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Two-photon laser scanning microscopy of calcium dynamics 
using fluorescent indicators is a widely used imaging method 
for large-scale recording of neural activity in vivo. Here, we 
introduce volumetric two-photon imaging of neurons using  
stereoscopy (vTwINS), a volumetric calcium imaging method 
that uses an elongated, V-shaped point spread function to 
image a 3D brain volume. Single neurons project to spatially 
displaced ‘image pairs’ in the resulting 2D image, and the 
separation distance between projections is proportional to 
depth in the volume. To demix the fluorescence time series 
of individual neurons, we introduce a modified orthogonal 
matching pursuit algorithm that also infers source locations 
within the 3D volume. We illustrated vTwINS by imaging neural 
population activity in the mouse primary visual cortex and 
hippocampus. Our results demonstrated that vTwINS provides 
an effective method for volumetric two-photon calcium 
imaging that increases the number of neurons recorded while 
maintaining a high frame rate. 

Two-photon excitation laser scanning microscopy1 (TPM) ena-
bles high-spatial-resolution optical imaging in highly scattering 
tissues such as the mammalian brain. When TPM is combined 
with genetically encoded calcium indicators2,3 or synthetic indica-
tors that label neural populations4, intracellular calcium dynam-
ics can be measured across a population of cells, thus providing 
a method for large-scale recording of neural activity at cellular 
resolution4,5. Expanding the number of simultaneously recorded 
neurons increases the power of population analysis methods  
in studies of neural coding and dynamics. To increase the number 
of neurons recorded with two-photon calcium imaging, volumet-
ric imaging methods, such as multiplane imaging6, random access 
fluorescence microscopy7–9, and ultrasound lens scanning10,  
have been developed.

In traditional TPM1, a diffraction-limited, high numeri-
cal aperture (high NA) point spread function (PSF) is raster-
scanned across a single plane. Volume imaging can be performed 
by sequentially moving the focal plane (or sample) up or down 

between each raster scan, and this pattern is repeated for each 
volume measurement. This method can be implemented with 
movable objectives, remote focusing11, or a liquid lens6. However, 
if the frame rate for single-plane imaging is N frames/s, and the 
number of planes imaged per volume is m, then the aggregate-
volume frame rate is decreased to N/m. Many calcium indicators12 
have on-response kinetics below 0.1 s. To capture these dynamics, 
volume frame rates must remain close to 10 Hz. With current 
resonant-scanner-based TPM (N ≈ 30 Hz), this requirement sug-
gests that only a relatively low number of planes (m = 3,4) can be 
used for multiplane volumetric imaging.

Elongation of the PSF of the focused excitation beam along 
the optical axis, by using either a low-NA Gaussian beam focus 
or Bessel beam methods13, can be used with raster scanning to 
form a projection image of a volume14. This methodology is 
useful in applications such as functional imaging of dendritic 
spines in sample volumes with sparse neural expression of the 
indicator15. However, in samples with dense expression, such as 
those encountered in large-scale recording of a neural population  
in vivo, extending a single PSF axially causes neurons at differ-
ent depths to be superimposed. Information about depth in the 
sample of individual neurons is lost, and demixing of fluorescence 
signals from individual neurons is compromised if their images 
substantially overlap.

Our method addresses these limitations by splitting an elon-
gated PSF into two excitation beams. These beams are spatially 
separated and angled inward to create a stereoscopic V-shaped PSF 
configuration (Fig. 1a). Raster scanning with this PSF produces 
a 2D projection image that preserves information about neural 
activity at different depths. We refer to this method as vTwINS. 
The intuition underlying vTwINS is straightforward: the soma 
of any neuron in the 3D volume makes two contributions to the 
2D projection image: one soma-shaped image for each arm of the  
V-shaped PSF. The spatial offset between these two images is equal 
to the distance between the two arms of the V at the neuron’s depth 
in the volume, thus resulting in short distances between deep neu-
rons and longer distances between shallower neurons (Fig. 1a).
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Although vTwINS ensures that all neurons have distinct ‘paired’ 
spatial profiles in the projection image, identifying which pair of 
image regions reflects a single neuron’s activity is ill conditioned  
on the basis of single images. Recent methods have solved this 
problem by leveraging the temporal statistics of neural activ-
ity across frames (for example, principal component analysis 
and independent component analysis16 and constrained non- 
negative matrix factorization (CNMF)17,18). We describe an 
inference algorithm based on orthogonal matching pursuit that 
exploits both the expected shapes of neural spatial profiles (pairs 
of rings or disks displaced along the axis of the V-shaped PSF) 
and the sparseness of neural activity. The image-pair separation 
∆ in a neuron’s identified spatial profile also determines its axial 
position via the relationship d = 0.5(∆ − ∆min)/tan(θ), where ∆min 
is the minimum interbeam distance of the PSF, and θ is the beam 
angle from the axial direction (Fig. 1a,b). Thus, the demixing 
algorithm provides both the neuron’s fluorescence time course 
and its location in the volume.

Here, we describe the optics developed to produce the vTwINS 
PSF and demonstrate images and image time series generated 
through this method. We then present the algorithm that we devel-
oped for identifying active neurons in these time series and demix-
ing fluorescence transients. Finally, using the combined imaging 
system and algorithm, we demonstrate large-scale recording of 

neurons expressing the genetically encoded calcium indicator 
GCaMP in the visual cortex and hippocampus in awake mice.

RESULTS
vTwINS optics
In a vTwINS microscope, the diffraction-limited PSF of tradi-
tional TPM is replaced with an elongated V-shaped PSF produced 
from two intersecting Gaussian beams, or Bessel beams (Fig. 1b). 
We created the V-shaped PSF by dual-beam excitation through a 
single objective lens (Fig. 1c,d). To produce a V-shaped PSF, the 
back aperture is illuminated with a pair of small Gaussian beams 
or rings (Bessel beams19). Adjusting the separation distance, 
beam convergence, and beam parameters changes the angle, 
offset, and extension of the PSF, respectively (Online Methods, 
Supplementary Fig. 1a and Supplementary Note 1).

As an initial proof of principle that vTwINS can spatially localize 
objects in a 3D volume, we imaged fluorescent beads embedded in 
agarose (Supplementary Fig. 2 and Supplementary Note 2). We 
localized the center positions of the beads to 2.7 ± 1.6 µm (N = 31) 
against a reference image stack, conditions more accurate than nec-
essary for imaging neuronal-cell bodies. When beads were localized 
over a large axial range, we found that in vivo (Online Methods) 
the effective axial illumination length of each elongated beam was 
approximately 1/e full width of the maximum intensity.
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Figure 1 | vTwINS concept and design. (a) vTwINS uses a V-shaped PSF to image neural volumes. During scanning, the two PSF arms intersect neurons 
at different depths (for example, the blue and green stylized neurons) at different time intervals. Deep neurons intersect the second arm soon after the 
first. Shallow neurons take longer for the second arm to intersect. Each neuron thus appears twice, and the distance between images indicates depth. 
(b) Example PSFs for diffraction-limited (high-NA) TPM and vTwINS microscopes using Bessel and low-NA Gaussian beams. (c) The vTwINS microscope 
consists of a beam-shaping module and a conventional two-photon microscope. The three optical paths generate the PSFs shown in b. In the Bessel and 
Gaussian (low-NA) vTwINS paths, lenses adjust the PSF’s axial extent, and a birefringent block (calcite) splits the beam in two and sets the PSF angle. 
(d) The back-aperture illumination profiles for the three paths in c. In the high-NA (conventional TPM) path, the overfilled back aperture is focused 
to a point. In the Bessel and low-NA Gaussian paths, two beams are focused to form each arm of the PSF. The beam divergence is adjusted with the 1× 
telescope before the calcite block to separate the two arms of the X-PSF and to form the V-PSF.
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vTwINS calcium imaging
In diffraction-limited TPM (Fig. 2a), a single soma-shaped spatial 
profile of high fluorescence intensity is observed when calcium 
transients are produced in an active neuron, and the cell soma of 
GCaMP-expressing quiescent cells can typically be resolved as 
well20. vTwINS images are qualitatively different. Active neurons 
are represented as two bright soma-shaped regions (disk or ring; 
Fig. 2b), and the images of quiescent neurons are typically not 
resolved, because the projection produces an increased and more 
uniform background intensity. The geometry of the vTwINS PSF 
decreases the signal of active neuropil and spreads it out over 
large regions, thus resulting in a broad, time-varying addition to 
the background intensity. When multiple cells are simultaneously 
active, many soma pairs become visible. Pairs from different cells 
have different spatial separations (Fig. 2c) representing different 
depths of the cell somas in the volume.

These properties of vTwINS-based calcium imaging data  
(Fig. 2) introduce unique challenges in demixing spatial profiles of 
neural activity to extract the fluorescence time traces of individual 
cells. First, there is a lower signal-to-noise ratio (SNR) per cell than 
that in diffraction-limited TPM, owing to the axially extended 
PSFs (Fig. 2b). Second, the spatial profiles of cells under vTwINS 
may partially overlap (Fig. 2d) and typically consist of disjoint 
regions. Whereas the geometry of vTwINS decreases the maxi-
mal overlap between profiles (Online Methods, Supplementary 
Note 3 and Supplementary Fig. 3), the disjoint nature of the 

profiles violates the spatial locality assumption in current demix-
ing methods16,18 (Online Methods and Supplementary Fig. 4b). 
Third, neurons coaligned in the fast-scan direction may create 
ambiguous, interdigitated spatial-profile pairs (Fig. 2e). Finally, 
intensity differences between the two images in a pair may result 
from the nonuniform scattering between the two beam paths (for 
example, owing to varying tissue properties).

vTwINS profile identification and demixing
We addressed the challenges of analyzing vTwINS data with 
sparse convolutional iterative shape matching (SCISM), a demix-
ing method that explicitly seeks horizontally separated image 
pairs (Online Methods, Fig. 3 and Supplementary Fig. 5). As 
a preprocessing step, we motion-corrected, temporally aver-
aged, and spatially binned the raw-image time series (Online 
Methods). At each iteration, candidate spatial profiles, consisting 
of stereotyped profiles (pairs of annuli separated in the fast-scan 
direction with different separation distances), are compared with 
the measured fluorescence across the field of view (FOV) (Fig. 3a 
and Supplementary Fig. 5a,b). Simultaneously estimating pairs 
of projections increases the available signal to distinguish the 
neural profile from the noise fluctuations (Supplementary Fig. 6 
and Supplementary Note 4). The stereotyped profile most corre-
lated with the data is then selected (Supplementary Fig. 5c), and 
the most highly correlated images are used to refine the profile 
shape to better match the data (Supplementary Fig. 5d). This step 
allows SCISM to handle spatial-profile pairs in which one beam 
path has lower intensity. The new profile is added to the set of 
active spatial profiles, and the corresponding time traces are esti-
mated by using non-negative LASSO21 (Supplementary Fig. 5e).  
Finally, the data residual is calculated by subtracting out the com-
ponent of the data captured by the current set of active spatial 
profiles (Fig. 3b and Supplementary Fig. 5f); this residual is used 
in the next recursion to determine the next spatial profile.
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Figure 2 | Example vTwINS images. All images are averages of five 
consecutive frames taken at 30 Hz. (a) Diffraction-limited TPM single-
plane image of GCaMP6f in the mouse visual cortex. (b) vTwINS scan 
of the same V1 area as in a, showing paired somas of active neurons 
and a decreased SNR because the background levels are much higher. 
Subtracting the temporal median at each pixel highlights neural activity. 
(c) Two fluorescing neurons imaged by vTwINS at different depths have 
different distances between the image pairs. Red circles indicate the 
different images, and red lines connect corresponding image pairs.  
(d) vTwINS images typically have overlapping spatial profiles. (e) Neurons 
aligned in the direction parallel to the plane of the V-shaped PSF (which 
is the same as the fast scan direction in our implementation) can create 
ambiguity in the spatial-profile image-pair assignment. Both the solid 
red lines (the true pairing) and the dashed blue lines indicate realizable 
distance pairings corresponding to different neuron positions, and 
temporal activity must be used to resolve this ambiguity.
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Figure 3 | Sparse convolutional iterative shape matching (SCISM) for 
demixing vTwINS data. (a) Example stereotyped neuron image pairs with 
different distances are matched across frames to determine the most likely 
pair. The new profile is refined by locally masking and averaging frames 
closely aligned with the stereotyped spatial profile. (b) The new profile 
is added to the set of spatial profiles, and the time traces for all spatial 
profiles are calculated via non-negative LASSO. The residual movie is 
recomputed by subtraction of the contribution of the current set of spatial 
profiles (the sum of outer products of the spatial profiles and their time 
traces). The algorithm then finds the next spatial profile by restarting and 
operating on the new residual.
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This procedure iteratively selects spatial profiles in a greedy 
manner in order of correlation strength with the data, by using 
both spatial and temporal statistics to determine the most likely 
spatial profile at each iteration. Specifically, SCISM leverages 

sparsity in neural activity as well as the spatial constraint that each 
spatial profile consists of two areas separated in the fast-scanning 
direction. Sparse neural activity is particularly important because 
it allows for minimal cross-contamination resulting from spatially 
overlapping neurons. After spatial profiles are determined with 
SCISM, full-resolution time-trace estimates are obtained by using 
nontemporally averaged data via non-negative LASSO.

Large-scale recording in the mouse visual cortex
Head-restrained GCaMP6f-expressing transgenic mice, running 
on a spherical treadmill, were presented with a visual stimulus 
sequence consisting of randomly placed Gabor patches (Online 
Methods). We performed vTwINS imaging in layer 2/3 of the 
primary visual cortex (V1). We acquired images in a 550 µm × 
550 µm area with a 45-µm-long inverted-V PSF (full width at half 
maximum (FWHM), 60 µm 1/e full width) at a 30-Hz frame rate 
over a 14-min imaging session.

We preprocessed the time-series fluorescence data with rigid-
motion correction and spatiotemporal averaging (Online Methods, 
Supplementary Fig. 7a and Supplementary Videos 1 and 2). 
The 511 spatial profiles obtained via SCISM (Fig. 4) showed sub-
stantial overlap, as expected from the high density of GCaMP-
expressing cells and the vTwINS PSF. We used the vTwINS PSF to 
extract the 3D cell positions (Online Methods and Fig. 4a,b). The 
demixed spatial-profile activity traces (Fig. 4c and Supplementary  
Fig. 8) had the expected temporal statistics of sparsely firing 
neurons. Because SCISM is an iterative method that extracts 
highly active spatial profiles first, the time traces were ordered on  
the basis of how correlated the profiles were with the data.

The spatial-profile volumetric locations (Fig. 4b) indicated that 
vTwINS records activity across the entire axial extent of the PSF. 
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The range of axial depths captured by vTwINS was further illus-
trated by plotting the spatial profiles in a 107 µm × 107 µm subsec-
tion of the FOV (Fig. 4d), sorted by inferred depth (Fig. 4d) and 
the corresponding position in a 3D anatomical volume (Online 
Methods and Supplementary Fig. 9). The corresponding spatial-
profile activity traces (Fig. 4d) also showed that cell transients were 
well isolated, despite the highly overlapping spatial profiles.

To validate that the neural activity recorded with vTwINS 
is comparable to that obtained through standard methods, we 
simultaneously imaged an entire neural volume with vTwINS 
and analyzed a single slice of the volume with diffraction-
limited TPM. Both data sets were collected at 30 Hz over a  
470 µm × 200 µm overlapping area (Supplementary Figs. 1b and 6c,  
and Supplementary Videos 3 and 4), whereas the vTwINS data 
set extended over the 38-µm-long PSF (FWHM, 52 µm 1/e 
full width). We demixed the vTwINS data with SCISM, and we 
extracted spatial profiles and activity traces from the single-plane 
data by using a modified CNMF algorithm22 as an independent 
comparison (Online Methods).

Comparison of spatial profiles from the simultaneous record-
ings (Fig. 5) indicated that vTwINS captures both neural activ-
ity overlapping with the single-slice TPM data and activity at 
other depths. Overall, in a 10-min imaging session, we found 
454 spatial profiles in the volume by using vTwINS, as compared 
with 169 spatial profiles found in the single-plane diffraction-
limited data. When we restricted our analysis to a 5-s window 
for visualization purposes (Fig. 5a,b), activity traces correspond-
ing to the spatial profiles of cells identified in both the single 
plane and the volume showed high correlation between the 
two imaging modalities. In the single-slice data set, 116 spatial 
profiles had >1 transient per minute. Of these, 98 (84%) had a 
matching spatial profile in the vTwINS data (Supplementary 
Fig. 10). Of the remaining single-slice spatial profiles, many had 
very low SNR, thus suggesting that their activity fell below the 
vTwINS’ lower SNR level. These correlations indicated that, as 
compared with TPM, vTwINS captures most of the activity at a 
particular given depth while also capturing additional activity  
elsewhere in the volume.
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Large-scale recording in the mouse hippocampus
In a more challenging application of vTwINS, we recorded and 
demixed activity from the CA1 region of the mouse hippocampus. 
In this region, neuronal-cell soma are densely packed in a well-
defined layer, thus producing high spatial overlap in vTwINS data. 
To induce activity in CA1, we trained water-restricted mice to run 
down a linear track in a virtual reality system23 to collect water 
rewards (Online Methods). We collected images over a 14-min 
session in a 470 µm × 470 µm area with a 35-µm long vTwINS 
PSF (FWHM, 45 µm 1/e full width, noninverted V) at 30 Hz  
(Supplementary Fig. 7b and Supplementary Videos 5 and 6). We 
processed and analyzed CA1 recordings by using the same pre-
processing and SCISM demixing as described for the V1 data.

We calculated the 3D positions for each of the 882 spatial  
profiles found through SCISM (Fig. 6a,b) and demixed their 
activity (Fig. 6c and Supplementary Fig. 11). The tendency for 
neurons toward the center of the FOV or neurons toward the 
edges of the FOV to be located in shallower or deeper locations, 
respectively, indicated that the vTwINS spatial profiles captured 
the curvature of CA1 (Fig. 6a). A subset of spatial profiles in  
a 92 µm × 92 µm section (Fig. 6b,d) of the FOV demonstrated 
that the inferred 3D locations matched well with the anatomical 
z stack (Supplementary Fig. 12).

Despite the highly overlapping spatial profiles resulting from 
the vTwINS PSF and high neural density, SCISM successfully 
demixed spatial profiles in CA1. Fluorescence time courses in 
different regions of two overlapping spatial profiles illustrated 
the demixed time traces (Fig. 6e). The trace from the overlapped 
region of the two cells contained transients from both nonover-
lapping regions, whereas the demixed traces contained only the 
single-profile-region activity. Notably, one transient at 230 s in 
the trace of region 2 was missing from the overlap trace, thus 
indicating that this transient originated from a third profile and 
was successfully demixed in profile 2’s time trace.

One caveat of vTwINS is the increased background from simul-
taneous scanning of the V-shaped PSF. As an alternative vTwINS 
implementation, we also explored in mouse CA1 a variation of 
vTwINS in which we alternated between each half of the vTwINS 
PSF on consecutive frames (Online Methods and Supplementary 
Fig. 1c). Illumination with a single beam (40-µm-long PSF; FWHM, 
56 µm 1/e full width) increased the SNR per frame; however each 
beam can be recorded at only half the frame rate (15 Hz). By merg-
ing the 30-Hz interpolated recording, we used SCISM to locate spa-
tial profiles separated by the width of the image (Supplementary 
Figs. 13a–c and 14). The temporal separation of the two channels 
decreased the total background neuropil, thereby improving the 
SNR of the recorded transients (Supplementary Fig. 13d–f).

DISCUSSION
Early strategies for large-scale recording with calcium imaging 
generally used the spatial resolution of the optical instrumentation 
to ensure that the fluorescence from individual neurons formed 
spatially independent, disjoint sets. Spatial separation was the 
basis for manual selection of neural regions of interest, a method 
that has widely been used as a mask for extracting the time traces 
of individual cells. In practice, however, perfect separation of adja-
cent cell signals has been difficult to achieve for densely labeled 
cells. As a result, demixing algorithms16,17,22 have been developed 
to identify spatial profiles by allowing individual pixels to have 

contributions from multiple neurons. vTwINS (and also a recently 
described multiplane technique24) use this mixing assumption 
as a starting point for the development of the optical instrumen-
tation. The vTwINS V-shaped PSF increases signal mixing in 
individual pixels but also ensures that each neuron has a unique 
spatial profile that can be efficiently used in the co-designed 
demixing algorithm to extract the time traces and 3D locations 
of individual cells. We anticipate that this strategy in which opti-
cal instrumentation and the demixing algorithm are co-designed 
for large-scale recording may be generalizable to other excitation  
geometries (for example, three beams and multiple objectives).

vTwINS confers the ability to seek specific spatial-profile shapes 
while maintaining the flexibility to adapt to variations in neuronal 
shape. SCISM permits the specification of these shapes as guides to 
locate relevant activity while still balancing the generally expected 
temporal statistics of neural activity. Current automated methods 
do not use such detailed spatial information, focusing instead 
on temporal demixing25–29 with no spatial constraints16,17 or on 
using generic locality assumptions (such as that spatial profiles 
must be fully contained in a constrained region)22,30. The ability 
of SCISM to adapt profiles to the data also differentiates it from 
standard matching-pursuit-style algorithms31–33, which assume a 
fixed dictionary of features. Although we designed SCISM to seek 
features specific to vTwINS imaging, it could easily accommodate 
other spatial-profile shapes in future imaging methods.

vTwINS, as compared with the most similar current approaches, 
offers a number of advantages. Unlike fast point-scanning strate-
gies10, vTwINS has a substantially lower peak nonlinear excitation 
(Supplementary Note 5), thereby allowing for scanning in larger 
volumes. Additionally, the vTwINS excitation configuration is com-
paratively power efficient34 and has high total two-photon excitation 
for a given average power. As compared with other multiplexed 
two-photon approaches24, vTwINS requires no additional record-
ings to initialize components and ensures the uniqueness of spatial 
profiles. Finally, as compared with volumetric TPM with single, 
elongated PSFs, the use of two beams in vTwINS decreases the  
ambiguity among spatial profiles (Supplementary Figs. 3 and 4a).

vTwINS, like other TPM techniques, is subject to practical con-
cerns of imaging in vivo. For our recordings, motion correction 
was not compromised, owing to the elongated PSF, and sufficient 
high-spatial-frequency features in the imaged regions remained 
for accurate motion correction. Alternatively, in brain regions with 
low spatial structure, nuclear-localized RFP may be used for accu-
rate motion correction. Nonlinear phototoxicity35,36 in vTwINS is 
decreased (Supplementary Note 5) as compared with that in high-
NA TPM, and heating37 is limited to 100 mW per excitation beam.

Additional work should be able to further optimize vTwINS 
for other applications. vTwINS has additional background  
fluorescence from neuropil contamination, but it might work  
particularly well with a nuclear-localized GCaMP38, which would 
substantially decrease background neuropil fluorescence and 
improve the SNR. Furthermore, more flexible spatial information 
can be implemented in SCISM to improve demixing of neural sig-
nals from neuropil contamination. For brain regions with limited 
optical access (for example, the hippocampus23 or medial entorhi-
nal cortex39), smaller angles between arms or separation distance 
may be necessary. The choice between Bessel beams and Gaussian 
beams requires additional study. Bessel beams offer flexibility in 
controlling the axial profile and lateral resolution40. Gaussian 
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beams, although less flexible, are simpler to implement and have 
higher two-photon excitation (Online Methods, Supplementary 
Fig. 1). Finally, as a complementary method, vTwINS can be 
paired with existing improvements, such as sequential plane 
imaging (for example, remote focusing11 or liquid lens6) to image 
larger volumes or to take advantage of the improved SNR arising 
from use of a lower-repetition-rate laser34.

Methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Microscope design. The vTwINS microscope was modeled in 
ZEMAX (Zemax LLC) and custom MATLAB (Mathworks) scripts. 
The microscope (Fig. 1c) was constructed as a modification of 
a resonant-scanning two-photon microscope. A beam-shaping 
module to produce the V-shaped PSF for vTwINS was designed 
to be inserted between the laser and microscope. This strategy 
was used so that the module could, in principle, be straightfor-
wardly adapted for any existing standard two-photon microscope. 
The beam-shaping module consisted of three optical paths that 
could be switched via flip-mount mirrors among (i) a standard 
high-NA path for standard two-photon imaging, (ii) a vTwINS 
path using low-NA Gaussian beams, or (iii) a vTwINS path  
using Bessel beams.

The collimated Gaussian laser beam entering the beam-shaping  
module had a measured knife-edge width (10–90% power) of  
1.3 mm, corresponding to a 1/e2 diameter of 2 mm. The high-NA 
path consisted of a 2.5× beam expander (AC254-40-B and AC254-
100-B, Thorlabs). The Gaussian vTwINS path consisted of a  
0.3–1.2× variable telescope (G06-203-525 AC 140/31,5 Linos, 
LC1120 and AC254-125-B, Thorlabs). When aligning the Gaussian 
vTwINS path, care was taken to avoid focusing the laser beam 
directly onto the scanners. The Bessel vTwINS path consisted of 
an axicon and achromat lens pair (179.2° BK7 Axicon, Altechna 
and AC254-200-B, Thorlabs) to generate the ring-shaped excita-
tion for the Bessel beam. The specific choice of axicon and achro-
mat lens pair was based on a trade-off between lateral resolution 
and two-photon excitation efficiency. For the Bessel beams to be 
correctly formed within the sample, the rear pupil of the objec-
tive must be illuminated with well-focused annuli of light. For 
this reason, the back aperture of the objective is conjugate to the 
achromatic-lens front focal plane of the axicon–achromat pair. If 
collimated, parallel beams are used, the two branches of the PSF 
form an X shape. The PSF V shape was obtained by introducing 
a slight beam convergence at the objective back aperture created 
and tuned by a 1× telescope (2× AC254-100-B, Thorlabs). When 
the vTwINS modalities were used, the beam was split into two 
parallel beams with a half-wave plate and a calcite beam displacer 
(AHWP05M-980 and BD27, Thorlabs). The half-wave plate was 
oriented such that the fluorescence intensities of the two images 
were equal. The birefringent beam displacer was mounted in a 
rotation mount and oriented such that the two beams lay in a 
plane perpendicular to the resonant (fast)-scanning mirror axis 
of rotation, to ensure that the two images formed from a fluo-
rescent object lay on the same scanned line. A pair of BK7 win-
dows mounted on orthogonal rotation axes was used to adjust 
and center the lateral position of the beams on the scanners. The 
beam separation (2.7 mm out of the calcite beam displacer) was 
further decreased with an 0.8× telescope (AC254-100-B and 
AC254-80-B, Thorlabs). This specific choice, in combination with 
the magnification of the microscope (×3.75) and the 12.5-mm 
focal length of the water-immersion Nikon objective resulted in 
an angle of 43° between the two branches of the PSF. This choice 
of angle resulted in an accurate axial localization of the cell bodies  
(Supplementary Fig. 2). When the high-NA path was used for 
conventional two-photon imaging, the half-wave plate was rotated 
to zero the power of one of the emerging beams, and the two 
BK7 windows were oriented to center the remaining beam on the  
optical axis of the microscope.

A Ti:Sapphire laser (Chameleon Vision II, Coherent) at 920 nm 
was used for two-photon excitation, and dispersion compensation 
in the laser was adjusted to maximize the two-photon signal. A 
Pockels cell (model 350-80 with 302RM driver, Conoptics) was 
used to modulate the laser intensity, and a half-wave plate plus 
polarizing beamsplitter cube (Thorlabs) was used to adjust the 
maximum laser intensity. The two-photon microscope body con-
sisted of a resonant-scanning head (6215/CRS 8 kHz, Cambridge 
Technologies), a 10-mm f − θ scan lens (4401-464-000, Linos) and  
a 375-mm achromat pair tube lens (2× PAC097, Newport),  
and an objective lens (N16XLWD-PF, Nikon41). The excitation 
and emission were separated by a short-pass dichroic filter (T680-
DCSPXR-UF3 52 mm × 75 mm × 3 mm, Chroma), and the col-
lection optics (ACL7560-A, LC1611-A, ACL25416U-A, Thorlabs) 
focused the emitted light onto two PMTs (H10770PA-40,  
Hamamatsu) separated into red and green channels (FF555-
Di03-40x54, FF01-720/SP-50, FF02-525/40-32, FF01-593/ 
40-32, Semrock). The PMT signal was amplified with an 80-MHz  
preamplifier (DHPCA-100, Femto) and digitized with an FPGA 
(NI PXIe-7961R and NI 5732 DAQ, National Instruments). 
Scanning and data acquisition were controlled with Scanimage 
2015 (Vidrio). The average power during vTwINS data acquisition 
varied between 150 mW and 200 mW at 920 nm, and the aver-
age power during high-NA acquisition was between 50 mW and 
70 mW at 920 nm. Images here were typically acquired at 30 Hz 
with an image size of 512 × 512 pixels with a 90% spatial cutoff, 
corresponding to an image size of 470 µm × 470 µm (2.8× zoom) 
or 550 µm × 550 µm (2.4× zoom). Nearly simultaneous calcium 
imaging through rapid switching between vTwINS excitation and 
the traditional focused high-NA Gaussian PSF was performed 
with an alternate optical setup (Supplementary Fig. 1b). A gal-
vanometer (6210H, Cambridge Technologies) was used to select 
between high-NA and vTwINS (38-µm-long FWHM PSF) paths, 
which were recombined downstream with a (50 µm, 0.88° optical) 
offset. A modified Scanimage analog control was used to switch 
between the two paths at every frame (≈17 ms). For each modal-
ity, images were acquired at 30 Hz with a 512 × 256 pixel image 
size. Rapid alternation between two low-NA Gaussian beams was 
performed with a similar alternate optical setup (Supplementary 
Fig. 1c). Each of the two paths consisted of identical variable low-
NA Gaussian beams that were separated by a fixed distance and 
imaged onto the scanners. The fixed separation distance set the 
relative angle of the two axially extended beams.

Transgenic mice. All experimental procedures were approved 
by the Princeton University Institutional Animal Care and Use 
Committee. Transgenic GCaMP6f-expressing mice were produced 
by crossing Emx1-Cre (B6.129S2-Emx1tm1(cre)Krj/J, Jax no. 005628),  
CaMK2-tTA (B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ, Jax no. 007004),  
and TITL-GCaMP6f (Ai93; B6.Cg-Igs7tm93.1(tetOGCaMP6f)Hze/J,  
Jax no. 024103) strains42. Male or female transgenic mice het-
erozygous for all three genes were used at 3–6 months of age for 
all experiments. No statistical method was used to predetermine 
sample size. The experiments were not randomized and were not 
performed with blinding.

Imaging the mouse visual cortex. For imaging of the mouse 
visual cortex, mice underwent surgery under isoflurane anesthe-
sia for implantation of imaging windows and head plates.  
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A 5-mm-diameter craniotomy was made over one hemisphere of the 
parietal cortex (centered 2 mm caudal, 1.7 mm lateral to bregma). 
A custom titanium head plate and optical window (no. 1 thickness,  
5-mm-diameter glass coverslip, Warner Instruments) bonded to a 
steel ring (0.5-mm thickness, 5-mm diameter, SS316 ring, Ziggy’s 
Tubes and Wires) were attached to each mouse’s skull with dental 
cement (Metabond, Parkell). The location of V1 was estimated 
by using a separate wide-field imaging microscope to record 
retinotopic responses in fluorescence activity as each mouse 
viewed horizontally and vertically drifting bars on a 32-inch  
monitor43. Boundaries between the primary and secondary visual 
areas were defined with an automated algorithm to locate revers-
als in the retinotopic gradients44. Five days after surgery, mice 
were trained to run on a spherical treadmill (8-inch-diameter 
Styrofoam ball) surrounded by a 270° toroidal screen45. Visual 
stimuli were generated with the Psychophysics Toolbox46–48 and 
displayed on the toroidal screen with a DLP projection system 
(Mitsubishi HC3000), consisting of ~100 randomly placed and 
oriented Gabor patches, with visual field size of 5–10°, updated 
at 4 Hz. To prevent light from the projected display from entering 
the fluorescence collection system, the region between the base 
of the objective lens and the head plate was light-proofed with 
a black rubber tube before imaging. The rubber tube was glued 
to a silicone ring, and the ring itself was attached to the tita-
nium head plate with silicone elastomer (Body Double, Smooth 
On). Examples of images from cortical imaging are shown in 
Supplementary Figure 7a,c and Supplementary Videos 1–4.

Imaging the mouse hippocampus. For imaging the mouse hip-
pocampus, mice under isoflurane anesthesia underwent surgery 
for implantation of an imaging window and a head plate for head 
restraint in virtual reality49. Optical access to the hippocampus was 
obtained as previously described23. Briefly, an ~3-mm-diameter cir-
cular craniotomy over the left hemisphere was performed, centered 
1.8 mm lateral to the midline, and 2.0 mm posterior to the bregma. 
The cortical tissue overlying the hippocampus was aspirated, and a 
circular metal cannula with a no. 1 coverslip bonded to the bottom 
was implanted, with a thin layer of Kwik-sil (WPI) placed between 
the hippocampus and the coverslip. During the surgery, a titanium 
head plate was attached to the skull with Metabond. After recovery, 
mice were water restricted for 5 d and then trained to run on a 4-m  
virtual linear track in a virtual reality setup50. Visually distinct tow-
ers were placed every 1 m, and 4 µl water rewards were given at 
1.6 m and 3.6 m down the track. Mice ran on a 6-inch-diameter  
Styrofoam cylinder (The Baker’s Kitchen) whose position was 
detected by an angular encoder. Mice were trained for one 60-min 
session per day and were given 1–1.5 mL of water in total per day 
(including behavioral training and supplemental water). The vir-
tual-reality projection system was as previously described44,48 and 
was controlled with ViRMEn51. Light-proofing around the objective 
was performed as described for the experiments in the visual cortex. 
Examples of images from hippocampal imaging are depicted in 
Supplementary Figure 7b and Supplementary Videos 5 and 6.

Motion correction and preprocessing. All video sequences were 
first subjected to a normalized cross-correlation-based motion-
correction algorithm. This algorithm, implemented via the tem-
plate-matching function of OpenCV52, found the best horizontal 
and vertical shifts for each frame to match a fixed template. The 

template used was set to the median across frames. Shifts were 
set to have a maximum allowable value (set to 10 pixels for the 
V1 data and 15 pixels for the CA1 data). Videos were cropped to 
remove edge rows and columns with missing data due to shifting. 
To improve SNR and run time, fivefold temporal running averages 
an wofold spatial binning were applied after motion correction.

For the alternating-beam variation of vTwINS, there were two 
interleaved videos, Yright and Yleft. To use SCISM, we preprocessed 
the data by linearly interpolating each video temporally up to twice 
the frame rate. The frames at each time step were concatenated side 
by side, thus creating a vTwINS video of twice the width, in which 
the minimum distance between pairs, dmin, was the actual distance 
between beams plus the entire width of the FOV. In the second 
interleaved video (Supplementary Figs. 4 and 13d), dmin = 15 pix-
els, approximating the conditions of a typical vTwINS movie.

vTwINS orthogonal matching pursuit. In this section, we 
describe the mathematical details of the vTwINS SCISM demix-
ing algorithm (Fig. 3, Supplementary Fig. 5 and Supplementary 
Video 7). Let Y ∈ RN × T denote the calcium video sequence,  
X ∈ RN × K denote the neural spatial components (spatial pro-
files), and S ∈ RT × K denote the neural temporal activity traces, 
where N is the number of pixels in each image, T is the number 
of images (or time points), and K is the number of neurons. Thus, 
the columns of Y represent single frames of the video, the col-
umns of X represent individual spatial profiles, and the columns  
of S represent temporal activity traces of single neurons. We model 
background activity with a set of B background components  
Xbg ∈ RN × B and denote the (inferred) background temporal  
activity Sbg ∈ RT × B.

Our algorithm is designed to exploit a priori knowledge of both 
the spatial-profile shapes and neural firing statistics. Specifically, 
the algorithm seeks to factor the full movie matrix, Y, into the set 
of spatial profiles, X, and time traces, S, such that:

1. � The sum of the outer products of spatial profiles and time 
traces explains the observed data (Y ≈ XST).

2. � The time traces, S, are sparse in time.
3. � The spatial profiles are shaped similarly to pairs of neuronal 

soma (disks or annuli), offset horizontally by a small separa-
tion distance. The dark center in each soma is due to the lack 
of GCaMP6f in the nucleus.

4. � Few latent sources (active neurons) relative to the size of the  
data generate activity in the observed data, thus making  
the fluorescence movie low rank. This constraint captures the 
physical density constraints on neuron tissue.

The optimization program that includes all these terms is 

ˆ { ˆ , ˆ, ˆ , ˆ } arg min [|| ||, , ,X X S X S Y XS X Sbg bg X S Xbg Sbg
T

bg bg
T

F= − −≥ 0
22

2
2 1 1+ − + +∑l l ld F gs k sp kk

X D s s|| || ( || || || || )] ( )

where sk is the kth column of S, representing the activity trace of 
neuron k; 

|| || ( ), ,Z ZF i j i j
2 2 2= Σ

is the squared Frobenius norm; D is a matrix whose columns 
represent all possible expected neural spatial-profile shapes; λd is  

(1)(1)

(2)(2)
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the trade-off parameter for penalizing the deviation of spatial-
profile shapes X from the idealized shapes in D; λgs is the group 
sparse penalization parameter used to ensure that not all spatial 
profiles are active; and λsp is the penalization parameter, which 
encourages sparsity of the time traces. We set the spatial profiles 
dk to be annuli separated by a depth-dependent distance (Fig. 3a 
and Supplementary Note 6).

Direct optimization of equation (1) can be inefficient, owing 
to the problem size and the large search space (number of possi-
ble spatial profiles). We thus approximated a solution to equation 
(1) with a greedy iterative approach wherein spatial profiles are 
selected sequentially. Our method alternates between finding the 
best element of D that approximates Y given the sparsity constraints 
(Fig. 3b,c and Supplementary Note 6), updating that profile to the 
data (Fig. 3d and Supplementary Note 6), and inferring the tem-
poral activity of each spatial profile (Fig. 3e and Supplementary 
Note 6). The first step sets X = D and solves for the best single trace 
to approximate Y (solving the first and third terms). The shape-
refinement step then uses the first two terms with the newly found 
time trace to allow the spatial-profile xk to deviate from its mean 
dk. SCISM is in essence a modification of the orthogonal matching 
pursuit (OMP) method for greedy sparse signal estimation31,53. 
Our method extends OMP by including an additional temporal 
sparsity penalty and a shape-refinement step that allows for devia-
tions from the stereotyped neuronal shapes (whereas traditional 
OMP assumes a fixed dictionary of features).

SCISM was implemented in MATLAB and made use of the 
TFOCS library54 to solve the weighted, non-negative LASSO  
optimization step. Typical analysis ran at a rate of approximately 
20 s per profile found and was applied to 10–15 min of 256 × 256 
raw imaging data.

vTwINS and high-NA spatial-profile registration. High-reso-
lution anatomical z stacks (median of 200–300 frames per slice 
at a slice separation of 2.5–4 µm, taken with the high-NA beam 
path) were obtained for each vTwINS imaging volume to align 
the vTwINS spatial profiles to anatomical positions. Alignment 
between the anatomical z stack and the vTwINS imaging volume 
was performed in two steps. First, the 3D positions of cells was 
estimated according to their positions within the vTwINS volume. 
Second, the estimated 3D positions were offset to the anatomical 
volume. First, the centroids of each half of the spatial profile were 
used to calculate the 3D cell position via d = 0.5(∆ − ∆min)/tan(θ), 
where ∆min is the minimum interbeam distance of the PSF, and 
θ is the beam angle from the axial direction. A correction to 
the x,y position was made for any differences in θ between the  
two halves of the vTwINS PSF. Second, a 3D offset between the 
estimated positions and anatomical z-stack positions was either 
automatically or manually calculated. For automatic alignment, 
the anatomical stack was first deconvolved (Lucy–Richardson) 
with the high-NA PSF and then convolved with the vTwINS PSF. 
A 3D cross-correlation was then calculated between the con-
volution stack and the median vTwINS image, and the peak of 
the cross-correlation was used as the offset between the vTwINS 
images and the anatomical z stack. For manual alignment,  
highly active cells with similar cell shapes between the vTwINS 
spatial profiles and high-NA anatomical z stacks were located 
manually and used to estimate the offset between the vTwINS 
images and the anatomical z stack.

For simultaneous vTwINS and conventional TPM imaging, 
neural activity was independently extracted from raw images with 
separate analyses. Neural activity underlying calcium dynamics 
for conventional TPM was estimated by using the constrained 
non-negative matrix factorization and deconvolution algorithm 
(CNMF) to demix contributions from possibly overlapping 
cells22,55. Spatial profiles extracted through CNMF were manu-
ally selected for regions that approximated a cell shape (approxi-
mately circular, 10–15 µm in diameter). To compare the number 
of spatial profiles between imaging modalities, spatial profiles 
from either method were included only if their center position 
was within 20 pixels (18 µm) of the x (fast-scanning) edge of the 
acquisition region, to prevent bias from clipping half of a single 
vTwINS profile near the edges of the image.

Spatial profiles and time traces extracted through vTwINS 
SCISM and CNMF were paired off according to their normalized-
time-trace Pearson correlation (Supplementary Fig. 10), with the 
constraint that the extracted spatial-profile center positions were 
within 5 pixels (4.5 µm) in the y (slow-scanning) direction and 40 
pixels (37 µm) in the x (fast-scanning) direction. This distance 
was approximately equal to half the maximum separation distance 
between vTwINS spatial-profile image pairs, thus not restricting 
pairing of CNMF spatial profiles to vTwINS spatial profiles with a 
single blocked beam. Spatial profiles and time traces were paired 
off until the correlation dropped below a 5σ excess of the average 
correlation between any two time traces. Only high-activity cells 
with more than one statistically significant transient per minute 
were included in this analysis56. A transient was considered  
statistically significant if its peak was >3σ above the average  
noise levels.

Code availability. The SCISM source code (written in MATLAB) 
and documentation on its usage are available on Bitbucket (https://
bitbucket.org/adamshch/scism/) and as Supplementary Software.

Data availability. Sample data and the data sets used are available 
at Open Science Framework under accession code z6bd3). Source 
data files for Figures 4–6 and Supplementary Figures 2–4, 6 and 
8–14 are available online.
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