, 26, 57]. It has been found that such low-dimensional dynamics can be reproduced
by low-rank networks [3], yet the best approach for inferring the corresponding low-rank connectivity
remains to be determined. Here we show that our method vastly outperforms a direct low-rank
approximation of the connectivity matrix based on truncating the SVD [47]. We then demonstrate
how the inferred low-rank models can be used to interpret the computational mechanisms in the
original full-rank networks.
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Figure 2: LINT applied to full-rank task-optimized RNNs. a. Description of the context-dependent
decision making (CDM) task inputs and outputs. Neural trajectories correspond to the neural firing
rates, task output refers to a linear readout as in eq. 6. b. For the CDM task, similarity between
trajectories produced by original full-rank networks and a series of fitted networks of increasing rank
(red), or low-rank networks obtained by truncating the original connectivity matrix (grey). Each line
corresponds to a randomly initialized full-rank network. c. Task accuracy of the same networks when
associated with the original task readout. d-e. Same as b-c. for the delayed match-to-sample (DMS)
task. f. For the CDM task, similarities between trajectories of the original and fitted networks of rank
one (blue) or full-rank (orange), when networks are fitted only to a random subset of neurons of the
original network. Error bars: mean ±1std over 10 random subsamples for each ratio value (see also
sup. fig. 8).

3.2.1 Extracting low-dimensional dynamics through low-rank connectivity

We considered full-rank, vanilla RNNs trained on two systems neuroscience tasks, respectively
context-dependent decision-making[29] (CDM) and delayed match-to-sample[5] (DMS). The full-
rank RNNs reached a 100% accuracy on each task, and—as expected—exhibited low-dimensional
dynamics. From these RNNs, we generated trajectories corresponding to trials in the trained tasks,
and then used LINT to infer lrRNNs of increasing rank.

In the CDM task, a network received two signal inputs which varied randomly around a positive or
negative mean, as well as two binary context cues, one of which was set to 1 in each trial. The network
was trained to output the average sign of the signal indicated by the active context, while ignoring the
other signal (fig. 2a, see Appendix B for task details). Applying LINT, we found that rank-1 networks
are sufficient to accurately reproduce the trajectories of the trained full-rank networks. Increasing the
rank improved the goodness-of-fit only marginally (fig. 2b). In contrast, low-rank networks obtained
by truncating the SVD of the trained full-rank connectivity matrix required a rank of 4 or 5 to reach
a comparable accuracy (fig. 2b), and much higher for different hyperparameters (sup. fig. 1). This
shows that LINT captures a simplified connectivity structure that could not be trivially extracted from
the original connectivity. Moreover, even though not explicitly trained on the behavioral outputs,
the inferred rank-1 networks performed the task correctly when plugged onto the original readout,
implying that they faithfully captured the task-related dynamics (fig. 2c).

For the DMS task, we similarly found that rank-2 networks were able both to capture the dynamics of
the trained full-rank network and to accurately perform the task, with no notable improvement when
the rank is increased (fig. 2d-e). As for the CDM task, LINT vastly outperformed direct truncation
of the full-rank connectivity matrix. For both these tasks, reproducing the experiment over a larger
number of full-rank RNNs, trained with diverse hyperparameters and random seeds led to similar
results (sup. fig. 1).

5



Finally, it is important to note that the CDM and DMS tasks are particularly prone to low-dimensional
implementations, which is not necessarily the case for all computations of interest in systems
neuroscience [18]. To probe the capacities of LINT with higher-dimensional tasks, we applied
it to full-rank networks trained on the K-back task, where a network receives a random number
P of stimulations in {−1, 1} and has to output the K-th last stimulation received, a task directly
inspired from sequence working memory paradigms [62]. This task requires the implementation of
an internal working memory with a capacity of at least K bits, and should thus require a rank at least
K. We indeed observed that the rank identified by LINT increased with K, but only linearly (see
details in appendix F and sup. fig. 9). These results show that LINT is also helpful in probing the
dimensionality required for more complex tasks.

Subsampling. In experimental settings, one cannot expect to have access to all units of a network. It
is thus important to assess whether we can still recover the relevant low-dimensional dynamics and
information when only a handful of neurons from a network are recorded. We considered a full-rank
network trained on the CDM task, and fitted networks to its trajectories, either without constraining
their rank or by fixing it to one. Without subsampling, the inferred full-rank networks slightly outper-
formed rank-1 networks in reproducing the original trajectories. Yet when considering subsamples
of neurons, rank-1 networks appear to be more robust than unconstrained ones, maintaining a good
performance until subsampling ratios as low as 1% of original neurons (fig. 2f). This experiment
was reproduced on the DMS task setting, showing a similar advantage for low-rank fitted networks
(sup. fig. 8).

3.2.2 Extracting computational mechanisms from inferred low-rank connectivity

Low-rank models of behavioral tasks open the door to mechanistic interpretations of the underlying
dynamics [30, 9]. Here we show how LINT allows us to extract computational mechanisms from
full-rank networks performing the CDM task.

signal B coh.
signal A

 coh.-

+

-

+

Context BContext A

Figure 3: Low-dimensional projections produced
by LINT. Trial-averaged trajectories for differ-
ent task conditions, in the original full-rank net-
work (full lines) and the inferred low-rank network
(dashed lines), projected on axes obtained from the
fitted lrRNN connectivity: input A and B axes, and
the output axis of the rank-1 recurrent connectivity
m, which encodes choice. All trajectories start at
center.

A first output of LINT is a set of interpretable
axes defining a task-related subspace for dimen-
sionality reduction. The inferred rank-1 model
of the CDM task specifically yields five axes that
correspond to the two stimulus inputs, the two
context inputs and an internal latent variable,
generated by recurrent connectivity, which rep-
resents integrated evidence and therefore choice.
Projecting the activity of the full-rank network
along these axes shows how low-dimensional
dynamics transform inputs into the choice out-
put (fig. 3). In this case, the axes determined
by LINT are closely related to those obtained
by standard targeted dimensionality reduction
(TDR, sup. fig. 2) [29]. However, in contrast
with TDR, the axes inferred by LINT corre-
spond to connectivity features causing the low-
dimensional dynamics, and provide a method
for an unsupervised discovery of recurrently-
generated latent variables. In particular, we did
not a priori specify that the activity along m
should encode choice, but directly observed that
choice was generated along that axis through
recurrent dynamics.

Going beyond dimensionality reduction, LINT
extracts an effective low-dimensional model of the task. For the CDM task, the inferred model
is a one-dimensional, non-linear latent dynamical system, where the latent variable integrates the
relevant evidence. To understand how context-dependent selection of the evidence was performed, we
analyzed the connectivity parameters of the inferred rank-1 RNN. Indeed, recent work has introduced a
clustering method for analyzing low-rank connectivity, and has showed that in trained lrRNNs, context-
dependent integration relies on gain-modulation mechanism mediated by two distinct populations of
neurons [9]. Applying a similar clustering approach to rank-1 networks inferred by LINT led to a
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Figure 4: Extracting mechanisms and testing predictions from a low-rank network (top) inferred from
a full-rank network trained on the CDM task (bottom). a. Three populations of neurons (grey, green
and purple) are identified by clustering connectivity parameters in the fitted rank-1 network (top).
Here, we plot the same populations in joint distributions of contextual input vectors in the rank-1 (top)
vs full-rank (bottom) networks. The populations are not directly identifiable from input parameters in
the original network (bottom). b. Neural transfer function (tanh) and smoothed distributions of mean
neural activity for populations A and B in the inferred rank-1 network (top) and the full-rank network
(bottom). c. Inactivation experiments: task performance on each context for unperturbed networks
and after inactivating populations A and B in the fitted rank-1 network (top) and inactivating the same
neurons in the original unconstrained network (bottom). Red dots: chance level.

comparable mechanism. Specifically, this method identified two populations distinguished by strong
values of the fitted weights for the context-cue inputs (fig. 4a top and sup. fig. 2). In each context,
these context-cue inputs place the neurons belonging to the two populations at different positions
on the non-linear transform function ϕ(x) (fig. 4b top), thereby modulating in opposite ways their
gains (defined for each neuron as the local slope ϕ′(x)). Combined with different statistics of the
connectivity parameters on each of the populations, this modulation is sufficient to implement the
desired context-switching behavior of the network (see details in Appendix D). The same pattern
of gain modulation was found in the original full-rank network, indicating that it is using a similar
mechanism (fig. 4b bottom).

The computational mechanism extracted using LINT produces predictions for inactivations that can
be directly tested in the original full-rank model. The analysis described above assigns neurons
to different populations that have specific computational roles. Specifically, in the inferred rank-1
network, inactivating separately each population leads to a specific loss of performance in a single
context, but not the other one (fig. 4c top and sup. fig. 2 for detailed error patterns). Since individual
neurons in the original networks directly correspond to neurons in the rank-1 network on a one-
to-one basis, the identified populations can be directly mapped back onto the original network to
reproduce the inactivation experiment. The predicted effects of inactivations on context-dependent
performance were directly replicated in the full-rank network, demonstrating that it relies on the
identified computational mechanism (fig. 4c bottom and sup. fig. 2). One can note that although the
two identified populations clearly stand out in the inferred rank-1 connectivity, they are not directly
apparent in the original full-rank connectivity (fig. 4a bottom), showing that although the mechanism
extracted by LINT applies to the full-rank network, using an lrRNN was a necessary step to uncover
it.

3.3 Application to neural recordings

We next applied our method to in vivo recordings. We considered here electrophysiological recordings
from non-human primates performing a context-dependent decision-making task similar to that
studied in previous sections [29]. More specifically, two macaques (designed by A and F) were
presented with random dots stimuli that varied along two dimensions: the overall motion direction of
the dots, and their overall color, ranging from two extremes with a set of intermediary coherences
in between. At the beginning of each trial, a cue indicated a context for the trial, ordering the
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Figure 5: LINT applied to neural recordings from a non-human primate performing a context-
dependent task (monkey A) [29]. a. Global R2 of model trajectories with respect to original ones,
and task accuracy of inferred networks of increasing ranks. b. For the rank-1 inferred network, R2 of
each recorded neuron plotted against its average data firing rate, median R2 in red, with marginal
box-plot of R2 values. 14 neurons with an R2 < −1 are not shown, all with a mean firing rate < 2.2
(see sup. fig. 4). c. Trial-averaged trajectories in the recorded data (full lines) and for the rank-1
model (dashed lines), for different task conditions (only one coherence value for each coherence sign
is plotted here), projected on axes identified by LINT (motion and color input axes and the output
axis m of the rank-1 recurrent matrix). Trajectories start at the center.

subject to report either the average motion or color with an eye saccade, while ignoring the irrelevant
evidence. Non-simultaneous recordings were performed in the frontal eye field (FEF) an area of the
macaque prefrontal cortex, with respectively 727 neurons for monkey A and 574 neurons for monkey
F recorded in all 72 conditions the task presented (ignoring error trials).

For the analysis, we started by binning (5 ms) and smoothing (50 ms std Gaussian window) spike train
data, and then computed the trial-averaged response of every neuron in each of the task conditions,
forming a pseudo-population tensor of size N × T × 72 with N the number of neurons in each
monkey and T = 150 the number of discrete time steps. We denoised this tensor by projecting its
first axis on the subspace spanned by the top 12 principal components of the pseudo-population
activity, and then projecting back to the high-dimensional space spanned by all neurons [29]. Finally,
in order to consider only task-related neural activity, we subtracted from each neuron’s trajectory its
condition-averaged mean. We denote the entries of the final obtained tensor by x̃i,t,c.

We applied LINT to the obtained trajectories, training the activation of each unit in the low-rank RNN
(noted xi,t,c) to match the corresponding pre-processed activity. Importantly, the inferred networks
received inputs following the same structure than in the CDM task of previous sections, that is two
noisy signal inputs and two contextual cue inputs (fig. 2a), and were left unconstrained for the first
350 ms of each trial while receiving only contextual cues, to account for the original task procedure.
In particular, we made the implicit hypothesis that choice signals are generated by the recurrent
activity of the network from received inputs. The quality of fits was quantified by leaving out a
random subset of 8 conditions during network inference, and evaluating the R2 of fitted networks on
these left-out conditions.

We found that for both monkeys the neural activity was well reproduced by a rank-1 network, with
minimal improvements when the rank was increased (fig. 5a and sup. fig. 5, R2 = 0.66 for monkey A,
and R2 = 0.57 for monkey F). Moreover, when simulated independently, the inferred rank-1 networks
were able to perform the task by adding a linear readout (accuracy curves in fig. 5a, sup. fig. 5). This
was the case even though the recurrent and input connections were not trained on task performance,
demonstrating that the reproduced trajectories contained information about the choice made by the
monkey. The activity of both original and reproduced trajectories can moreover be projected on the
axes identified by LINT, providing a geometrical picture of task execution (fig. 5c). These axes were
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closely related to those found by targeted dimensionality reduction: notably the context, motion, and
color axes identified by TDR closely match the corresponding input axes in the inferred network,
while the choice TDR axis could be identified to the m axis of the rank-1 recurrent connectivity
(sup. figs. 4,5). The projections of the original activity on the connectivity axes (full lines on fig. 5b)
therefore showed how inferred connectivity explains the geometry of recorded data.

A closer look at the distribution of inferred connectivity weights provided more information on the
neural mechanisms at play (sup. figs. 6, 7). In contrast to the fits of task-optimized networks, we
observed for both monkeys a clearly non-normal, heavy-tailed distribution of inferred connectivity
parameters (Fisher’s kurtosis between 4.9 and 62.7 for different connectivity parameters), echoing
some past observations on biological synaptic weights [51, 4]. Separating with a clustering algorithm
(GMM) large and small-weight neurons showed that the latter could be inactivated without affecting
the task performance of the network in a significant way (sup. figs. 6, 7), even though they repre-
sented a majority of neurons in the circuits (570/727 neurons in monkey A, 389/574 in monkey F).
This suggests that a minority of neurons with large connectivity weights supports the computation
performed by these networks.

4 Discussion

In this paper, we introduced LINT, a new method for inferring a latent dynamical system from neural
activity based on the theory of low-rank RNNs. This method yields a mechanistic, interpretable
and predictive model of neural trajectories, and bridges different levels of analysis, from state-space
geometry to neural connectivity. After verifying the consistency of our method, we demonstrated its
potential to extract the mechanisms used by "black-box" vanilla RNNs trained to perform cognitive
tasks. In particular, we found that low-rank RNNs reproduced well the dynamics of full-rank RNNs
trained on a variety of tasks and across a range of hyperparameters. Moreover, the obtained lrRNNs
provided interpretable low-dimensional projections of the fitted activity, as well as predictions for
the effects of inactivations of specific populations of neurons. These predictions were verified in the
original network, validating computational mechanisms derived from inferred low-rank connectivity
weights. Finally, we applied LINT to neural activity recorded in the prefrontal cortex of nonhuman
primates during a context-dependent decision-making task. LINT was able to infer rank-1 networks
that reproduced both neural activity and task performance, from which low-dimensional projections
and interpretable connectivity could be extracted.

Our results pave the way for a better understanding of how RNNs perform computations. In particular,
LINT is complementary to other approaches seeking to reverse-engineer RNNs [55, 29, 50] in that it
infers an effective connectivity that links low-dimensional dynamics with interactions at the single
neuron level, opening possibilities for goal-oriented interventions and a better control on the behavior
of trained networks. Moreover, LINT leads to compressed, distilled versions of large networks that
can be of practical interest to engineers, as suggested by recent research in low-rank training of deep
neural networks [20]. Extensions to reverse-engineering more complex architectures like GRUs or
LSTMs, which have already been shown to rely on low-dimensional trajectories [28, 26, 21] would
be an interesting direction for future research.

It is worth noting that other statistical methods such as mTDR [1] can provide a better fit to the
same data, but do not identify a dynamical system that generates the trajectories. LINT is related
to switching latent dynamical systems [10, 50, 24, 19, 12, 58] in that it bridges descriptive latent-
space analyses like mTDR with methods that identify a predictive model of the dynamics, such as
LFADS [33]. A distinctive feature of LINT is however that (unlike LFADS) it retains a mechanistic
description at the level of neural connectivity of how the dynamics emerge from interactions between
neurons.

As a number of other data analysis methods for neuroscience, our approach relies on the ubiquitous
observation that neural dynamics appear to be confined to low-dimensional manifolds within the
activity state-space [7, 17, 43]. Recent works have proposed that this low-dimensionality might be an
artifact stemming from the simplicity of the examined tasks [18], or have reported higher-dimensional
activity patterns [53, 23, 59]. This raises the question of how far our method could account for
activity in more complex tasks. Our results on the K-back task suggest that LINT scales well with
task dimensionality, and hint to a possible compositional implementation of internal computations

9



that could be unpacked by breaking them into simpler primitives [63, 8]. Further confronting our and
related methods to higher-dimensional task designs however remains an important endeavour.

Distinguishing signals generated by dynamics within a given area from external inputs it receives is a
major challenge for any interpretation of neural recordings, and a focus of recent work [16, 45, 42].
Most methods for inferring latent dynamics from activity data rely on ad hoc assumptions about
the inputs received by a circuit. Following previous work [29], when analyzing recordings from the
prefrontal cortex we hypothesized that choice was recurrently generated within the recorded area.
LINT however potentially provides a new approach for testing hypotheses on input structure, by
comparing models fits obtained from single-trial recordings, or by building multi-area models [2]
from large-scale recordings that are increasingly available nowadays [49, 48, 52, 35].
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A Low-rank RNN dynamics

Here, we detail the theoretical link between connectivity and low-dimensional dynamics in low-
rank RNNs, and outline its consequences for the main results. This section mostly summarizes the
mathematical results of the papers [30], [3] and [9]. Sections A.3 and A.4 can be read without the
preceding ones.

A.1 Low-dimensional dynamics

Let us first recall the formalism. We consider a network of N units, each characterized by an
activation that follows the dynamics given in eq. (1) of the main text:

τ
dxi

dt
= −xi +

N∑
j=1

Jijϕ (xj) +

Nin∑
s=1

I
(s)
i us(t) + ηi(t). (7)

with a connectivity matrix of rank R ≪ N , written as:

Jij =
1

N

R∑
r=1

m
(r)
i n

(r)
j . (8)

where, to remove all degeneracy, we define vectors m(r) as the left singular vectors of the connectivity
matrix, and vectors n(r) as the right singular vectors multiplied by the corresponding singular value
(determined up to a change in sign). A consequence of this definition is that the m(r) vectors are all
orthogonal to each other, and the n(r) vectors as well. As a further simplifying assumption we will
also assume that the I(s) vectors are also orthogonal to each other, and to each of the m(r) vectors.

Injecting equation (8) into the differential equation (7) gives the vector dynamics:

τ
dx

dt
= −x(t) +

R∑
r=1

m(r)n(r)⊤ϕ(x(t)) +

Nin∑
s=1

I(s)us(t) + η(t), (9)

where ϕ is applied in an elementwise manner. A direct consequence of (9) is is that the vector of
neural activations x(t) is constrained to evolve in a subspace spanned by the vectors m(r) and I(s),
of dimension R+Nin. Since these vectors form a basis of this subspace, one can decompose x(t)
as:

x(t) =

R∑
r=1

κr(t)m
(r) +

Nin∑
s=1

vs(t)I
(s), (10)

where the κr(t) are a set of recurrently generated latent variables, defined as the projection of x(t)
on m(r):

κr(t) :=
1

∥m(r)∥2
N∑
j=1

m
(r)
j xj(t), (11)

and the vs(t) are low-pass filtered versions of the input signals us(t), following:

τ
dvs
dt

= −vs(t) + us(t). (12)

The dynamics of the internal variables κr(t) can also be described by a set of self-consistent
differential equations, obtained by projecting equation (9) on each m(r):

τ
dκr

dt
= −κr(t) +

1

N

N∑
j=1

n
(r)
j ϕ(xj(t))︸ ︷︷ ︸

:=κrec
r (t)

, (13)

(where we have taken into account the orthogonality of each input vector I(s) with the vectors m(r)

as a simplifying assumption). The second term of the r.h.s. of this equation, κrec
r (t), which represents
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the recurrent contribution to the input of r-th latent variable, can be expanded as:

κrec
r (t) =

1

N

N∑
j=1

n
(r)
j ϕ

(
R∑

r′=1

κ′
r(t)m

(r′)
j +

Nin∑
s=1

Isj vs(t)

)
, (14)

which only depends on the set of κr(t) and vs(t) functions, closing the system of equations.

Equations (13)-(14) show that a rank-R RNN is an R-dimensional dynamical system, which can be
written as:

d

dt
κ(t) = F (κ(t),u(t)) (15)

with κ(t) an R-dimensional state-space vector, and u(t) the Nin-dimensional vector of input signals.
Here, F represents a non-linear map from RNin+R to RR that depends exclusively on the parameters
defining the network connectivity, that is the {I(s)i ,m

(r)
i , n

(r)
i }s,r,i. It can be shown that these

parameters can be chosen in order to approximate any non-linear map F , so that the class of rank-R
RNN are universal approximators for R-dimensional dynamical systems [3].

A.2 Mean-field approximation

Moreover, the map F can be more explicitly defined in the large network limit N → ∞, if
the connectivity parameters follow a particular distribution, namely a joint mixture-of-Gaussians
distribution [3, 9]. Notably, in this framework, each neuron is characterized by its weights
on the Nin input vectors and on the 2R recurrent connectivity vectors. Hence every neu-
ron i can be seen as a point in a (Nin + 2R)-dimensional connectivity space of coordinates
(I

(1)
i , . . . , I

(Nin)
i , n

(1)
i , . . . , n

(R)
i ,m

(1)
i , . . . ,m

(R)
i ) := (I, n,m).

We can then assume that these points are sampled from a probability distribution :

P (I(1), . . . , I(Nin), n(1), . . . , n(R),m(1), . . . ,m(R)) := P (I, n,m). (16)

We will take the assumption that the distribution P (·) is a mixture-of-Gaussians as in [3, 9]. It can
then be written as:

P (n,m, I, w) :=

P∑
p=1

αpN (µp,Σp) , (17)

with p components to the mixture, each associated to the probability αp, the mean µp and the
covariance matrix Σp. We will add the simplifying assumption that all components are zero-
centered, and vary just in terms of their covariances, so that µp = 0. Then, following a mean-field
approximation, the dynamics in equation (13) can be simplified for each r to:

dκr

dt
= −κr(t) +

R∑
r′=1

σ̃n(r)m(r′)κr′(t) +

Nin∑
s=1

σ̃n(r)I(s)vs(t). (18)

where for any connectivity parameters a, b in {m(r), n(r), I(s)}, σ̃ab represents an effective coupling,
given by a weighted average over populations of the associated covariances:

σ̃ab =

P∑
p=1

αpσ
(p)
ab ⟨Φ

′⟩p, (19)

where σ
(p)
ab represent the covariance between parameters a and b in the p-th component (so that

e.g. σ
(p)

n(1)m(2) = 1
N

∑
i∈p n

(1)
i m

(2)
i ), and ⟨Φ′⟩p represents an average gain over neurons of the

p-th component, defined as the average over these neurons of the derivative of the neural transfer
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function ϕ′(xi). Since these gains are distributed normally on each population, this average depends
non-linearly on the κr and vs values following equation:

⟨Φ′⟩p = ⟨Φ′⟩


√√√√ R∑

r′=1

(σ
(p)

m(r′))
2κ2

r′ +

Nin∑
s=1

(σ
(p)

I(s))2v2s

 , (20)

where ⟨Φ′⟩ (∆) is the Gaussian integral:

⟨Φ′⟩(∆) =
1√
2π

∫ +∞

−∞
dz e−z2/2ϕ′(∆z). (21)

These equations finish to make the system given by equations (18) a closed system of non-linear
coupled differential equations where the unknowns are the variables κr(t).

A.3 Intuitive interpretation of the mean-field results

A more intuitive interpretation of those derivations is that equation (18) locally approximates the
recurrent dynamics as a linear dynamical system (LDS), driven by the effective couplings between
latent variables σ̃ab (which can vary depending on the state of the network κ(t) and on the inputs
u(t)). More specifically, the effective coupling from latent variable κr to latent variable κr′ (where
possibly r′ = r) is given by σn(r′)mr) , and the effective coupling from input s to latent variable r by
σn(r)I(s) .

These effective couplings can be modulated through equation (20) by inputs as well as the latent state
of the network, leading to different dynamics in different parts of the neural state-space. In particular,
inputs can have a purely modulating effect by modifying only the gain of specific population, hence
modifying the effective couplings and the resulting network dynamics.

A.4 Notion of effective connectivity

A consequence of equation (18) is notably is that the low-dimensional dynamics depend on the exact
entries on the m(r) and I(s) vectors, but not on the individual entries on the n(r) vectors. Instead,
n(r) vectors influence the dynamics only through their covariances with the m(r) and I(s) vectors.
Thus, all components of n(r) orthogonal to the subspace spanned by m(r) and I(s) are irrelevant for
the dynamics, and removing them leads to an effective connectivity matrix J eff which captures the
minimal features required for obtaining particular dynamics.

Thus, for a rank-R RNN, J eff is computed as:

J eff =
1

N

(
R∑

r=1

m(r)n
(r)
∥

⊤
)
, (22)

where each n
(r)
∥ is defined as the orthogonal projection of n(r) on the subspace spanned by the m(r)

and I(s).

B Cognitive tasks

Here we describe the input and output structure for the four cognitive tasks used in this study. In all
tasks we use the notations from section 2, considering Nin input signals us(t) and one target output
z∗(t), that can be defined only at specific timepoints of a trial. Durations are given in an abstract time
mapping, but tasks are implemented in a discretized time with timestep dt = 20ms

Decision-making task (DM). The network receives one input signal us(t), equal to Gaussian white
noise with standard deviation 0.1 (as for subsequent tasks), added to a mean coherence u drawn
uniformly from ±0.1×{1, 2, 4}. The target output z∗ is defined only at the final timestep of the trial,
and is equal to the sign of the trial coherence. Each trial starts with a 100ms fixation period with no
input, followed by an 800ms stimulus epoch, a 300ms delay epoch and a decision timestep.
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Working memory task (WM). This task is inspired on the traditional parametric working memory
and comparison experimental paradigm. The network receives one input signal, equal to:

u(t) = f1δ1(t) + f2δ2(t) + ξ(t)

where f1 is randomly sampled in [10, .., 34], f2 − f1 is randomly sampled in
{−24,−16,−8, 8, 16, 24} with the constraint that 10 ≤ f2 ≤ 34 and ξ(t) is white Gaus-
sian noise. The target output z∗(t) is defined only at the final timestep and equal to the exact value
f2 − f1. Each trial starts with a 100ms fixation period with no input, followed by a 100ms stimulus 1
epoch (where δ1(t) = 1), followed by a 500ms delay epoch, followed by a 100ms stimulus 2 epoch
(where δ2(t) = 1) and a decision timestep.

Context-dependent decision-making (CDM). This task aims at modelling the experimental work
of (Mante, Sussillo et al., 2013) [29]. The network receives four inputs, two noisy input signals
uA(t) and uB(t) defined as for the DM task with independently drawn coherences and noise, and
two contextual inputs uctxA(t) and uctxB(t) defined as a one-hot encoding of the trial context. The
target output during the final task epoch is set to the sign of the coherence of the input indicated by
the active contextual cue.

For the application of LINT to a full-rank network, the task was defined in five epochs: a 100ms
fixation epoch with no inputs, a 350ms epoch with only contextual inputs, an 800ms stimulus epoch,
with both noisy stimuli and contextual inputs, a 100 ms delay epoch and a 20ms decision epoch
which is the only one where the target output z∗(t) was defined.

For the application of LINT to electrophysiological recordings, four epochs were used: a 350ms epoch
where only contextual inputs were active, a 650ms stimulation epoch, an 80ms delay epoch and a
20ms decision epoch (used for computing task accuracy on the fitted networks). The trained networks
were constrained to reproduce neural activity only during the last three epochs. The coherences used
in this part of the work were sampled from ±{0.047, 0.15, 0.5} for monkey A, ±{0.07, 0.19, 0.54}
for monkey F.

Delay Match-to-Sample (DMS). This task reproduces a paradigm where two consecutive stimuli
each either of type A or B are presented, and the subject distinguishes between matches (both
stimuli of the same type) and non-matches (stimuli of different types). In our models, the stimuli
are given through two input signals uA(t) and uB(t), with Gaussian white noise centered around 0
or 1 while the corresponding stimulus is active. The task comprises five epochs, a fixation epoch of
duration 100ms, a first stimulation epoch of 500ms, a delay epoch of variable duration between 500
and 3000ms, a second stimulation epoch of 500ms and a decision epoch of 1000ms. During each
stimulation epoch a single type between A and B is sampled and the corresponding input signal is set
to a mean of 1. The target output z∗(t) during the decision epoch is equal to 1 for a match, -1 for a
non-match.

C Training details and hyperparameters.

Task-optimized lrRNNs. The full-rank RNNs were defined following a discretized version of
equation (1):

xt+1 = xt +
∆t

τ

(
−xt + Jϕ(xt) +

Nin∑
s=1

I(s)us,t + ηt

)
, (23)

with ηt a random normal vector with independent entries and standard deviation 0.05 on each entry,
and ∆t = 20ms, τ = 100ms. All networks were defined in pytorch [34] and trained using the
ADAM optimizer. We trained networks on 800 random trials, for a certain number of epochs being
divided in 25 batches of 32 trials. We considered networks with N = 512 units for this part of the
work.

For the low-rank RNNs (section 3.1), we trained the m(r) and n(r) vectors. For each task, we found
the minimal rank by training networks of increasing rank until they performed the task with more
than 95% accuracy. For the DM and CDM tasks, the weights were all initialized following a random
Gaussian distribution of standard deviation 1, and 4 for the readout weights wi. For the WM task,
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the rank-2 networks were initialized from the SVD of the connectivity matrix of a full-rank RNN
previously trained on the task. For the DMS task, this initialization trick was also used, as well as
the following shaping procedure: rank-2 networks were first trained on trials with a maximal delay
of 700ms, then 1000ms, and finally 4000ms. The learning rates used were of 0.01 for all low-rank
networks, and on the order of 10−4 for full-rank networks.

For the full-rank RNNs (section 3.2), we trained the connectivity matrix J . The initial weights were
sampled from centered Gaussian distributions with a standard deviation of 1 for input and readout
weights, and ρ/

√
N for connectivity coefficients Jij . The values of ρ used in the main text were 0.1

for the CDM task, and 0.8 for the DMS task, with results for other values displayed in sup. fig. 1.

LINT on data from task-optimized lrRNNs. For the application of LINT to synthetic data generated
from the task-optimized lrRNNs, we generated 800 trials for each task, simulated the trajectories
displayed by the task-optimized networks on these trials, and trained identical RNNs, all initialized
with random weights, to reproduce these trajectories. The networks were then tested on 800 newly
sampled trajectories to obtain the reported values of R2. Given trials k ∈ {1, . . . ,K}, timesteps
t ∈ {1, . . . , T} and neurons i ∈ {1, . . . , N}, the global R2 is computed as:

R2 = 1−

∑
k

∑
t

∑
i

(
x
(k)
i (t)− x̃

(k)
i (t)

)2
∑

k

∑
t

∑
i

(
x̃
(k)
i (t)− ⟨x̃(k)

i (t)⟩k,t,i
)2 (24)

following the notations of section 2.

LINT on data from task-optimized vanilla RNNs. For this application of LINT, synthetic data was
generated from task-optimized full-rank RNNs by simulating their responses to 800 trials for each of
the two tasks. Inferred low-rank networks were trained for 500 epochs on those trials, and then tested
on 800 newly generated trials. Reported R2 values were computed with equation (24).

LINT on electrophysiological data. Low-rank networks trained to reproduce trajectories were
trained on a set of 64 random conditions out of 72, and tested on the remaining 8 conditions to
compute reported R2. To compute the task accuracy, a linear decoder w was trained on the decision
epoch of the task to report the correct choice on all 72 conditions, and the obtained accuracy was
reported.

D Context-dependent decision-making mechanism

Here we complete the explanations of the main text detailing the mechanisms by which the full-rank
network performs the CDM task.

From a dynamical point of view, low-dimensional visualizations have shown that the neural activity
first moves along input-driven directions, before being slowly integrated along a choice axis (fig. 3
and sup. fig. 2). The rank-1 inferred network illuminates this behavior in terms of input and recurrent
connectivity: the input-driven direction (TDR stimulus A, stimulus B and context axes) correspond
to input vectors of the network, directly inserting the stimulus signals into the network. Choice,
however, is generated through the recurrent connections, more specifically through a rank-1 feature
of these connections: features that have to be integrated are selected by the n vector (which we
call the input-selection vector [9]), and are projected onto the m vector, which then encodes choice.
Hence, overlaps between the signal input vectors IA and IB and the input-selection vector drive the
integration of input signal into this recurrent loop.

However, the network selects in a context-dependent manner which of the signals is integrated into
the loop. We demonstrate in the main-text how this context-dependent selection relies on two separate
populations of neurons. More specifically, these two groups of neurons have different weights on
the contextual input vectors (IctxA and IctxB) which drive them towards different gain regimes:
for example, the neurons with the strongest weights on the IctxA vector are driven towards the
saturating parts of their non-linear transfer function in context A (fig. 4b). It happens that these
neurons exhibit a positive correlation between their entries on IB and n, necessary for integrating
the input B signal into the recurrent dynamics. While these neurons see their gain decreased, the
effective overlap between vectors IA and n as described in equation (19) is decreased, and hence
input B cannot be integrated anymore. Through this gain-modulation mechanism, the network is able
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to ignore the irrelevant signal during context A. The opposite mechanism naturally happens with
another population during context B.

This mechanism has a very consequence for ablation experiments: we have shown in fig. 4c how
inactivating specifically the green and purple population decrease performance only in one context
at every time. A more detailed picture appears when we look at the specific psychometric matrices
of the perturbed networks (sup. fig. 2e). For example, when inactivating population B (green), the
network actually keeps integrating input A even in context B: it is able to perform only the context
A task. The opposite error pattern appears when population A (purple) is inactivated. These error
patterns are exactly retrieved in the full-rank networks, showing that the same neurons have an exactly
similar role, even though it can be directly retrieved from looking at the full-rank connectivity.

E Delay Match-to-Sample full-rank network reverse-engineering

To display another example of how LINT can be exploited to reverse-engineer mechanisms used by a
"black-box" full-rank RNN, we apply it to the networks trained on another task. Here we consider the
DMS task, where the network receives two consecutive stimuli chosen among two possible classes A
and B, separated by a delay period, and has to output during its response period a positive value if the
stimuli were of the same class ("match"), a negative value otherwise ("non-match", see full details in
appendix B).

When training full-rank RNNs on this task, it appeared that they could be well approximated by
lrRNNs of a rank usually equal to two (fig. 2), irrespective of their training hyperparameters (fig. 1).
Here, we focus on a full-rank RNN trained with an initial connectivity of standard deviation equal
to 0.8/

√
N and N = 512 units, which was well approximated by a rank-2 lrRNN (R2 fit qualities

for individual neurons shown in sup. fig. 3a). Indeed, this network, although trained without any
constraint on its connectivity, exhibited low-dimensional trajectories as can be seen by performing
a PCA (sup. fig. 3b). An idea of how neural geometry enables the networks to perform the task
can be obtained by observing projections of the trajectories on spaces spanned by the first principal
components. Typically, observing projections on the top 3 components (sup. fig. 3c), it becomes
apparent that the network relies on four fixed points, one for remembering that the first stimulus is A
during the delay period (middle right), one for remembering that the first stimulus is B (at the left),
also used to indicate a match, one to indicate a non-match (at the right) and finally one to indicate
only a match A-A (at the right). Stimulus inputs seem to drive activity through transient tunnels
from one fixed point to another. This picture provides a certain grasp of phenomena happening in
the network, but does not illuminate how dynamics enable activity to correctly jump between fixed
points, nor how connectivity enables this dynamical picture to emerge.

The rank-2 network inferred by LINT has its activity constrained by design to a four-dimensional
subspace of the neural state-space, spanned by the two input vectors of the network IA and IB as
well as the two output vectors of the recurrent connectivity m(1) and m(2). These four vectors indeed
have a significant overlap with the top four principal components (sup. fig. 3d), with the difference
that they disentangle input from recurrent contributions to neural activity. The rank-2 connectivity is
also characterized by two input-selection vectors of the recurrent connectivity n(1) and n(2), which
will be a key driver of the network dynamics, as well as a task readout w.

Projecting the neural trajectories on the subspace spanned by the two output recurrent vectors
shows indeed that the activity of the rank-2 network reproduces well that of the original network,
and that both networks rely on four fixed points to perform the task in the manner outlined above
(sup. fig. 3e). In the absence of inputs, the neural dynamics of the rank-2 network stay confined to
the two-dimensional m(1)-m(2) space, so that the full autonomous dynamics can be visualized as a
vector field, illuminating the dynamical inner workings of such networks (sup. fig. 3f). This reveals
the existence of the four stable fixed points in the dynamical landscape, as well as an unstable fixed
point at the origin and four saddle points. Moreover, while tonic inputs are received, which is the
case during each stimulation period, the dynamics shift to a two-dimensional affine subspace of the
neural state space, parallel to the m(1)-m(2) plane but shifted along the received input vector. The
dynamics while a tonic input is received can thus also be visualized as a two-dimensional vector
field (sup. fig. 3g), explaining how inputs drive transitions from one fixed point to another. More
specifically, only the two stable fixed point on the lower part of the plane are kept during a stimulation
by input A, while dynamics have a slight clockwise rotational component. Hence, if input A is

21



received during a short stimulation period, they are driven towards the lower right part of the plane,
where they can stay in a fixed point during the delay period (red and orange trajectories), and if
a second input A is received, they will be driven towards the lower left fixed point. Conversely,
under input B stimulation, only the two fixed points on the top of the plane are kept, with a very
slight counterclockwise rotational component on this plane (at least under the vicinity of the origin,
although not very visible in the plotted field). Hence, if stimulus B is received first, the network
will be driven to the top left fixed point. If a second stimulus B is received, the network will stay in
that state, whereas if a second input A is received it will be driven towards the top right fixed point
(non-match).

These full dynamical landscapes provide us with a step-by-step decomposition of the task trials,
and can also lead to predictions for trials taht do not appear in the task (for example we could
predict the network behavior if three stimulations are received, or with longer or shorter stimulations).
Moreover, the rank-2 connectivity can illuminate how this dynamical behavior emerges from the
learned synaptic weights [3, 9]. A detailed account would go beyond the scope of this text, but some
insights can be extracted easily: first, looking at the distribution of the weights of all neurons on
vectors m(1) and m(2) (sup. fig. 3h), it appears that they separate in four clusters, each scattered
around a different mean forming a quadrilateral on this plane. This type of population structure
has been shown to enable the apparition of polygons of stable fixed points in the neural state space
(see notably [3]). The way in which inputs modify dynamics can also be explained by connectivity
features: more specifically, inputs A and B seem to modify the gains of different groups of neurons,
as was the case for the contextual cues in the CDM task. Importantly, the neurons that are driven to a
low-gain regime by input A (defined as the set of neurons i such that |IAi | > 1) are characterized
by a negative correlation between vectors n(1) and m(2), and neurons driven to a high-gain regime
by the same input exhibit a different correlation between these two vectors. Due to this differential
distribution, while input A is received the effective coupling between the two latent variables κ1 and
κ2 is modified. A converse situation happens with input B, explaining how input A generates this
slight clockwise rotational component in the dynamics, and input B generates an opposite rotation.
These local rotations, coupled with correlations between inputs and the recurrent vectors lead to the
apparition of the plotted dynamical landscapes. These analyses could be verified by examining gains
of neurons and performing ablation studies in the full-rank network, as has been done for the CDM
task.

F Experiments on K-back tasks

To probe the capabilities of the LINT method on tasks that by design require higher-dimensional
dynamics, we implemented it on the K-back task, inspired from classical paradigms of sequential
working memory tasks [62]. In this task, for a certain fixed K, networks received a random number
P ≥ K of stimulations in {−1,+1} and had to output the K-th last stimulation received. In particular,
for K = 1, this task corresponds to the classic running-memory flip-flop task [55]. Stimulations
were received through a single input signal u(t) transmitted by an input vector I and outputs were
obtained through a linear readout following eqs. (1) and (6). Each stimulation lasted for 50 ms, and
was separated from the next one, or the response period, by a 50 ms delay. We implemented the task
following the methods outlined in appendix C, with 512-neuron networks. P was capped at 12.

This task requires the networks to implement an internal memory with a capacity of at least K bits, it
is thus reasonable to believe that a rank at least K is necessary to perform it. We first directly sought
to validate these intuitions by training networks of increasing ranks to behaviorally perform the task,
for K between 2 and 6. We observed that indeed the rank increased as K did, and that a rank equal
to K seemed to be sufficient to implement the K-back task (sup. fig. 9a).

We next probed whether LINT could be applied to full-rank networks trained on the K-back task,
despite the higher dimensionality. We thus trained full-rank networks on the task, for K from 2 to
6 (and an initial connectivity of standard deviation ρ/

√
N for ρ = 0.8), and fitted their trajectories

with low-rank networks of increasing ranks. Again, we found that full-rank networks trained on the
K-back task appeared to be imitated well by low-rank networks with a rank as low as possible, i.e.
K, both in terms of trajectories and behavior (sup. fig. 9).
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G Supplementary figures
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Supplementary Figure 1: For different values of ρ, where the standard deviation of initial recurrent
weights is ρ/

√
N , we train 10 unconstrained networks, and either fit low-rank networks to their

trajectories with increasing ranks or truncate their connectivity matrices to the same rank. The
obtained R2 similarity between original and fitted trajectories and task accuracy when plugging
low-rank networks to the original readout are illustrated with a different line for each original
unconstrained network. Top 2 rows: experiments on Context-dependent decision making task.
Bottow 2 rows: experiments on the Delay Match-to-Sample task. Note that with higher initial random
recurrent weights, unconstrained networks tend to go to what has been termed as the "lazy" training
regime, with potentially higher dimensional trajectories with respect to the the "rich" training regimes
for smaller initial weights [15]. This is visible through the poor performance of truncated connectivity
matrices, but does not harm the effectiveness of our method.
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Supplementary Figure 2: Additional figures on LINT applied to a full-rank network performing the
CDM task (exhibited in figs. 3 and 4). a. Low-dimensional projections of trial-averaged population
trajectories for several combinations of context, stimuli A and B and choice, as in fig. 3 in the original
full-rank network (full lines) and the inferred rank-1 network (dashed lines), projected on axes found
by targeted dimensionality reduction (TDR) [29] applied to the full-rank network. b. Correlation
between the four axes found by TDR on the full-rank network and the connectivity axes inferred by
LINT. c. Number of units assigned to each of the three populations used for the reverse-engineering.
Here, we manually defined population A as the 100 units with the strongest absolute context A input
weight in the rank-1 network (see fig. 3a top), and population B as the 100 units with the strongest
context B input weight not in population A. Applying Bayesian GMM clustering with 3 components
and a strong mean precision prior gives very similar results. d. For the inferred rank-1 network, joint
distributions of connectivity weights on the input vector IA and n, as well as on IB and n. For each
population, linear regression lines are plotted. e. Psychometric response matrices in each context
for all combination of stimulus coherences, for the inferred and original network when they are left
unperturbed or after lesioning populations A and B. Unperturbed matrices indicate expected behavior.
One can observe that inactivation of population B leads the networks to always behave as if in context
A (losing its capacity to perform in context B), whereas the opposite phenomenon happens when
population A is inactivated.
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Supplementary Figure 3: LINT applied to a full-rank RNN trained on the DMS task. A rank-2 network
was inferred and is analyzed in this figure (see Appendix E for details). a. Boxplot representing the
distribution of R2 fitting values for individual neurons. b. Cumulative explained variance ratio for
top 10 principal components of a PCA applied to trajectories of the full-rank network. c. Trajectories
in the four possible task conditions in the original full-rank network, projected on the top 3 principal
components (squares: delay period, stars: end of trial). d. Correlation between axes inferred by a
PCA on the full-rank trajectories and connectivity axes of the inferred rank-2 network. e. Trajectories
of the full-rank network (full lines) and the rank-2 model (dashed lines) in the four task conditions,
projected on the two recurrent connectivity output vectors m(1) and m(2) (same colors as in c). f.
Same trajectories, superposed on the vector field representing autonomous dynamics in the rank-2
RNN. Colors indicate speed of the dynamics (blue: slow, yellow:fast). g. Vector fields representing
the dynamics on the m(1)-m(2) plane. h-j. Connectivity parameter distributions on the rank-2
models... h. on the two recurrent output vectors m(1) and m(2) - four populations can be identified
by GMM clustering. i. on the connectivity vectors m(2) and n(1) - low-gain neurons while input A
is received in red, others in green with overlaid linear regressions for both groups. j. on the same
vectors, with low-gain neurons while input B is received in red, others in green.
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Supplementary Figure 4: Additional illustrations of LINT applied to electrophysiological recordings
in monkey A. a. Two-dimensional projections of trial-averaged population trajectories for several
combinations of context, choice, and motion or color coherence (indicated by the color code), as in
fig. 5c, in the recorded data (full lines) and the rank-1 model (dashed lines), projected on axes inferred
by TDR. b. Correlation coefficients between axes identified by TDR and LINT connectivity axes. c.
Pre-processed data responses and rank-1 model responses for individual neurons to 4 different task
conditions (uniquely identified by a context, a color coherence, and a motion coherence. Strongest
coherences displayed here). Top row: four best fitted neurons. Middle row: four worse fitted neurons.
Bottom row: four randomly selected neurons.

26



Context BContext Aa.

b.

c.

d.

m
otion coh.-

+

color coh.

-

+

Supplementary Figure 5: LINT applied to electrophysiological recordings of a second monkey
(monkey F) performing the same task. a-c. Same as fig. 5 for monkey F data. For panel b, 13 neurons
for which R2 < −1 do not appear, all having a mean firing rate of less than 3.8 Hz. d. Same as
sup. fig. 4 for monkey F, with the 4 best fitted neurons, the 4 worse fitted neurons, and 4 randomly
selected neurons.
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Supplementary Figure 6: Distribution of learned connectivity parameters for monkey A. a. Full
six-dimensional distribution of the inferred weights on the input and recurrent connectivity vectors of
the rank-1 model, plotted through two-dimensional and one-dimensional marginals. GMM clustering
can identify two groups of neurons: large-weight neurons (orange) and small-weight neurons (blue).
Inactivating the blue population does not affect task performance of the network. b. Same clusters
visualized in the mean firing-rate - R2 point cloud (fig. 5a).
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Supplementary Figure 7: Same as sup. fig. 6
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a. b. c.

Supplementary Figure 8: Additional results on subsampling experiments. a. Task accuracy for the
same fitted networks visualized in fig. 2f. b-c. Similar experiment as that described in fig. 2f, this
time where trajectories were generated from a full-rank network trained to perform the DMS task,
and respectively full-rank and rank-2 networks were fitted to random subsamples of neurons of the
original network. Error bars: mean ± std over 10 random subsamples for each ratio value.

a. b. c.

Supplementary Figure 9: Networks trained on the K-back task (see appendix F). a. Final accuracy of
low-rank networks of increasing rank trained to perform the task, for K between 2 and 6. Notice that
a rank K seems necessary and sufficient for the K-back task. b. R2 values for the trajectories of
full-rank networks trained on the K-back task, and networks of increasing rank trained to reproduce
their trajectories, for K between 2 and 6. c. Final task accuracy for the same low-rank networks.
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