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Introduction

A fundamental goal of sensory systems neuroscience is
the characterization of the functional relationship between
stimuli and neural responses. The purpose of such a
characterization is to elucidate the computation being
performed by the system. Many electrophysiological
studies in sensory areas describe neural firing rates in
response to highly restricted sets of stimuli that are
parameterized by one or perhaps two stimulus parameters.
Although such Btuning curve[ measurements have led to
considerable understanding of neural coding, they provide
only a partial glimpse of the full neural response function.
On the other hand, it is not feasible to measure neural
responses to all stimuli. One way to make progress is to
restrict the response function to a particular model (or
class of models). In this modeling approach, the problem
is reduced to developing a set of stimuli along with a
methodology for fitting the model to measurements of
neural responses to those stimuli. One wants a model that
is flexible enough to provide a good description of neural
responses but simple enough that the fitting is both
tractable and well constrained under realistic experimental
data conditions.
One class of solutions, which we refer to as Bspike-

triggered analysis,[ has received considerable attention in
recent years due to a variety of new methodologies,
improvements in stimulus generation technology, and

demonstration of physiological results. In these methods,
one generally assumes that the probability of a neuron
eliciting a spike (i.e., the instantaneous firing rate) is
governed only by recent sensory stimuli. More specifically,
the response model is assumed to be an inhomogeneous
Poisson process whose rate is a function of the stimuli
presented during a recent temporal window of fixed
duration. In the forward neural response model, the stimuli
are mapped to a scalar value that determines the instanta-
neous firing rate of a Poisson spike generator. Our job in the
analysis is to work backward: From the stimuli that elicited
spikes, we aim to estimate this firing rate function. The
analysis of experimental data is thus reduced to examining
the properties of the stimuli within temporal windows
preceding each recorded spike, known as the spike-
triggered stimulus ensemble (Figure 1A).
Understanding how the spike-triggered distribution

differs from the raw stimuli is key to determining the
firing rate function. It is often useful to visualize the
analysis problem geometrically (Figure 1B). Consider
input stimuli, which at each time step consist of an array
of randomly chosen pixel values (8 pixels in this
example). The neural response at any particular moment
in time is assumed to be completely determined by the
stimulus segment that occurred during a prespecified
interval in the past (6 time steps in this example). The
overall stimulus dimensionality is high (48 dimensions
here), but we can depict a projection of the stimuli onto
two vectors. The raw stimulus ensemble and the spike-
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triggered ensemble are then two clouds of points in this
space. Intuitively, the task of estimating the neural
response function corresponds to describing the ways in
which these two clouds differ. In practice, when the input
stimulus space is of high dimensionality, one cannot
estimate the neural response function without further
assumptions.
Spike-triggered analysis has been employed to estimate

the terms of a Wiener/Volterra expansion (Korenberg,
Sakai, & Naka, 1989; Marmarelis & Marmarelis, 1978;
Volterra, 1959; Wiener, 1958), in which the mapping from
stimuli to firing rate is described using a low-order
polynomial (see Dayan & Abbott, 2001; Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997 for a review).
Although any reasonable function can be approximated as
a polynomial, the firing rate nonlinearities found in the
responses of sensory neurons (e.g., half-wave rectified,
rapidly accelerating and saturating) tend to require a
polynomial with many terms (see, e.g., Rieke et al., 1997).
However, the amount of data needed for accurate
estimation grows rapidly with the number of terms.
Therefore, in an experimental setting where one can
estimate only the first few terms of the expansion, the
polynomial places a strong restriction on the nonlinearity.
As an alternative to the polynomial approximation, one

can assume that the response function operates on a low-
dimensional linear subspace of the full stimulus space
(Bialek & de Ruyter van Steveninck, 2005; de Ruyter van

Steveninck & Bialek, 1988). That is, the response of a
neuron is modeled with a small set of linear filters whose
outputs are combined nonlinearly to generate the instanta-
neous firing rate. This is in contrast to the Wiener/Volterra
approach, which in general does not restrict the subspace
but places a restriction on the nonlinearity.1 By concen-
trating the data into a space of reduced dimensionality, the
neural response can be fit with less restriction on the form
of the nonlinearity.
A number of techniques have been developed to estimate

the linear subspace and, subsequently, the nonlinearity. In
the most widely used form of this analysis, the linear front
end is limited to a single filter that serves as an explicit
representation of the Breceptive field[ of the neuron, but the
nonlinearity is essentially unrestricted. With the right
choice of stimuli, this linear filter may be estimated by
computing the spike-triggered average (STA) stimulus (i.e.,
the mean stimulus that elicited a spike). The STA has been
widely used in studying auditory neurons (e.g., Eggermont,
Johannesma, & Aertsen, 1983). In the visual system, STA
has been used to characterize retinal ganglion cells
(e.g., Meister, Pine, & Baylor, 1994; Sakai & Naka,
1987), lateral geniculate neurons (e.g., Reid & Alonzo,
1995), and simple cells in primary visual cortex (V1;
e.g., DeAngelis, Ohzawa, & Freeman, 1993; Jones &
Palmer, 1987; McLean & Palmer, 1989). Given the STA
filter, one typically has enough experimental data to
construct a nonparametric estimate of the nonlinearity

Figure 1. The spike-triggered stimulus ensemble. (A) Discretized stimulus sequence and observed neural response (spike train). On each
time step, the stimulus consists of an array of randomly chosen values (eight, for this example). These could represent, for example, the
intensities of a fixed set of individual pixels on the screen or the contrast of each of a set of fixed sinusoidal gratings that are additively
superimposed. The neural response at any particular moment in time is assumed to be completely determined by the stimulus segment
that occurred during a prespecified interval in the past. In this figure, the segment covers six time steps and lags three time steps behind
the current time (to account for response latency). The spike-triggered ensemble consists of the set of segments associated with spikes.
(B) Geometric (vector space) view of the spike-triggered ensemble. Stimuli (here, 48-dimensional) are projected onto two space–time
vectors. In this example, each of the two vectors contained 1 stixel (space–time pixel) set to a value of 1, and the other 47 stixels were set
to 0. For these given vectors, the projection is equivalent to the intensity of the corresponding stixel in the stimulus. More generally, one
can project the stimuli onto any two 48-dimensional vectors. The spike-triggered stimulus segments (white points) constitute a subset of
all stimulus segments presented (black points).
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(i.e., a lookup table; Anzai, Ohzawa, & Freeman, 1999;
Chichilnisky, 2001; deBoer & Kuyper, 1968; Eggermont
et al., 1983). For some classes of nonlinearity, it has also
been shown that one can write down a closed-form
solution for the estimates of the linear filter and non-
linearity in a single step (Nykamp & Ringach, 2002).
This methodology may be extended to the recovery of

multiple filters (i.e., a low-dimensional subspace) and the
nonlinear combination rule. One approach to finding a low-
dimensional subspace is the spike-triggered covariance
(STC; Bialek & de Ruyter van Steveninck, 2005; de Ruyter
van Steveninck & Bialek, 1988). STC has been used to
characterize multidimensional models and a nonlinear
combination rule in systems ranging from the invertebrate
motion system (Bialek & de Ruyter van Steveninck, 2005;
Brenner, Bialek & de Ruyter van Steveninck, 2000; de
Ruyter van Steveninck & Bialek, 1988) to songbird
forebrain auditory neurons (Sen, Wright, Doupe, & Bialek,
2000) to vertabrate retina cells (Pillow, Simoncelli, &
Chichilnisky, 2003; Schwartz, Chichilnisky, & Simoncelli,
2002) and mammalian cortex (Horwitz, Chichilnisky, &
Albright, 2005; Rust, Schwartz, Movshon, & Simoncelli,
2004, 2005; Touryan, Lau, & Dan, 2002). In addition,
several authors have recently developed subspace estima-
tion methods that use higher order statistical measures
(Paninski, 2003; Sharpee, Rust, & Bialek, 2003, 2004). A
review of spike-triggered subspace approaches may also be
found in Ringach (2004) and Simoncelli, Pillow, Paninski,
& Schwartz (2004).
Despite the theoretical elegance and experimental

applicability of the subspace methods, there are a host of
issues that an experimentalist is likely to confront when
attempting to use them: How should one choose the
stimulus space? Howmany spikes does one need to collect?
How does one know if the recovered filters are significant?
How should one interpret the filters? How do the filter

responses relate to the nonlinear firing rate function? and so
on. In this article, we describe the family of spike-triggered
subspace methods in some detail, placing emphasis on
practical experimental issues, and demonstrating these
(where possible) with simulations. We focus our discussion
on the STA and STC analyses, which have become quite
widely used experimentally. A software implementation of
the methods described is available on the Internet at http://

The linear–nonlinear Poisson
(LNP) model

Experimental approaches to characterizing neurons are
generally based on an underlying response model. Here, we
assume a model constructed from a cascade of three
operations:

1. a set of linear filters, fkY1Ik
Y

mg,
2. a nonlinear transformation that maps the instanta-

neous responses of these filters to a scalar firing rate,
and

3. a Poisson spike generation process, whose instanta-
neous firing rate is determined by the output of the
nonlinear stage.

This LNP cascade is illustrated in Figure 2. The third
stage, which essentially amounts to an assumption that the
generation of spikes depends only on the recent stimulus
(and not on the history of previous spike times), is often
not stated explicitly but is critical to the analysis.
If we assume a discretized stimulus space, we can

express the instantaneous firing rate of the model as:

rðtÞ ¼ NðkY1 � s
YðtÞ; kY2 � s

YðtÞ;Ik
Y

m � s
YðtÞÞ; ð1Þ

where s
YðtÞ is a vector containing the stimuli over an

appropriate temporal window preceding the time t. Here,
the linear response of filter i (i.e., the projection or dot
product of the filter k

Y

i with the stimuli s
YðtÞ) is given by

k
Y

i I s
YðtÞ. The nonlinear transformation N(I) operates over

the linear filter responses.

Spike-triggered analysis

We aim to characterize the LNP model by analyzing the
spike-triggered stimulus ensemble. The spike-triggered
analysis techniques proceed as follows:

1. Estimate the low-dimensional linear subspace (set of
filters). This effectively projects the high-dimension
stimulus into a low-dimensional subspace that the
neuron cares about.

Figure 2. Block diagram of the LNP model. On each time step, the
components of the stimulus vector are linearly filtered by k

Y

0Ik
Y

m.
The responses of the linear filters are then passed through a
nonlinear function N(I), whose output determines the instanta-
neous firing rate of a Poisson spike generator.
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2. Compute the filter responses for the stimulus, and
estimate the nonlinear firing rate function based on
these responses. As noted earlier, typical physio-
logical data sets allow nonparametric estimates of
the nonlinearity for one or two filters but require
more model restrictions as the number of filters
increases.

In the following subsections, we describe these steps in
detail. In the Experimental issues section, we also stress
the importance of an additional step: validating the
resulting model by comparing it to neural responses from
other stimuli.

Subspace (filter) estimation

In general, one can search for any deviation between the
raw and spike-triggered stimulus ensembles. This can be
done, for instance, using measures of information theory
(Paninski, 2003; Sharpee et al., 2003, 2004). Another
natural approach is to consider only changes in low-order
moments between the raw and spike-triggered stimulus.
Here, we focus on changes in the first and second
moments, which may be computed efficiently and manip-
ulated using a set of standard linear algebraic techniques.
We also briefly discuss how the analysis relates to the
Wiener/Volterra approach.

Spike-triggered average

The simplest deviation between the spike-triggered and
raw stimulus distributions is a change in the mean.
Assuming that the raw stimuli have zero mean, this can be

estimated by computing the average of the spike-triggered
ensemble (STA):

Â ¼ 1

N
~
N

n¼1

s
Y
tnð Þ; ð2Þ

where tn is the time of the nth spike, s
YðtnÞ is a vector

representing the stimuli presented during the temporal
window preceding that time, and N is the total number of
spikes. In practice, the times tn are binned. If there is more
than one spike in a bin, then the stimulus vector for that
time bin is multiplied by the number of spikes that
occurred. The STA is illustrated in Figure 3A.
For an LNP model with a single linear filter, the STA

provides an unbiased estimate of this filter,2 provided that
the input stimuli are spherically symmetric (Bussgang,
1952; Chichilnisky, 2001; Paninski, 2003), and the non-
linearity of the model is such that it leads to a shift in the
mean of the spike-triggered ensemble relative to the raw
ensemble (see Limitations and potential failures section
and Experimental issues section). This last requirement
rules out, for example, a model with a symmetric
nonlinearity such as full-wave rectification or squaring.
For an LNPmodel with multiple filters, the STA provides

an estimate of a particular linear combination of the model
filters, subject to the same restrictions on input stimuli and
the form of the nonlinearity given above (Paninski, 2003;
Schwartz et al., 2002). That is, the STA lies in the
subspace spanned by the filters, but one cannot assume
that it will exactly represent any particular filter in the
model.

Figure 3. Two alternative illustrations of STA. (A) The STA is constructed by averaging the spike-triggered stimulus segments (red boxes),
and subtracting off the average over the full set of stimulus segments. (B) Geometric (vector space) depiction of spike-triggered averaging
in two dimensions. Black points indicate raw stimuli. White points indicate stimuli eliciting a spike. The STA, indicated by the line in the
diagram, corresponds to the difference between the mean (center of mass) of the spike-triggered ensemble and the mean of the raw
stimulus ensemble.
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Spike-triggered covariance

The STA only recovers a single filter. Additional filters
may be recovered seeking directions in the stimulus space
in which the variance of the spike-triggered ensemble
differs from that of the raw ensemble. Assuming that the
raw stimuli have spherical covariance, this is achieved by
computing the STC matrix:

Ĉ ¼ 1

Nj1
~
N

n¼1

s
Y
tnð Þj Â

� �
s
Y
tnð Þj Â

� �
T; ð3Þ

where the [I]T indicates the transpose of the vector. Again,
the tn are binned in practice, and this means that each term
should be multiplied by the number of spikes occurring in
the associated time bin.
The STCmatrix embodies the multidimensional variance

structure of the spike-triggered ensemble. Specifically, the
variance of the ensemble in any direction specified by a unit
vector, û, is simply ûTĈû. The surface swept out by all
such unit vectors scaled by the square root of their
associated variance is a multidimensional ellipsoid. The
principle axes of this ellipsoid, along with the associated
variances, may be recovered as the eigenvectors and
associated eigenvalues of the STC matrix. This is

illustrated in Figure 4. The consistency of the STC
estimate is guaranteed, provided that the input stimuli are
Gaussian (Paninski, 2003) and the nonlinearity of the
model is such that it leads to a change in the variance of
the spike-triggered ensemble relative to the raw ensem-
ble. Note that the Gaussianity is a more severe require-
ment than the spherical symmetry required for STA
analysis (see Limitations and potential failures section
and Experimental issues section).
The STA and STC filters together form a low-

dimensional linear subspace in which neural responses
are generated. A number of groups have presented
different approaches for combining the STA and STC
analyses; in practice, these variants all converge to the
same estimated subspace.3 Usually, the STA is sub-
tracted prior to computing the STC filters (Brenner,
Bialek & de Ruyter van Steveninck, 2000; de Ruyter
van Steveninck & Bialek, 1988). It is often (but not
always) the case that the STA will lie within the
subspace spanned by the significant STC axes. Depend-
ing on the nonlinear properties of the response, it could
coincide with either high- or low-variance STC axes.
To simplify visualization and interpretation of the axes,
we have chosen for all of our examples to perform the
STC analysis in a subspace orthogonal to the STA.

Figure 4. Two alternative illustrations of STC. (A) The STC is determined by constructing the covariance of the spike-triggered stimuli
(relative to the raw stimuli), followed by an eigenvector analysis of the covariance matrix. This can result in multiple filters that represent
directions in stimulus space for which the spike-triggered stimuli have lower or higher variance than the raw stimuli. (B) Geometric
depiction of STC. Black points indicate raw stimuli. White points indicate stimuli eliciting a spike. Ellipses represent the covariance of each
ensemble. Specifically, the distance from the origin to the ellipse along any particular direction is the standard deviation of the ensemble in
that direction. Raw stimuli are distributed in a circular (Gaussian) fashion. Spike-triggered stimuli are elliptically distributed, with a reduced
variance (relative to the raw stimuli) along the minor axis. The minor axis of the ellipse corresponds to a suppressive direction: Stimuli that
have a large component along this direction (either positive or negative) are less likely to elicit a spike. The variance of the major axis of
the ellipse matches that of the raw stimuli and, thus, corresponds to a direction in stimulus space that does not affect the neuron’s firing
rate.
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Specifically, we compute STC on a set of stimuli from
which the STA has been projected:

s
Y ¼ s

Y
j ½sYT Â�Â=kÂk2: ð4Þ

Comparison to Wiener/Volterra analysis

The STA provides an estimate of the first (linear) term
in a polynomial series expansion of the system response
function and, thus, is the first term of the Wiener/Volterra
series. Whereas the Wiener/Volterra approach assumes
that the nonlinearity is literally a polynomial, in the STA
subspace approach, the nonlinearity is essentially unre-
stricted. For nonlinearities such as a sigmoid, the Wiener/
Volterra expansion would require many terms to capture
the neural response function. An example of STA analysis
for characterizing a model with a single filter and
sigmoidal nonlinearity is presented in the model simu-
lations below.
The second-order term in the Wiener series expansion

describes the response as a weighted sum over all pairwise

products of components in the stimulus vector. The
weights of this sum (the second-order Wiener kernel)
may be estimated from the STCmatrix. However, the STC
method is not just a specific implementation of a second-
order Wiener/Volterra model. The STC approach uses
the STC matrix as a means to obtain a linear subspace,
within which the nonlinearity is much less restricted. In
contrast, the second-order Wiener/Volterra approach
assumes a quadratic nonlinearity: This is suitable for
characterizing nonlinearities such as the Benergy model[
(Adelson & Bergen, 1985) of complex cells in primary
visual cortex (e.g., Emerson, Bergen, & Adelson, 1992;
Emerson, Citron, Vaughn, & Klein, 1987; Szulborski &
Palmer, 1990); however, it cannot describe response
functions with nonlinearities such as divisive gain
control (Albrecht & Geisler, 1991; Heeger, 1992)
because these cannot be formulated as sums (or differ-
ences) of squared terms. An STA/STC approach is more
flexible in capturing such nonlinearities (Rust, Schwartz,
et al., 2005; Schwartz et al., 2002), as we demonstrate in
the next section.

Simulations of example model neurons

We simulate an example ideal simple cell model, for
which there is only a single filter, followed by half-wave
rectification and then squaring. Specifically, the instanta-
neous firing rate is determined by:

gðsYÞ ¼ r )k
Y � s

Y

2
2

� �
: ð5Þ

The spike-triggered analysis results are shown in
Figure 5. The spike-triggered ensemble exhibits a change
in the mean relative to the raw stimulus ensemble due to
the asymmetric nonlinearity. We recover the STA filter by
computing the change in the mean (Equation 2). Next, we
consider changes in the variance between the raw and
spike-triggered stimulus ensemble. For this model neuron,
there is no further relationship between the stimulus space
and spikes. In the limit of infinite data, the spike-triggered
ensemble would be a randomly selected subset of the raw
stimulus ensemble, and the variance in any direction would
be identical to that of the raw stimulus set. In an
experimental setting, the finiteness of the spike-triggered
ensemble produces random fluctuation of the variance in
different directions. As a result, there are small random
increases or decreases in variance of the spike-triggered
ensemble relative to the raw stimulus set. This is reflected
in the eigenvalue analysis of Figure 5. Due to the random
fluctuations, the sorted eigenvalues cover a range around a
constant value of 1 (i.e., the variance of the raw stimulus
ensemble) but are not exactly equal to this constant value.

Figure 5. Eigenvalues and eigenvectors for an LNP model with a
single linear filter followed by a point nonlinearity. The simulation
is based on a sequence of 50,000 stimuli, with a response
containing 1,891 spikes. Top: Model filter and nonlinearity. As in
Figure 1, filters are 6 � 8 and, thus, live in a 48-dimensional
space. The nonlinearity cartoon represents half squaring: Positive
filter responses are squared, and negative filter responses are set
to zero. Bottom: STA filter, and sorted eigenvalues of covariance
matrix of stimuli eliciting spikes (STC). We plot the first 47
eigenvalues and omit the last eigenvalue, which is zero due to
projecting out the STA (see Equation 4). The eigenvalues are
gradually descending, and corresponding eigenvectors appear
unstructured.
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Now, consider an example model neuron, for which there
is more than a single filter. We simulate an ideal V1
complex cell model (see also simulations in Sakai &
Tanaka, 2000). The model is constructed from two space–
time-oriented linear receptive fields, one symmetric and
the other antisymmetric (Adelson & Bergen, 1985). The
linear responses of these two filters are squared and

summed, and the resulting signal then determines the
instantaneous firing rate:

gðsYÞ ¼ r ðkY1 � s
YÞ2 þ ðkY2 � s

YÞ2
h i

: ð6Þ

Spike-triggered analysis on the model neuron is shown in
Figure 6. The STA is close to zero. This occurs because
for every stimulus, there is a stimulus of opposite polarity
(corresponding to a vector on opposite sides of the origin)
that is equally likely to elicit a spike, and thus, the average
stimulus eliciting a spike will be zero. The recovered
eigenvalues indicate that two directions within this space
have substantially higher variance than the others. The
eigenvectors associated with these two eigenvalues corre-
spond to the two filters in the model (formally, they span
the same subspace). In contrast, eigenvectors correspond-
ing to eigenvalues in the gradually descending region
appear arbitrary in their structure.
Finally, we consider a version of a divisive gain control

model (e.g., Geisler, 1992; Heeger, 1992):

g s
Yð Þ ¼ r

1þ )k
Y

1 � s
Y

2
2

1þ ðkY2 � s
YÞ2 þ :4ðkY3 � s

YÞ2
: ð7Þ

The analysis results are shown in Figure 7. First, we
recover the STA filter, which is nonzero due to the
half squaring in the numerator. A nonsymmetrical non-
linearity of this sort is captured by changes in the mean.
Next, we examine the sorted eigenvalues obtained from
the STC analysis. Most of the eigenvalues descend
gradually, but the last two eigenvalues lie significantly
below the rest, and their associated eigenvalues span
approximately the same subspace as the actual simulation
filters.

Significance testing

How do we know if the recovered STA and STC filters
are significant? In some cases, such as a prototypical
complex cell in primary visual cortex, there is essentially
no difference between the mean of the raw and spike-
triggered stimuli (Rust, Schwartz, et al., 2005; Touryan
et al., 2002), which leads to a weak STA. To quantify this,
we test the hypothesis that the difference between the
mean of the raw and spike-triggered stimulus is no
different than what one would expect by chance. We
specifically test whether the magnitude of the true spike-
triggered stimulus STA is smaller or equal to what would
be expected by chance. More specifically, we generate a
distribution of random STA filters by bootstrapping: We
randomly time-shift the spike train relative to the raw
stimulus sequence, gather the resulting spike-triggered
stimulus ensemble, and perform the STA analysis. The

Figure 6. Eigenvalues and eigenvectors for an LNP ideal complex
cell model. In this model, the Poisson spike generator is driven by
the sum of squares of two oriented linear filter responses. As in
Figure 1, filters are 6 � 8 and, thus, live in a 48-dimensional
space. The simulation is based on a sequence of 50,000 raw
stimuli, with a response containing 4,298 spikes. Top: Model,
including two input filters, nonlinearities, and Poisson spiking.
Bottom: STA filter is unstructured for the ideal complex cell. The
plot also shows the eigenvalues, sorted in descending order. We
plot the first 47 eigenvalues and omit the last eigenvalue which is
zero due to projecting out the STA (see Equation 4). Two of the
eigenvalues are substantially larger than the others and indicate
the presence of two directions in the stimulus space along which
the model responds. The others correspond to stimulus directions
that the model ignores. Also shown are three example eigenvec-
tors (6 � 8 linear filters), two of which are structured while one is
unstructured.
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randomly time-shifted spike train retains all temporal
structure that is present in the original spike train. We
repeat this 1,000 times, each time computing the average
of the stimulus subset. We can then set a significance

criterion (e.g., the 95% confidence interval) within which
we deem the magnitude of the true STA to be
insignificant.
The issue of significance is also of importance for the

STC filters. Although the low-variance eigenvalues are
clearly below the gradually descending region in the
illustrated example of Figure 7, the distinction is not so
obvious in some experimental situations. An example in
which the significance cutoff is not clear-cut is shown in
Figure 8. A significance test should allow us to determine
the number of eigenvector axes (filters) corresponding to
significant increases or decreases in the variance. That is,
we would like to find changes in variances in the spike-
triggered ensemble that are not just due to chance
(because of the finiteness of the number of spikes) but
that relate to actual neural response characteristics.
The significance testing must be done in a nested fashion

because the distribution of the lowest and highest eigen-
values under the null hypothesis depends on the dimension-
ality of the space. We begin by assuming that none of the
eigenvalues are significant. We compare the true eigen-
values to the eigenvalues of randomly selected stimuli with
the same interspike interval. If the largest and smallest true
eigenvalues lie within the range of largest and smallest
eigenvalues of the randomly selected stimuli, we can
conclude that none of our axes are significant and accept
the hypothesis. More specifically, to compute the randomly
selected eigenvalues, we generate distributions of minimal/
maximal eigenvalues by bootstrapping:We randomly time-
shift the spike train relative to the raw stimulus sequence,
gather the resulting spike-triggered stimulus ensemble,
perform the STA and STC analysis on the spike-triggered
ensemble, and extract the minimum and maximum eigen-
values. After repeating 1,000 times, we estimate the 95%
confidence interval for both the largest and smallest
eigenvalues. We then ask whether the maximal and
minimal eigenvalues obtained from the true spike-triggered
ensemble lie within this interval. If so, we accept the
hypothesis.

Figure 8. Nested hypothesis testing. Gray solid line corresponds to 95% confidence interval, assuming no suppressive axes (A), two
suppressive axes (B), and four suppressive axes (C). If the eigenvalues lie within the confidence interval, the hypothesis is accepted. For
the assumption of no or two suppressive axes, some eigenvalues lie below the confidence interval, indicating that the hypothesis is
incorrect. In contrast, for the assumption of four suppressive axes, eigenvalues lie roughly within the confidence interval.

Figure 7. Eigenvalues and eigenvectors for an LNP divisive
normalization model. The simulation is based on a sequence of
250,000 stimuli, with a response containing 30,444 spikes. Top:
Model. Bottom: STA filter, sorted eigenvalues of covariance
matrix of stimuli eliciting spikes (STC), and eigenvectors. Two of
the eigenvalues are substantially lower than the others and
indicate the presence of two suppressive directions in the
stimulus space.
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Figure 8A shows that the hypothesis of no significant
eigenvalues is unlikely to be correct for this example: The
smallest eigenvalue lies far beyond the confidence
interval. We therefore assume that the largest outlier
(here, the smallest eigenvalue) has a corresponding axis
that significantly affects the variance of the neural
response. We proceed to test the hypothesis that all
remaining axes are insignificant. To do so, we first project
out the axis deemed significant and repeat the boot-
strapping in the remaining subspace. Note that the

distribution of eigenvalues (gray region in Figures 8A,
8B, and 8C) changes as the dimensionality of the
remaining space decreases. We continue this process in a
nested fashion, until the largest and smallest eigenvalues
from the true spike-triggered ensemble lie within their
estimated confidence intervals. Figure 8B shows that we
cannot accept the hypothesis of two significant axes.
Finally, the hypothesis of four significant axes (Figure 8C)
is accepted and results in eigenvalues that lie within the
confidence interval.

Figure 9. Accuracy in filter estimation. Simulations are shown for the divisive normalization example of Figure 7. Bottom: The error
is computed as a function of the ratio of number of spikes to stimulus dimensionality. Stimulus dimensionality is held fixed for all
simulations but a number of input stimuli (and thus spikes) are varied. Black line and points are the bootstrap-estimated error (mean
angular error obtained from bootstrapping; see main text) of estimation of the lowest eigenvector. The gray line is the theoretical
prediction of the mean angular error, computed as the square root of the ratio of the stimulus dimensionality (here, 48) to number of
spikes (see Equation 8 and Paninski, 2003). We multiply the theoretical prediction by a constant parameter that yields the least square
error with the bootstrap-estimated error above for the last five points (because the theoretical prediction only holds for the small error
regime).
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Filter estimation accuracy

Assuming that the recovered STA and STC filters are
significant, we would also like to understand how accurate
they are. The accuracy of our estimated filters depends on
three quantities: (1) the dimensionality of the stimulus
space, d; (2) the number of spikes collected, N; and (3) the
strength of the response signal, relative to the standard
deviation of the raw stimulus ensemble, A.
Asymptotically, the errors decrease as:

MAE k
Y� �

¼ A

BðkYÞ

ffiffiffiffi
d

N

r
; ð8Þ

where MAE indicates the mean of the angular error (the
arccosine of the normalized dot product) between the
estimated filter and the true filter and BðkYÞ is a
proportionality factor that depends inversely on the
strength of the response signal (Paninski, 2003). The
strength of response signal is the length of the STA vector
in the limit of infinite data, and is not available in an
experimental situation. However, the number of spikes
and number of stimulus dimensions are known, and thus,
the function of Equation 8 may be used to extrapolate the
error behavior based on bootstrap estimates. To demon-
strate this, we simulate an experiment on the model
divisive normalization neuron.
We describe a bootstrapping methodology for estimating

the MAE, and show that it is reasonably matched to the
theoretical prediction of the error in Equation 8, when the
ratio of number of spikes to number of stimulus
dimensions is sufficiently high. We run a pilot experiment
on the model divisive normalization neuron and collect
409,600 input samples. We consider how the ratio of
stimulus dimensionality to number of spikes affects
accuracy. Specifically, we hold the stimulus dimension-
ality fixed and vary the number of input samples (and thus
spikes). For a given number of input samples, we boot-
strap, drawing (with replacement) random subsets of
stimuli equal to the number of input samples. We consider

the spike-triggered stimuli from this subset and compute
the STA and STC. We repeat this many times (here,
1,000) and derive an estimate of the mean angular error
for a given STC filter. This is achieved by computing the
mean of the 1,000 estimated filters from the boot-
strappingVwe will denote this the mean estimated filter;
and then, for each of the 1,000 estimated filters, by
computing its mean angular error with the mean estimated
filter and taking an average over these computations. This
analysis assumes that there is no systematic bias in the
estimates (such as those shown in Figure 15).
In Figure 9, we plot the error estimates for the filter

corresponding to the lowest eigenvalue. As the number of
spikes to number of stimulus dimensions increases, the
error is reduced. We also show, for three example ratios,
the eigenvalues and the filter estimate corresponding to the
lowest eigenvalue. For a low ratio of spike counts to
stimulus dimensions, the eigenvalues descend gradually,
and the smallest one is not separated from the rest; for a
high ratio of spike counts to stimulus dimensions, the
eigenvalues take on a pattern similar to Figure 7. Finally,
we return to Equation 8: We fit this equation (and
corresponding proportionality factor) to the errors derived
from bootstrapping and obtain a rather good match for the
low error regime. Such an analysis could be used in an
experimental situation to determine data requirements for
a given error level, by extrapolating the curve from values
estimated from a pilot experiment. In the Experimental
issues section, we elaborate on running a pilot experiment
to choose a reasonable tradeoff between number of spikes
and stimulus dimensionality.

Characterizing the nonlinearity

According to the LNPmodel, the firing rate of a neuron is
given by a nonlinear transformation of the linear filter
responses (Figure 2). Using the same set of stimuli and
spike data as for the linear filter estimation, we seek to
estimate the nonlinearity and, thus, characterize a neural
model that specifies the full transformation from stimulus
to neural firing rate. We therefore need to estimate the

Figure 10. Nonlinearity for an LNP model with a single linear filter followed by a point nonlinearity. Left: Raw (black) and spike-triggered
(white) histograms of the linear (STA) responses. Right: The quotient of the spike-triggered and raw histograms gives an estimate of the
nonlinearity that generates the firing rate.
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firing rate of the neuron as a function of the linear filter
responses. This can be seen using Bayes rule:

P spikeks
Yð Þ ¼ PðspikeÞPðsYkspikeÞ

PðsYÞ ; ð9Þ

and therefore,

P spikeks
Yð Þò PðsYkspikeÞ

PðsYÞ ; ð10Þ

where PðspikeksYÞ is the instantaneous firing rate,
PðsYkspikeÞ is the frequency of occurrence of spike-
triggered stimuli, and PðsYÞ is the frequency of occurrence
of raw stimuli.
The problem of estimating the nonlinearity can thus be

described as one of estimating the ratio of two probability
densities of Equation 10. The accuracy of the estimation is
dependent on the dimensionality (number of filters) in the
linear subspace. For one or two filters, we can use simple
histograms to estimate the numerator and denominator of
Equation 10. For more filters, this becomes impractical

due to the so-called Bcurse of dimensionality[: The
amount of data needed to sufficiently fill the histogram
bins in a d-dimensional space grows exponentially with d.
In this case, we typically need to incorporate additional
assumptions about the form of the nonlinearity.
Consider a model LNP neuron with only a single filter

followed by a point nonlinearity. First, we estimate the
linear filter by computing the STA. Then, we compute the
linear filter response for each stimulus, by taking a dot
product of the filter with the stimulus. We do this for all
instantiations of the spike-triggered stimuli and compute a
histogram estimating the numerator density PðsYkspikeÞ; we
do this for all instantiations of the raw stimuli and
compute a histogram estimating the denominator density
PðsYÞ. The nonlinearity that determines the firing rate is
then the ratio of these two densities or the ratio of the
histogram values in each bin. An example is shown in
Figure 10 (see also Chichilnisky, 2001). We plot the
histograms of the spike-triggered and raw stimuli filter
responses (Figure 10, left). We observe the nonlinearity by
examining the ratio of these two histograms (Figure 10,
right): The instantaneous firing rate grows monotonically
and asymmetrically, that is, increases for stimuli to which
the filter responds strongly and positively.

Figure 11. Nonlinearity for ideal complex cell model. This corresponds to eigenvalue and eigenvector example of Figure 6. Left: Scatter
plots of stimuli projected onto estimated filters (i.e., filter responses) corresponding to first two eigenvalues (e1 and e2). Black points
indicate the raw stimulus set. White points indicate stimuli eliciting a spike. Also shown are one-dimensional projections onto a single filter.
Right: The quotient of the two-dimensional spike-triggered and raw histograms provides an estimate of the two-dimensional nonlinear
firing rate function. This is shown as a circular-cropped grayscale image, where intensity is proportional to firing rate. Superimposed
contours indicate four different response levels. Also shown are one-dimensional nonlinearities estimated for when the data are projected
onto each of the single filters.
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Note that the nonlinearity can be arbitrarily complicated
(even discontinuous). The only constraint is that it must
produce a change in the mean of the spike-triggered
ensemble, as compared with the original stimulus ensemble.
Thus, the interpretation of reverse correlation in the context
of the LNPmodel is a significant departure from theWiener/
Volterra series expansion, in which even a simple sigmoidal
nonlinearity would require the estimation of many terms for
accurate characterization (Rieke et al., 1997).
Next, consider an ideal complex cell model neuron as in

Equation 6. The recovered eigenvalues indicate that two
directions within this space have substantially higher
variance than the others (recall Figure 6). As before, we
compute the raw and spike-triggered stimulus responses
for each of the two filters. A two-dimensional scatter plot
of these filter responses is shown in Figure 11 (left) for
both the spike-triggered and raw stimuli. This is a two-
dimensional depiction of samples from the numerator and
denominator distributions in Equation 10. The scatter plots
are similar in essence to those described in Figure 4, but
the stimuli are projected onto the two filters recovered
from the analysis. To estimate the two-dimensional non-
linear firing rate function (Figure 11, right), we compute
the two-dimensional histogram for the spike-triggered and

raw stimuli responses and calculate the ratio of the
histogram values in each bin. This is analogous to the
one-dimensional example shown in Figure 10. Similar
pairs of excitatory axes and nonlinearities have been
obtained from STC analysis of V1 cells in cat (Touryan
et al., 2002) and monkey (Rust et al., 2004; Rust,
Schwartz, et al., 2005).
Finally, consider the divisive normalization model in

Equation 7, for which the eigenvalues and eigenvectors are
shown in Figure 7. Figure 12 (left) shows a scatter plot of
the STA filter response versus a suppressive filter response.
The two-dimensional nonlinearity is estimated by taking
the quotient as before. This reveals a saddle-shaped
function, indicating the interaction between the excitatory
and suppressive signals (Figure 12, right). Similar suppres-
sive filters have been obtained from STC analysis of retinal
ganglion cells (in both salamander and monkey; Schwartz
et al., 2002) and simple and complex cells in monkey V1
(Rust, Schwartz, et al., 2005).
For some systems, such as H1 of the blowfly (Bialek & de

Ruyter van Steveninck, 2005; Brenner, Bialek & de Ruyter
van Steveninck, 2000), the dimensionality of STA and
STC filters is sufficiently low (and the data set sufficiently
large) to calculate the quotient of Equation 10 directly (as

Figure 12. Nonlinearity for divisive normalization model. This corresponds to the eigenvalue and eigenvector example of Figure 7.
Left: Scatter plots of stimuli projected onto estimated filters (i.e., filter responses) corresponding to STA and last suppressive
eigenvector. Black points indicate the raw stimulus set. White points indicate stimuli eliciting a spike. Also shown are one-
dimensional projections onto a single filter. Right: The quotient of the two-dimensional spike-triggered and raw histograms provides
an estimate of the two-dimensional nonlinear firing rate function. This is shown as a circular-cropped grayscale image, where
intensity is proportional to firing rate. Superimposed contours indicate four different response levels. Also shown are one-
dimensional nonlinearities onto a single filter.
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we have shown in the simulation examples) and thus
estimate the nonlinearity. But what happens when there
are more than two significant filters derived from the STA
and STC analyses? There is not one single recipe; rather,
there are a number of ways to try and approach this

problem, and the answer depends on the particular system
and data at hand.
One approach is to consider specific classes of LNP

models that might be suitable for the particular neural area
under study. For instance, in retinal ganglion cell data, it

Figure 13. Interpretation issues and sum of half squares LNP model: filters. (A) Left: Model filter responses are half squared (negative
values set to zero) and then added together. Note that this is different from the full squaring of the ideal complex cell. Right: Geometry of
the STA and STC analysis. The STA is a vector average of the model filters. The STC is forced to be 90 deg away from the STA. Although
the STA and STC filters do not equal the model filters, they do span the same subspace. (B) Example of spatially shifted model filters.
Both STA and STC analysis reveal filters that are quite different from the model but span the same subspace. (C) Example of oriented
filters. We extend the two-filter model to four filters that are each half squared and then added together. The STA is the average of all four
filters and has a center/surround appearance rather than an oriented one. The other three STC filters are orthogonal. (D) The model
neuron includes five spatially overlapping filters. The filter responses undergo a weighted sum of half squares, followed by addition of a
(negative) linear surround (gray curve). The STA is a vector average of the linear filters, and the STC filters are orthogonal.
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was shown that fitting a divisive normalization model to the
filters recovered from STA and STC provided a reasonable
characterization of the data (Schwartz et al., 2002). In
another study in area V1, the dimensionality of the filters
from STA and STC was too high for computing the
nonlinearity within the full recovered subspace (Rust,
Schwartz, et al., 2005). The form of nonlinearity was
restricted by first computing squared sums of excitatory
filter responses and squared sums of suppressive filter
responses, and only then was the nonlinearity between
these pooled excitatory and suppressive signals deter-
mined. This simplification could be made because it was
observed that projections of stimuli onto the recovered
filters within the excitatory or suppressive pools always
resulted in elliptical contoursVsuggesting sum of squares
operations governing the combination within each pool.
An alternative approach, published in this special issue,
assumes that the nonlinearity takes the form of a ratio of
Gaussians (Pillow & Simoncelli, 2006).

Limitations and potential failures

The STA and STC estimates depend critically on the
distribution of input stimuli and on the particular non-
linearity of the neuron. For an LNP model with a single
linear filter, the consistency of the STA estimator is
guaranteed (e.g., irrespective of the neural nonlinearity)
only if the distribution of input stimuli are spherically
symmetric; that is, any two stimulus vectors with equal
vector length have an equal probability of being presented
(Chichilnisky, 2001). If one aims to recover a set of filters
using both STA and STC, then the consistency of the
estimator is guaranteed under the more stringent condition
that the stimuli be Gaussian distributed (Paninski, 2003).
The estimator is also guaranteed for elliptically symmet-
ric Gaussian stimuli, in which the covariance matrix is
not equal to the identity (see Appendix). For example,
even if the raw stimuli are constructed as spherical
Gaussian, a finite number of stimuli will, by chance,
produce some axes that have (slightly) higher variance
than others.
Note that non-Gaussian stimulus distributions can lead to

artifacts in the spike-triggered analysis, and the artifacts are
dependent on how the nonlinear response properties of the
neuron interact with the distribution. In the Experimental
issues section, we show simulated examples with non-
Gaussian stimuli, demonstrating how this could poten-
tially impact the STA and STC in a model neuron. These
examples do not indicate that experiments with non-
Gaussian stimuli and STA/STC analysis will necessarily
lead to artifacts, but because there is no general solution
for eliminating artifacts that can arise from non-Gaussian
stimuli, it is advisable to run experimental controls with
Gaussian stimuli.

Even if one is careful to design an experiment and data
analysis methodology that leads to accurate and artifact-
free estimates, a spike-triggered analysis can still fail if the
model assumptions are wrong. Two examples of failure of
the LNP model are as follows: (1) there is no low-
dimensional subspace in which the neural response may
be described or (2) the neural response has a strong
dependence on spike history (e.g., refractoriness, bursting,
adaptation) that cannot be described by an inhomogeneous
Poisson process. STA/STC analysis of data simulated using
more realistic spike generation models, such as Hodgkin–
Huxley (Agüera y Arcas & Fairhall, 2003; Agüera y Arcas,
Fairhall, & Bialek, 2001, 2003; Pillow & Simoncelli,
2006) and integrate-and-fire (Pillow & Simoncelli, 2003),
produces biased estimates and artifactual filters. Although
the STA/STC filters might in some cases still provide a
reasonable description of a neuron’s response, it is
important to recognize that the LNP model provides only
a crude approximation of the neural response (see
Interpretation issues section).

Interpretation issues

There are a number of important issues that arise in
interpreting the spike-triggered analysis. First, the number
of filters recovered by STA and STC provides only a lower
bound on the actual number of filters. The neural response
may be dependent on mechanisms not identified by the
STC analysis: (1) Other filters might affect the response,
but the dependence is too weak and buried in the statistical
error (a possibility with any experimental methodVrecall
Figure 9); or (2) The neural response nonlinearities may
not lead to a change in the mean or variance. It should be
noted that although such a nonlinearity is theoretically
possible, most known physiological nonlinearities do
affect the mean, the variance, or both.
Next, the recovered filters cannot be taken literally as

physiologically instantiated mechanisms. The STC filters,
together with the STA, form an orthogonal basis for the
stimulus subspace in which the responses are generated.
The analysis does not yield a unique solution: A whole
family of equivalent models can be constructed (by
transforming to alternative sets of filters using an
invertible linear transformation), which, given the same
stimulus, produce the same response. Thus, even if a
neuron’s response is well described by an LNP model, we
cannot claim to recover the actual filters that the neuron is
using to compute its response. Rather, the goal is to find a
set of filters that span the proper subspace; that is, with
this set of filters, one can compute the same responses as
with the actual set.
Figure 13 shows a simulation for an example of model

neuron in which the STA and STC do not recover the
actual model filters but do span the same subspace. The
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model neuron responds with a rate proportional to a sum
of half squares, as opposed to the sum of squares typical
of the ideal complex cell:

gðsYÞ ¼ r )k
Y

1 � s
Y

2
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:

The simulation results for different input filters are shown
in Figure 13. Now, the STA does not result in a zero-
weighted filter because the filter responses are not
symmetric as in the ideal complex cell. The STA is not
equal to either of the two excitatory filters of the model;
rather, it is a vector average of the two filters. STC
analysis on the stimuli perpendicular to the STA reveals
an additional excitatory filter. Note that the two recovered
filters together span the excitatory subspace of the original
model filters. Figure 13C shows an example with four
input filters of different orientations whose responses are
half squared and summed; the STA takes on a more center–
surround, unoriented appearance. Figure 13D shows an
example of five overlapping spatial filters. These can be
thought of as subunits, as has been proposed for retina
(Hochstein & Shapley, 1976; see also Rust, Schwartz, et
al., 2005 for cortical data). The nonlinear combination of
these filters is followed by a subtraction of a linear
surround. The resulting STA takes on the well-known
spatial profile of retinal ganglion cells, and the STC filters
are forced to be orthogonal and similar to what is found
experimentally (Pillow, Simoncelli, & Chichilnisky,
2004). The two-dimensional depiction of the nonlinearity
for the above examples is interesting: The spike-triggered

stimuli form a shape that resembles a portion of an
annulus (Figure 14). Neurons with nonlinearities of this
flavor can be seen in area V1 of the macaque (Rust,
Schwartz, et al., 2005) and in retinal ganglion cells
(Schwartz & Simoncelli, 2001).
Another reason why the recovered filters should not be

interpreted as a physiological mechanism is that the LNP
model assumes Poisson spiking. A number of authors have
demonstrated that these Poisson assumptions do not
accurately capture the statistics of neural spike trains
(Berry & Meister, 1998; Keat, Reinagel, Reid, &
Meister, 2001; Pillow, Shlens, Paninski, Chichilnisky,
& Simoncelli, 2005a; Reich, Victor, & Knight, 1998).
The dependence of neural responses on spike history
(e.g., refractoriness, bursting, adaptation) may be cap-
tured only indirectly in the LNP model through time-
delayed suppressive STC filters (Agüera y Arcas &
Fairhall, 2003; Agüera y Arcas et al., 2003; Schwartz
et al., 2002). For instance, during a refractory period, a
neuron will not spike, and this can be captured by an
LNP model with a set of suppressive STC filters in time.
The suppressive filters may still provide a reasonably
accurate description of the neural response but do not
reveal the mechanism of refractoriness.
Finally, the labeling of whether a filter is excitatory or

suppressive is crudely based on the net change in the mean
or variance and may not correspond physiologically to
excitation or suppression. A given filter can indeed be both
excitatory and suppressive. For example, a filter might be
half square rectified, yielding a positive increase in the
mean, but also include a compressive squared nonlinearity
(as in divisive normalization). Because the STA and STC

Figure 14. Interpretation issues and sum of half squares LNP model: nonlinearity. Nonlinearity is shown for model simulation of filters in
Figure 13B (almost identical plots are found for Figures 13C and 13D). Left: Scatter plots of stimuli projected onto estimated filters (i.e.,
filter responses) corresponding to STA and first eigenvector. Black points indicate the raw stimulus set. White points indicate stimuli
eliciting a spike. Also shown are one-dimensional projections onto a single filter. Right: The quotient of the two-dimensional spike-
triggered and raw histograms provides an estimate of the two-dimensional nonlinear firing rate function. This is shown as a circular-
cropped grayscale image, where intensity is proportional to firing rate. Superimposed contours indicate four different response levels. Also
shown are one-dimensional nonlinearities onto a single filter.
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filters are orthogonal, the analysis will extract a single
filter and label it as excitatory. As before, the analysis still
finds the right subspace; one can then analyze the
interaction and aim to estimate a model within the
subspace.

Experimental issues

We now discuss issues that arise when designing and
interpreting spike-triggered experiments.

Stimulus choice
Stimulus space

The stimuli in a spike-triggered experiment need to be
restricted to lie in a finite-dimensional space, and the
experimentalist must choose the fundamental components
(i.e., the axes) of this space. At any moment in time, the
neuron is exposed to a linear combination of this set of
stimulus components. In many published examples (as well
as the examples shown in this article), the axes of the
stimulus space corresponds to pixel (or stixel) intensities.
However, the stimulus may be described in terms of other
components, such as the amplitudes of a particular set
of sinusoids (Ringach, Sapiro, & Shapley, 1997), the

velocities of a randomly moving spatial pattern (Bair,
Cavanaugh, & Movshon, 1997; Borghuis et al., 2003;
Brenner, Bialek & de Ruyter van Steveninck 2000; de
Ruyter van Steveninck & Bialek, 1988), or any other fixed
set of functions. More generally, it is possible to do the
analysis in a space that is a nonlinear function of the input
stixels (David, Vinje, & Gallant, 2004; Nishimoto, Ishida,
& Ohzawa, 2006; Theunissen et al., 2001). This is useful
when one believes that the cells’ response is LNP on these
inputs (Rust, Simoncelli, & Movshon, 2005), although it
may then be more difficult to interpret the results. The
fundamental constraints on the choice of these compo-
nents are that (1) the neuron should respond reasonably to
stochastically presented combinations of these compo-
nents and (2) the neuron’s response should be well
approximated by an LNP model operating in the space
of these components.
The choice of a finite-dimensional stimulus space places

a restriction on the generality of the experimental results:
The response of the cell will only be characterized within
the subspace spanned by the stimulus components
(Ringach et al., 1997). Stated differently, without further
assumptions, the model one constructs with STC can only
predict stimuli responses that lie in the space defined by
the experimental stimulus ensemble. For example, one
cannot predict the responses to chromatic stimuli when
using achromatic stimuli or to a full two-dimensional
space when probing the neuron with only a single spatial
dimension (as in the case of bars). Similarly, one cannot

Figure 15. Simulations of an LNP model demonstrating bias in the STA for two different nonspherical stimulus distributions. The linear
stage of the model neuron corresponds to an oblique axis (line in both panels), and the firing rate function is a sigmoidal nonlinearity (firing
rate corresponds to intensity of the underlying grayscale image in the left panel). In both panels, the black and white Btarget[ indicates the
recovered STA. Left: Simulated response to sparse noise. The plot shows a 2-dimensional subspace of a 10-dimensional stimulus space.
Each stimulus vector contains a single element with a value of T1, whereas all other elements are zero. Numbers indicate the firing rate for
each of the possible stimulus vectors. The STA is strongly biased toward the horizontal axis. Right: Simulated response of the same
model to uniformly distributed noise. The STA is now biased toward the corner. Note that in both examples, the estimate will not converge
to the correct answer, regardless of the amount of data collected.
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use the model to predict responses to stimuli that have a
finer spatial or temporal resolution than that used in the
characterization.
To obtain a more general characterization, one needs to

increase the stimulus resolution. Unfortunately, this
increases the dimensionality of the stimulus space and,
thus, requires more spikes to achieve the same quality of
filter estimation. At the same time, the increase in
resolution typically reduces the responsivity of the cell
(e.g., because the effective contrast is reduced), thus
making it more difficult to obtain the needed spikes.
Recall that the error in filter estimation is a direct

consequence of the ratio of the number of spikes to
stimulus dimensionality, as in the example model neuron
simulation shown in Figure 9. Therefore, it is useful to run
a pilot experiment to determine the proper balance between
number of spikes (e.g., duration of the experiment) to
stimulus dimensionality for a particular class of neurons. In
practice, it useful for a physiologist to adopt a rule of thumb
for the particular system at hand: In the V1 experiments,
Rust, Schwartz, et al. (2005) found that at least 100 spikes
per dimension were typically needed to obtain a good
characterization. Other experimental methodologies or
settings (e.g., recordings from an awake behaving animal)

Figure 16. STC artifacts with binary stimuli. The model neuron is the same as in Figure 7, but the Gaussian stimuli were replaced with
binary stimuli. (A) Left: There are four eigenvalues significantly below what one would expect by chance. Two of the corresponding
eigenvectors correspond to the real model filter subspace, but two of them are artifactual. Right: Projection onto one of the artifactual
filters versus the STA. The raw stimuli are nonspherical and have lower horizonal variance at the top than in the middle. Although the
variance of the raw and spike-triggered stimuli is the same when confined to this corner, the variance of the spike-triggered stimuli is
significantly smaller than the variance of the entire raw ensemble, and this generates the artifactual suppressive filter (e45). (B) Left: After
conditional whitening (see main text), there are only two significantly low eigenvalues corresponding to the model neuron subspace.
Right: Projection onto the same eigenvalue as the artifactual filter above, as against the STA. The raw stimuli are now not perfectly circular
but have roughly equal variance in all directions.
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and other classes of neurons may be more limited in the
number of spikes that can be collected.

Stochastic stimulus distribution

As stated earlier, the STC portion of the spike-triggered
analysis is only guaranteed to work for Gaussian stimuli.
The use of non-Gaussian white noise stimulus distributions
(e.g., uniform, binary, sparse) is quite common experimen-
tally, as the samples are easy to generate and the higher
contrast of the stimuli generally leads to higher average
spike rates. In practice, their use is often justified by
assuming that the linear filters are smooth relative to the
pixel size/duration (e.g., Chichilnisky, 2001). Natural
signal stimuli (such as visual scenes and auditory vocal-
izations) are also non-Gaussian (Daugman, 1989; Field,
1987), but their use is becoming increasingly popular
(David & Gallant, 2005; David et al., 2004; Felsen & Dan,
2005; Ringach, Hawken, & Shapley, 2002; Sen et al.,
2000; Smyth, Willmore, Baker, Thompson, & Tolhurst,
2003; Theunissen et al., 2001; for recent perspectives, see
Felsen & Dan, 2005; Rust & Movshon, 2005). Natural
signals can reveal response properties that occur less
frequently under Gaussian white noise stimulation, such as
bursting in the LGN (Lesica & Stanley, 2004), and they
are often more effective in driving higher neural areas.
However, nonspherical stimuli can produce artifacts in

the STA filters, and non-Gaussian stimuli can produce
artifacts in the STC filters. Figure 15 shows two simu-
lations of an LNP model with a single linear filter and a
simple sigmoidal nonlinearity, each demonstrating that
nonspherical stimulus distributions can lead to poor
estimates of the linear stage. The examples are meant to
emphasize the potential for bias but do not necessarily
mean that an artifact will occur in experiment. Indeed, the
interaction between the stimulus distribution and the
particular nonlinear behaviors of the neural response will
determine if and how much of a bias occurs. Because we
do not know the nonlinearity a priori, the safest approach
is to compare the experimental linear filter estimate to a
control using spherically symmetric stimuli.
The first example shows a Bsparse noise[ experiment, in

which the stimulus at each time step lies along one of the
axes. As shown in the figure, the nonlinearity can result in
an STA that is biased toward an axis of the space. The
second example uses stimuli in which each component is
drawn from a uniform distribution, which produces an
estimate biased toward the Bcorner[ of the space. Note,
however, that the estimate will be unbiased in the case of a
purely linear neuron or of a half-wave-rectified linear
neuron (Ringach et al., 1997).
Non-Gaussian stimuli can produce strong artifacts in the

STC analysis. Figure 16A (left) shows an example
simulation of the divisive normalization model with
binary stimuli. Note that in addition to the two Breal[
suppressive filters of the model, the analysis also finds two
significant artifactual suppressive filters; these have a few

high-intensity stixels. Similar artifacts have been found in
experimental circumstances (Rust, Schwartz, et al., 2005).
More intuition for the artifacts can be gained by examin-
ing two-dimensional scatter plots that include an
artifactual filter response versus the STA filter response
(Figure 16A, right). The raw binary stimuli are clearly not
spherical in this two-dimensional view. Specifically, the
set tapers as one moves in the direction of the STA. This
reduction in variance of the raw stimulus happens to
coincide with the stimuli that elicit spikes (i.e., those that
have a large STA component). Thus, the spike-triggered
analysis reveals the artifactual filter as an axis of
significantly reduced variance, although it is actually not
reduced relative to the raw stimuli.
There is, unfortunately, no generic recipe for reducing

artifacts. From our experience with binary stimuli, we have
found that the artifacts can be partially corrected by
adjusting the raw stimulus such that the covariance
estimated at each value of the STA is the same, as it would
be in the case of a Gaussian stimulus distribution (condi-
tional whitening; Rust, Schwartz, et al., 2005). Specifically,
we partition the stimuli of Figure 16A (right) into
horizontal slabs according to the value of the excitatory
filter response and compute the covariance matrix for each
subset (Cn for the nth subset). The stimuli in each subset
are whitened by multiplying them by

EeE
T
e þ E0EnD

j1
2

n ET
nE0; ð11Þ

where Ee is a matrix containing the (orthogonal) excita-
tory filters (only one in this exampleVthe STA), E0

contains an orthogonal basis for the remainder of the
stimulus space, and En and Dn are the eigenvectors and
eigenvalues for the remainder of the conditional covari-
ance matrix, Cn, respectively. The first term serves to
preserve the component of the stimulus in the direction of
the STA, while the second term depicts a whitening (by
the inverse of the raw stimuli in that slice) in the other
dimensions.
After this conditional whitening, the stimuli are recom-

bined and STC analysis is applied on the spike-triggered set
to reestimate the filters. Figure 16B shows that following
conditional whitening, there are only two significant
suppressive eigenvalues corresponding to the real model
filter subspace.
We have described an example of binary stimulus

artifacts and partially correcting for those artifacts. There
is generally no known fix for artifacts, but there are several
things that can be done to check for artifacts:

1. It is helpful to examine the projection of the raw
stimuli onto pairs of filters recovered from the
analysis; if these are not spherical, then the filters
can include artifacts. However, it is important to
remember that the stimulus space is huge, and
projection onto two dimensions might appear spheri-
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cally symmetric but does not guarantee spherical
symmetry in the full space.

2. It is sometimes useful to run a model neuron
simulation with the given stimuli and see if artifactual
filters emerge. The simplest simulation one can run is
an LNP model with a single linear filter: If a
significant STC filter is found, this is indicative of an
artifactual axis in simulation. Here, we have demon-
strated a slightly more involved example of a divisive
normalization simulation. However, it is important to
realize that we have control only over the stimulus
ensemble; we have no control over the nonlinear
behaviors of the neural response, and the artifacts
depend on these nonlinearities. We can explore in
simulation nonlinearities that have been attributed to
neurons, and this has proved helpful in some cases.

3. It is recommended to compare experimentally the
filter subspace recovered with a given stimulus
ensemble with that recovered with Gaussian
stimuli (recording from the same neuron); differ-
ences in the outcome between the two stimulus
types could indicate estimation biases or failures
of the model.

Touryan, Felsen, and Dan (2005) compared STC
analysis in area V1 for white noise and natural images.
To partially correct for the natural image stimuli, they first
whitened the stimuli in the ensemble. Although this
cannot correct for the nonspherical nature of the stimuli,
they showed that the first two eigenvectors (representing
complex cells in their data) were similar for white noise
and natural images. The natural images required far fewer
raw stimuli to achieve the same result, probably because
they are more effective at eliciting spikes. They also found
additional significant (and artifactual) filters that were
compared with artifactual filters arising in a simulation
with natural images.
Other techniques have been designed to cope directly

with non-Gaussian input, such as images, and thus bypass
this limitation of the STC approach. The basic idea is quite
simple: Instead of relying on a particular statistical moment
(e.g., mean or variance) for comparison of the spike-
triggered and raw stimulus distributions, one can use a more
general comparison function that can identify virtually any
difference between the two distributions. A natural choice
for such a function is information-theoretic: One can
compare the mutual information between a set of filter
responses and the probability of a spike occurring
(Paninski, 2003; Sharpee et al., 2003, 2004). This
approach is promising because it places essentially no
restriction on the stimulus ensemble. A drawback is that
the estimation problem is significantly more complicated;
it is more expensive to compute and may get trapped in
local optima. However, it has been successfully applied to
estimate one- or two-dimensional subspace models in
simulation and from physiological data in response to
natural images (Paninski, 2003; Sharpee et al., 2003, 2004,

2006). Other techniques, based on artificial neural net-
works (Lau, Stanley, & Dan, 2002; Lehky, Sejnowski, &
Desimone, 1992), have also been developed and applied to
natural images (Prenger, Wu, David, & Gallant, 2004).

Validation

Validation is useful to evaluate the degree to which the
recovered model is an accurate description of the neural
response. At the very least, it is worthwhile verifying that the
model, when fit to one run of white noise stimulation, can
then predict responses to another run. Because the model is a
rate model, this is most directly done by measuring
responses to repeated stimuli and comparing their average
(the PSTH) against that predicted from the model. Another
possibility is to Bplay back[ as stimuli the eigenvectors that
were found in the spike-triggered analysis to verify that they
affect the neuron’s response as expected (Rust, Schwartz,
et al., 2005; Touryan et al., 2002). This requires that one
perform the analysis and stimulus generation online during
the experiment. Playing back the eigenvectors is also
helpful for determining the importance of the individual
model components that are recovered from the analysis; for
example, the weakest components might have only a minor
impact on the neural response.
It is also of interest to test howwell the model generalizes

to other stimuli: If one characterizes the model with a set of
bars, how well does the model predict the response to a
single bar? If one characterizes the model with high
contrast stimuli, how well does it predict the response to
low contrast stimuli? Ultimately, we would like a model
that predicts the response to any arbitrary stimulus.
Validating the model on different stimuli can help assess
the robustness of the model and when it breaks, and, in turn,
can identify the need for further improving spike-triggered
analysis techniques.

Discussion

We have described a set of spike-triggered techniques
for characterizing the functional response properties of
neurons using stochastic stimuli. In general, there is a
tradeoff between restricting the subspace dimensionality
(as in the STA and STC approaches) versus restricting the
nonlinearity (as in the Wiener/Volterra approaches). Here,
we have focused specifically on STA and STC analyses.
These methods rely on an assumption that the response of
the neuron is governed by an initial linear stage that serves
to reduce the dimensionality of the stimulus space. The
linear stage is followed by a nonlinearity upon which we
place fairly minimal constraints. Having worked with
these methods in both retina and V1, we have found that
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many experimental and analysis issues are quite tricky.
We have presented examples with model neuron simu-
lations, highlighting similarities with experiments where
possible.
Estimation of the linear subspace can be corrupted by

three distinct sources of error, which we have discussed in
this article. First, there are errors due to the finiteness of the
data. The rate at which these decrease with increasing data
is given in Equation 8 and illustrated in Figure 9. Second,
there are biases that can arise from the interaction of the
neural nonlinearities and use of non-Gaussian stimuli.
Examples are shown in Figure 15. Finally, there are errors
due to model failure.
There are a number of interesting directions for future

research. First, the LNP model can be extended to
incorporate some spike history dependence, by recursively
feeding back the spiking output into the linear input stage.
This Brecursive LNP[ model (also referred to as a general
linear model [GLM]) has appeared in recent literature
(Pillow, Paninski, Uzzell, Simoncelli, & Chichilnisky,
2005; Truccolo, Eden, Fellows, Donogue, & Brown,
2005) and may allow the introduction of some adaptation
effects, as well as shorter timescale effects such as
refractoriness, bursting, or rapid gain adjustments. This
model can no longer be directly fit to data with STA and
STC and requires more complex fitting procedures. In
addition, the techniques described here can be adjusted for
the analysis of multineuronal interactions (e.g., Nykamp,
2003; Okatan, Wilson, & Brown, 2005; Pillow, Shlens,
Paninski, Chichilnisky, & Simoncelli, 2005b). Such
methods have been applied, for example, in visual cortex
(Tsodyks, Kenet, Grinvald, & Arieli, 1999), motor cortex
(Paninski, Fellows, Shoham, Hatsopoulos, & Donoghue,
2004), and hippocampus (Harris, Csicsvari, Hirase,
Dragoi, & Buzsáki, 2003). Also, neurons adapt to stimuli
over multiple timescales (Brenner, Bialek & de Ruyter
van Steveninck, 2000; Fairhall, Lewen, Bialek, & de
Ruyter van Steveninck, 2001), and it would be interesting
to extend current approaches to incorporate adaptation.
Finally, it would be desirable to develop techniques that
can be applied to a cascaded series of LNP stages. This
will be essential for modeling responses in higher order
sensory areas, which are presumably constructed from
more peripheral responses. Specifically, if the afferent
responses that arrive in a particular neural area are
reasonably understood, then one may be able to arrange
to perform the spike-triggered analysis in the space of the
afferents (Rust, Simoncelli, et al., 2005).

Appendix

We describe how to compute STA and STC for
elliptically symmetric Gaussian stimuli. If the distribution
of stimuli is elliptically symmetric, then a modified

STA can be computed as follows (e.g., Theunissen et al.,
2001):

Â¶ ¼ Cj1 Â; ðA1Þ

where

C ¼~
n

s
YðtnÞsYTðtnÞ ðA2Þ

is the covariance matrix of the raw stimuli (we assume
that the mean stimulus is zero). Note that this solution is a
regression estimate for a linear mapping from stimuli to
spikes. The surprising result is that one can use linear
regression on a one-dimensional LN model if the input
vectors are elliptically distributed.
As in the case of STA, STC can be generalized to the case

of an elliptically symmetric stimulus distribution. Here, the
natural choice is to solve for stimulus dimensions in which
the ratio of variances of the spike-triggered and raw
stimulus ensembles is either large or small. Mathemati-
cally, we write this ratio in a direction specified by unit
vector û as:

r ûð Þ ¼ ûTĈû

ûTCû
: ðA3Þ

The solution to this problem can be computed directly
using a generalized eigenvector analysis. Specifically, we
first solve for the whitening transform in the deno-
minator, computing the eigenvalues D and eigenvectors
V of the covariance matrix of the raw stimuli. We set
X ¼ Vð

ffiffiffiffi
D

p
Þj1

and û ¼ Xv̂, obtaining:

r ûð Þ ¼ v̂TXTĈVv̂

v̂T v̂
: ðA4Þ

This is now equivalent to solving a standard eigenvector
problem, calculating the eigenvalues and eigenvectors of
XTĈX.
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Footnotes

1
It should be noted that a Wiener/Volterra approach has

also been applied within a subspace, but under the
assumption of a low<order polynomial nonlinearity (e.g.,
Emerson et al., 1987, 1992; Szulborski & Palmer, 1990).

2
Note that the STA estimate is unbiased but it does not, in

general, correspond to a maximum likelihood estimate
(Dayan & Abbott, 2001).

3
Note that recent work (Pillow & Simoncelli, 2006)

suggests an information<theoretic objective that combines
the STA and STC optimally.
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