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Summary
Decision-making strategies evolve during training and can continue to vary even in well-trained animals.
However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric
function that is fit only after training is complete. Here, we present PsyTrack, a flexiblemethod for inferring the
trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from
mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that
it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant
covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across
mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a
powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks.
Introduction

The behavior of well-trained animals in carefully designed tasks

is a pillar of modern neuroscience research (Carandini, 2012;

Krakauer et al., 2017; Niv, 2020). In sensory decision-making ex-

periments, animals must learn to integrate relevant sensory sig-

nals while ignoring a large number of task-irrelevant covariates

(Gold and Shadlen, 2007; Brunton et al., 2013; Hanks and Sum-

merfield, 2017). However, the sensory decision-making literature

has tended to focus on characterizing the decision-making

behavior of fully trained animals in terms of fixed strategies, as

in signal detection theory (Green and Swets, 1966) or the drift-

diffusion model (Ratcliff and Rouder, 1998). This approach ne-

glects the dynamics of decision-making behavior across trials,

which may be essential for understanding learning, exploration,

adaptation to task statistics, and other forms of non-stationary

behavior (Usher et al., 2013; Pisupati et al., 2019; Brunton

et al., 2013; Piet et al., 2018).

Characterizing the dynamics of sensory decision-making

behavior is challenging due to the fact that decisions may

depend on a large number of task covariates, including the sen-

sory stimuli, an animal’s choice bias, past stimuli, past choices,

and past rewards. Detecting and disentangling the influence of

these variables on a single choice is an ill-posed problem due
to the fact that we have many unknowns (the weights on each

variable) and a single observation (the animal’s choice). As a

result, it is common to assume that the decision-making rule,

or strategy, of an animal is fixed over some reasonably large

number of trials. However, this assumption is at odds with the

fact that decision-making strategies may change on a trial-to-

trial basis and may evolve rapidly during training, when animals

are learning a new task (Carandini and Churchland, 2013).

Understanding what drives changes in decision-making

behavior has long been the domain of reinforcement learning

(RL) (Sutton and Barto, 2018; Sutton, 1988). In this paradigm,

behavioral dynamics are examined through the lens of the re-

wards and punishments that may accompany each decision.

RL-based approaches are generally normative, meaning that

they describe changes in behavior as resulting from the optimi-

zation of some measure of future reward (Niv, 2009; Daw 2011;

Niv et al., 2015; Samejima et al., 2004; Daw and Courville,

2008; Ashwood et al., 2020). By contrast, descriptive modeling

approaches seek only to infer time-varying changes in strategy

from the observed choices of an animal, without attributing

such changes to any notion of optimality. Previous studies in

this tradition include those of Smith et al. (2004) and Suzuki

and Brown (2005), which focused on identifying the time at which

an untrained animal began to learn. Other work from Kattner
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Figure 1. Schematic of binary decision-making task and dynamic psychophysical model

(A) A schematic of the IBL sensory decision-making task. On each trial, a sinusoidal grating (with contrast values between 0%and 100%) appears on either the left

or right side of the screen. Mice must report the side of the grating by turning a wheel (left or right) to receive a water reward (see STAR methods for details)

(International Brain Laboratory et al., 2020).

(B) An example table of the task variables xt assumed to govern behavior for trials t � 2 to t + 2, consisting here of a choice bias (a constant rightward bias,

encoded as ‘‘+1’’ on each trial), the contrast value of the left grating, and the contrast value of the right grating.

(C) Hypothetical time course of the psychophysical weightsW= [w1, ... ,wT], which evolve smoothly over the course of training. Eachweight corresponds to one of

the K = 3 components of xt, such that the weight value at trial t indicates how the corresponding variable affects the animal’s choice on that trial.

(D) Psychometric curves induced by the psychophysical weights wt on particular trials in ‘‘early,’’ ‘‘middle,’’ and ‘‘late’’ training periods, as defined in (C). Early

behavior is highly biased and insensitive to stimuli. Over the course of training, behavior evolves toward unbiased, high-accuracy performance consistent with a

steep psychometric function.
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et al. (2017) extended the standard psychometric curve to allow

its parameters to vary continuously across trials.

Here, we present PsyTrack, a descriptive modeling approach

for inferring the trajectory of an animal’s decision-making strat-

egy across trials, building on ideas developed by Bak et al.

(2016) and Roy et al. (2018a). Our model describes decision-

making behavior at the resolution of single trials, allowing for

visualization and analysis of psychophysical weight trajectories

both during and after training. It contains interpretable hyper-

parameters governing the rates of change of different weights,

allowing us to quantify how rapidly different weights evolve be-

tween trials and between sessions. We apply PsyTrack to

behavioral data collected during training in two different exper-

iments (auditory and visual decision making) and three different

species (mouse, rat, and human). After validating the method

on simulated data, we use it to analyze an example mouse

that learns to track block structure in a non-stationary visual

decision-making task (International Brain Laboratory et al.,

2020). We then examine how trial history influences rat (but

not human) decisions during early training on an auditory para-

metric working memory task (Akrami et al., 2018). To facilitate

application to new datasets, we provide a publicly available

software implementation in Python, along with a Google Colab

notebook that precisely reproduces all of the figures in this

article directly from publicly available raw data (see STAR

methods).
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Results

Our primary contribution is a method for characterizing the evo-

lution of animal decision-making behavior on a trial-to-trial basis.

Our approach consists of a dynamic Bernoulli generalized linear

model (GLM), defined by a set of smoothly evolving psychophys-

ical weights. These weights characterize the decision-making

strategy of the animal at each trial in terms of a linear combina-

tion of available task variables. The larger the magnitude of a

particular weight, the more the decision of the animal relies on

the corresponding task variable. Learning to perform a new

task therefore involves driving the weights on ‘‘relevant’’ vari-

ables (e.g., sensory stimuli) to large values, while driving weights

on irrelevant variables (e.g., bias, choice history) to zero. Howev-

er, classical modeling approaches assume that weights remain

constant over long blocks of trials, which precludes the tracking

of trial-to-trial behavioral changes that arise during learning and

in non-stationary environments. Below, we describe our

modeling approach in more detail.

Dynamic psychophysical model for decision-
making tasks
Although PsyTrack is applicable to any binary decision-making

task, for concreteness, we introduce our method in the context

of the task used by the International Brain Laboratory (IBL) (illus-

trated in Figure 1A; International Brain Laboratory et al., 2020). In
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this visual detection task, a mouse is positioned in front of a

screen and a wheel. On each trial, a sinusoidal grating (with

contrast values between 0% and 100%) appears on either the

left or right side of the screen. The mouse must report the side

of the grating by turning the wheel (left or right) to receive a water

reward (see STAR methods for more details).

Our modeling approach assumes that on each trial the animal

receives an input xt and makes a binary decision yt ˛ {0,1}. Here,

xt is a K-element vector containing the task variables that may

affect an animal’s decision on trial t ˛ {1,.,T}. For the IBL

task, xt could include the contrast values of left and right grat-

ings, as well as stimulus history, a bias term, and other covari-

ates available to the animal during the current trial (Figure 1B).

Wemodel the decision-making process of the animal with a Ber-

noulli GLM, also known as the logistic regression model. This

model characterizes the strategy of the animal on each trial t

with a set of K linear weights wt. The weight vector wt describes

how the different components of the input vector xt affect the

choice of the animal on trial t. The probability of a "rightward"

decision (yt = 1) is given by

pðyt = 1jxt;wtÞ = fðxt $wtÞ; (Equation 1)

where f($) denotes the logistic function, fðzÞ= 1=ð1+ expð� zÞÞ.
Unlike standard psychophysical models, which assume that

weights are constant across time, we assume that the weights

evolve gradually over time (Figure 1C). Specifically, we model

the weight change after each trial with a Gaussian distribution

(Bak et al., 2016; Roy et al., 2018a):

wt +1 = wt +ht; h t; k � N �
0;s2

k

�
; (Equation 2)

where ht is the vector of weight changes on trial t, and s2k denotes

the variance of the changes in the kth weight. The rate of change

of the K different weights in wt is thus governed by a vector of

smoothness hyperparameters q = {s1,.,sK}. A larger sk implies

larger trial-to-trial changes in the kth weight. Note that if sk =

0 for all k, then the weights are constant, and we obtain the

classic psychophysical model with a fixed set of weights for

the entire dataset.

Learning to perform a new task can be formalized under this

model by a trajectory in weight space. Figures 1C and 1D

shows a schematic example of such learning in the context

of the IBL task. Here, the behavior of the hypothetical mouse

is governed by three weights: a left contrast weight, a right

contrast weight, and a (choice) bias weight. The first two

weights capture how sensitive the choice of the animal is to

left and right gratings, respectively, whereas the bias weight

captures an independent, additional bias toward leftward or

rightward choices.

In this hypothetical example, the weights evolve over the

course of training as the animal learns the task. Initially, during

‘‘early training,’’ the left and right contrast weights are close to

zero and the bias weight is large and positive, indicating that

the animal pays little attention to the left and right contrasts

and exhibits a strong rightward choice bias. As training pro-

ceeds, the contrast weights diverge from zero and separate,

indicating that the animal learns to compute a difference be-
tween right and left contrast. By the ‘‘late training’’ period, left

and right contrast weights have grown to equal and opposite

values, while the bias weight has shrunk to nearly zero, indicating

unbiased, high-accurary performance of the task.

Although we have arbitrarily divided the data into three

different periods—designated ‘‘early,’’ ‘‘middle,’’ and ‘‘late

training’’—the three weights change gradually after each trial,

providing a fully dynamic description of the decision-making

strategy of the animal as it evolves during learning. To better un-

derstand this approach, we can compute an ‘‘instantaneous

psychometric curve’’ from theweight values at any particular trial

(Figure 1D). These curves describe how the mouse converts the

visual stimuli to a probability over choice on any trial. Together,

the weights in this example illustrate the gradual evolution from

a strongly right-biased strategy (Figure 1D, left) toward a high-

accuracy strategy (Figure 1D, right). Of course, by incorporating

weights on additional task covariates (e.g., choice and reward

history), the model can characterize time-varying strategies

that are more complex than those captured by a simple psycho-

metric curve.

Inferring weight trajectories from data
The goal of PsyTrack is to infer the full time course of the deci-

sion-making strategy of an animal from the observed sequence

of inputs X= ½x1; .; xT �, and choices Y= ½y1; .; yT � over the
course of an entire experiment. To do so, we estimate the

time-varing weights W = [w1,.,wT] of the animal using the dy-

namic psychophysical model defined above (Equations 1 and

2), where T is the total number of trials in the dataset. Each of

the K rows of W represents the trajectory of a single weight

across trials, while each column provides the vector of weights

governing decisions on a single trial. The method therefore

involves inferring K3 T weights from only T binary decision vari-

ables Y.

To estimate W from data, we use a two-step inference pro-

cedure called empirical Bayes (Bishop, 2006). First, we esti-

mate q, the hyperparameters governing the smoothness of

the weight trajectories, by maximizing p(Y|X,q), known as the

evidence, which is the probability of choice data Y given the in-

puts X and hyperparameters ‘‘q’’, with W integrated out.

Second, we compute the maximum a posteriori (MAP) estimate

for W given the choice data and the estimated hyperpara-

meters bq. Although this optimization problem is computation-

ally demanding, we have developed fast approximate methods

that allow us to model datasets with tens of thousands of trials

within minutes on a desktop computer (see STAR methods for

details; see also Figure S1).

To validate the method, we generated an artificial dataset

from a simulated observer with K = 4 weights that evolved ac-

cording to a Gaussian random walk over T = 5,000 trials (Fig-

ure 2A). Each weight had a different standard deviation sk
(Equation 2), producing weight trajectories with differing

average rates of change. We sampled input vectors xt for

each trial from a standard normal distribution, then sampled

the observer’s choices yt according to Equation 1. We then

applied PsyTrack to this simulated dataset, which computed

estimates of the four hyperparameters bq = fbs1;.; bs4g and

weight trajectories cW (Figures 2A and 2B).
Neuron 109, 1–14, February 17, 2021 3
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Figure 2. Recovering psychophysical weights from simulated data

(A) We simulated a set of K = 4 weights W that evolved for T = 5,000 trials (solid lines). We then used PsyTrack to recover these weights (dashed lines), with a

shaded region indicating a 95% credible interval. The full optimization takes <1 min on a laptop; see Figure S1 for more information.

(B) In addition to recovering the weights, we recovered the smoothness hyperparameter sk for each weight, also plotted with a 95% credible interval. True values

sk are plotted as solid black lines.

(C) We simulated a set of K = 3 weights with session boundaries every 500 trials (vertical black lines) and added a second set of hyperparameters ‘‘sday’’ allowing

for larger weight changes between sessions. The yellow weight had non-zero s and sday hyperparameters, allowing it to evolve trial-to-trial as well as ‘‘jump’’ at

session boundaries. The blue weight, however, had s = 0, so it was constant during each session and jumped only at session boundaries. The red weight,

conversely, had sday = 0, and thus evolved like the weights in (A). See Figure S2 for weight trajectories recovered for this dataset without the use of any sday

hyperparameters.

(D)We recovered the smoothness hyperparameters q for the weights in (C). Although the simulation had only 4 non-zero hyperparameters, PsyTrack inferred both

a s and a sday hyperparameter for all 3 weights. The model appropriately assigned small values to the two zero-valued hyperparameters (gray shading).
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Augmented model for capturing changes between
sessions
One limitation of the model described above is that it does not

account for the fact that experiments are typically organized

into sessions, each containing tens to hundreds of consecutive

trials, with large gaps of time between them. The basic PsyTrack

model makes no allowance for the possibility that weights may

change much more between sessions than between other pairs

of consecutive trials. This assumption is unrealistic; if the animal

either forgets or exhibits consolidation between sessions, the

weights may exhibit much larger changes than between typical

pairs of trials.

To overcome this limitation, we augmented the model to allow

for larger weight changes between sessions. The augmented

model has K additional hyperparameters, denoted ðsday1;.;

sdayKÞ, which specify the prior standard deviation over weight

changes between sessions or ‘‘days.’’ A large value for sdayk
means that the kth weight can change by a large amount between

sessions, regardless of how much it changes between other

pairs of consecutive trials. The augmented model thus has 2K

hyperparameters, with a pair of hyperparameters ðsk ;sdaykÞ for
each of the K weights in wt.
4 Neuron 109, 1–14, February 17, 2021
We tested the performance of this augmented model using a

second simulated dataset that included session boundaries

every 500 trials (Figure 2C). We simulated K = 3 weights for T =

5,000 trials, with the input vector xt and choices yt on each trial

sampled as in the first dataset. The red weight was simulated

like the red weight in Figure 2A; that is, using only the standard

s and no sday hyperparameter. Conversely, the blue weight

was simulated with a non-zero sday hyperparameter and s = 0,

making the weight constant within each session, but allowing

‘‘jumps’’ at session boundaries. The yellow weight was simu-

lated with non-zero values for both hyperparameters, allowing

it to smoothly evolve within a session and jump by larger

amounts betwen sessions. Once again, we found that the recov-

ered weights closely agree with the true weights (see Figure 2).

Note that we can also consider scenarios in which behavior

changes suddenly at an arbitrary trial within a session, contradict-

ing the assumptions of the PsyTrack model that weights evolve

smoothly within a session. If we apply PsyTrack to datasets in

which weights undergo such a step change, the method will infer

a smoothed version of the true step, where the steepness is

controlled by that weight’s s value (larger s allows for a steeper

slope). Figure S2 shows an empirical test of this phenomenon
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Figure 3. Visualization of early learning in

IBL mice

(A) The accuracyof an examplemouseover the first

16 sessions of training on the IBL task. We calcu-

lated accuracy only from ‘‘easy’’ high-contrast

(50% and 100%) trials because lower-contrast

stimuli were only introduced later in training. The

first sessionwith above-chanceperformance (50%

accuracy) is marked with a dotted circle.

(B) Inferred weights for left (blue) and right (red)

contrasts for the same example mouse and ses-

sions shown in (A). Gray vertical lines indicate

session boundaries. The black dotted line marks

the start of the 10th session, when left and right

weights first diverged, corresponding to the first

session with above chance performance (shown in

A). See Figure S3 for models using additional

weights.

(C) Accuracy for a random subset of individual IBL mice (gray), along with average accuracy of the entire population (black).

(D) The psychophysical weights for left and right contrasts for the same subset ofmice depicted in (C) (light red and blue), alongwith population averages (dark red

and blue). (For visual clarity, we omitted the sday hyperparameters that would allow for jumps between sessions).
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using the simulated dataset from Figure 2C but without the sday
hyperparameters to capture the jumps at session boundaries.

Characterizing learning trajectories in the IBL task
We now turn to real data and show how PsyTrack can be used to

characterize diverse trajectories of learning in a large cohort of

animals. We examined a dataset from the IBL containing behav-

ioral data from over 100 mice on a standardized sensory deci-

sion-making task (Figure 1A).

We began by analyzing choice data from the first 16 sessions

of training. Figure 3A shows the learning curve (defined as the

fraction of correct choices per session) for an example mouse

over the first several weeks of training. Early training sessions

used ‘‘easy’’ stimuli (100% and 50% contrasts) only, with harder

stimuli (25%, 12.5%, 6.25%, and 0% contrasts) introduced only

later in training as the animal’s accuracy improved. To keep the

metric consistent, we calculated accuracy only from easy-

contrast trials on all of the sessions.

Although traditional analyses of learning rely on coarse perfor-

mance metrics such as accuracy-per-session, PsyTrack offers a

detailed characterization of the evolving strategies at the time-

scale of single trials. Figure 3B shows estimates of the time-vary-

ing weights on left-side contrast values (blue) and right-side

contrast values (red) for an example mouse. During the first

nine sessions, these two weights fluctuated together, indicating

that the probability of making a rightward choice was indepen-

dent of whether the stimulus was on the left or the right side of

the screen. Positive (negative) fluctuations in these weights

corresponded to a bias toward rightward (leftward) choices.

These fluctuations indicated that the strategy was not constant

across these sessions, even though accuracy remained at

chance level.

At the start of the 10th session, the left and right stimulus

weights began to diverge. Positive values of the right weight

mean that right-side stimuli led to rightward choices, while nega-

tive values of the left weight mean that left-side stimuli led to left-

ward choices. The divergence of left and right weights therefore

corresponds to an increase in accuracy. This divergence
continued throughout the subsequent 6 sessions, gradually

increasing accuracy to over 80% by the 16th session.

However, the learning trajectory of this examplemousewas by

no means characteristic of the entire cohort. Figures 3C and 3D

shows the empirical learning curves (above) and inferred weight

trajectories (below) from a dozen additional mice selected

randomly from the IBL dataset. The light red and blue lines

show the right and left weights for individual mice, whereas the

dark red and blue lines show the average weights across the

entire population. While we see a smooth and gradual diver-

gence between the average left and right weights, there is great

diversity in the dynamics of the weight trajectories of individ-

ual mice.

Adaptive bias modulation in a non-stationary task
Once training has progressed to include all contrast values, the

IBL task undergoes a final modification. Instead of left and right

stimuli appearing with an equal probability of 0.5 on each trial,

the task statistics become nonstationary with alternating ‘‘left

bias’’ and ‘‘right bias’’ blocks. Within a left bias block, the ratio

of left contrasts to right contrasts is 80:20, whereas within right

blocks the ratio is 20:80. These ‘‘bias blocks’’ are of variable

duration, and some sessions begin with an ‘‘unbiased’’ 50:50

block for calibration purposes.

Figure 4 shows an analysis of behavior from the same example

mouse from Figure 3 over its first 50 sessions of training, which

includes the introduction of bias blocks. The pink box (Figure

4A) indicates a period of 3 sessions, which includes the last ses-

sion without bias blocks and the first 2 sessions with bias blocks.

The purple box indicates 2 sessions several weeks of training

later, at the end of a period designated as ‘‘late bias blocks.’’

In Figure S5, we showweight trajectories for an example session

from each of these periods in training and validate that psycho-

metric curves predicted from our model closely match curves

computed directly from the behavioral data.

To examine how behavior changed during the onset of bias

blocks, we applied PsyTrack to the three early bias block ses-

sions (Figure 4B). The left and right stimulus weights are shown
Neuron 109, 1–14, February 17, 2021 5
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Figure 4. Adaptation to bias blocks in an example IBL mouse

(A) An extension of Figure 3A to include the first 50 sessions (several months) of training. Starting on session 17, our example mouse was introduced to alternating

blocks of 80% right stimulus trials (right blocks) and 80% left stimulus trials (left blocks). The sessions in which these bias blocks were first introduced are outlined

(pink), as are 2 sessions from later in training in which themouse has adapted to the block structure (purple). Figure S5 validates model fits to sessions 10, 20, and

40 against psychometric curves generated directly from behavior.

(B) Three psychophysical weights evolving during the transition to bias blocks, with right (left) blocks indicated by red (blue) vertical stripes. Colored lines show left

(blue) and right (red) stimulus weights, as well as a bias weight (yellow). See Figure S4 for analyses using alternate parameters.

(C) After several weeks of training on the bias blocks, the mouse learned to quickly adapt its behavior to the alternating block structure, as can be seen in the

dramatic oscillations of the yellow bias weight in phase with the blocks of biased stimuli.

(D) Changes in bias weight relative to block transition for all blocks during the first 3 sessions with bias blocks, normalized to begin at zero. Even during these early

bias block sessions, the red (blue) lines show that the bias tended to move up (down) during right (left) blocks, consistent with a strategy in which the bias weight

tracks the stimulus probability.

(E) Same as (D) for 3 sessions during the late bias blocks period. Note that bias weights depart more rapidly from zero at the start of each block, indicating that the

mice have adapted their behavior to the block structure of the task.

(F) For the second session from the late bias blocks shown in (C), we calculated an ‘‘optimal’’ bias weight (black) given the animal’s stimulus weights and the

ground truth block transition times (inaccessible to the mouse). This optimal bias closely matches the empirical bias weight recovered using PsyTrack (yellow),

indicating that the strategy of the animal was approximately optimal for maximizing reward under the task structure. Although the bias weight may appear

to ‘‘anticipate’’ the start of the next block, this is an artifact of the smoothing induced by the model (see Figure S6).
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in blue and red, respectively, and a third psychophysical weight,

in yellow, corresponds to choice bias. When this choice bias

weight is positive (negative), the animal has an increased proba-

bility of choosing right (left), independent of other inputs. While

task accuracy improves as the right weight grows more positive

and the left weight grows more negative, the ‘‘optimal’’ value of

the bias weight is naively 0 (no a priori preference for either side).
6 Neuron 109, 1–14, February 17, 2021
However, this is only true when stimuli are presentedwith a 50:50

ratio and the two stimulusweights are of equal and opposite size.

For this mouse, we see that on the last session before the

introduction of bias blocks, the stimulus weights were large

and opposite, and bias was near zero. When the bias blocks

began in the next session, the bias weight did not change in

any obvious way to reflect the change in stimulus ratio. In
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Figure 4C, however, we see that after several weeks of training

with bias blocks, the bias weight exhibited large fluctuations syn-

chronized to the block transitions.

We examined this phenomenon more fully in Figures 4D–4F.

To better examine how the mouse’s strategy changed within a

bias block, we plotted the bias weight as a function of time since

the start of each block, normalized to begin at zero. Figure 4D

shows the bias weight changes for all bias blocks in the the first

3 sessions with bias blocks, with ‘‘left block’’ weight changes in

red and ‘‘right block’’ changes in blue. Viewed in this way, we can

see that there was some adaptation to the stimulus statistics

within a bias block, even within the first few sessions. Within

only a few dozen trials, the choice bias of the mouse tended to

slowly drift rightward during right blocks and leftward during

left blocks. We ran the same analysis on 3 sessions near the

end of the ‘‘late bias blocks’’ period. This revealed substantially

larger changes in the bias weight after a transition to a new block

(Figure 4E). While it may appear that the animal proactively

adjusted its bias toward the end of the longer blocks, as if in

anticipation of the coming block, this is largely an artifact of

the smoothing induced by the PsyTrack model. Figure S6 shows

further analysis and presents a simple method to remove this

artifact and test for true anticipation effects.

We can further analyze the choice bias of the animal in

response to the bias blocks by returning to the notion of an

‘‘optimal’’ bias weight. As mentioned above, the optimal bias

weight for the standard ‘‘unbiased’’ task is zerowhen the stimulus

weights are equal andopposite. However, a non-zero biasweight

can improve performance during bias blocks. Even if the stimulus

weights were large enough to give nearly perfect performance on

all trials with non-zero contrast, 1/9th of the trials had 0%contrast

stimuli on both sides,meaning the animal had to guess. If the bias

weight adapted perfectly with the bias blocks, the mouse could

get the 0% contrasts trials correct with 80% accuracy instead

of 50%, increasing its total reward rate.

To assess the degree to which the mouse adjusted its bias in

an optimal manner, we used PsyTrack to calculate the optimal

bias weight. Here, we define an optimal bias weight on each trial

as the value of the weight that maximizes expected accuracy

assuming that (1) the left and right contrast weights recovered

from the data are considered fixed, (2) the precise timings of

the block transitions are known, and (3) the distribution of

contrast values within each block is known. Figure 4F shows

the resulting optimal bias (black line), overlaid with the empirical

bias inferred from the animal’s behavior (yellow line). Note that

the optimal bias weight relied on knowledge of the block transi-

tion times, which was inaccessible to the mouse, but also

changed subtly within blocks to account for changes in stimulus

weights. We found that, in most blocks, the empirical bias

matched the optimal bias weight closely. In fact, we can calcu-

late that the mouse would only increase its expected accuracy

from 86.1% to 89.3% by using the optimal bias instead of its

empirical bias weight.

Trial-history effects dominate early behavior in
Akrami rats
To further explore the capabilities of PsyTrack, we analyzed

behavioral data from another binary decision-making task previ-
ously reported in Akrami et al. (2018), in which both rats and hu-

man subjects were trained on versions of the task (referred to

hereafter as ‘‘Akrami rats’’ and ‘‘Akrami humans’’). This auditory

parametric working memory task requires an observer to listen

to two white noise auditory stimuli, stimulus A, then stimulus B,

which have different amplitudes and are separated by a delay

(Figure 5A). If A is louder than B, then the ratmust nose poke right

to receive a reward and vice-versa.

Figure 5B shows an analysis of 12,500 trials of behavior

from an example rat. Despite the new task and species, there

are several similarities to the results from the IBL mice shown

in Figures 3 and 4. The auditory stimuli A and B are the task-

relevant variables (red and blue weights, respectively) and are

similar to the left and right contrasts in the IBL task, and ani-

mals exhibit bias (yellow weight) in both tasks. However, while

at least one stimulus was non-zero on each trial in the IBL

task, both the auditory stimuli were present on every trial in

the Akrami task. (Inputs were also parametrized differently,

see STAR methods).

For this dataset, we added ‘‘history’’ weights that capture

dependencies on the previous trial. We included a ‘‘previous

stimuli’’ variable that represents the average of the stimulus

A and B amplitudes on the previous trial (green), a ‘‘previous

answer’’ variable, which indicates the rewarded (or correct)

side on the previous trial (purple), and a ‘‘previous choice’’

variable, which indicates the choice on the previous trial

(cyan). Note that these trial-history variables were always irrel-

evant in this task, meaning that the animal would maximize

performance by setting the corresponding weights to zero.

Despite this fact, previous work has shown that choice

behavior often depends on trial history, especially early in

training (for the impact of history regressors during early

training in an IBL mouse, see Figure S3A) (Busse et al.,

2011; Frund et al., 2014; Akrami et al., 2018).

For the example rat shown in Figure 5B, we found that the

trial-history and bias weights dominated behavior early in

training. In contrast, the weights on auditory stimuli A and B

were initially close to zero, indicating that stimuli had a mini-

mal effect on choice at the start of training. However, as

training progressed, the history and bias weights shrank while

the stimulus weights diverged from zero with opposite signs.

Note that the stimulus B weight diverged from zero very early

in training, while the stimulus A weight did not become posi-

tive until after several tens of sessions. In the context of the

task, this makes intuitive sense: the association between a

louder stimulus B and reward on the left is comparatively

easy, since B occurs immediately before the choice. Making

the association between a louder stimulus A and reward on

the right is much more difficult to learn due to the delay period

between A and B.

The positive value of all three history weights matched expec-

tations from previous literature. The positive value of the weight

on previous answer indicates that the animal preferred to go right

(left) when the correct answer on the previous trial was also right

(left). This is a commonly observed behavior known as a ‘‘win-

stay/lose-switch’’ strategy, in which an animal will repeat its

choice from the previous trial if it was rewarded or otherwise

switch sides. The positive value of the previous-choice weight
Neuron 109, 1–14, February 17, 2021 7
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Figure 5. Visualization of learning in an example Akrami rat

(A) For these data from Akrami et al. (2018), a delayed response auditory discrimination task was used in which a rat experiences an auditory white noise stimulus

of a particular amplitude (stimulus A), a delay period, a second stimulus of a different amplitude (stimulus B), and finally the choice to go either left or right. If

stimulus A was louder than stimulus B, then a rightward choice triggers a reward, and vice-versa.

(B) The psychophysical weights recovered from the first 12,500 trials of an example rat. ‘‘Prev. stimuli’’ is the average amplitude of stimuli A and B presented on

the previous trial; ‘‘prev. answer’’ is the rewarded (correct) side on the previous trial; ‘‘prev. choice’’ is the animal’s choice on the previous trial. Black vertical lines

are session boundaries. Figure S7 reproduces the analyses of this figure using a model with no history regressors; the remaining three weights look qualitatively

similar.

(C–E) Within 500 trial windows starting at trials 2,000 (C), 6,500 (D), and 11,000 (E), trials are binned into 1 of 8 conditions according to 3 variables: the previous

choice, the previous answer, and the correct side of the current trial. For example, the bottom left square is for trials in which the previous choice, the previous

correct answer, and the current correct side are all left. The number in the bottom right of each square is the percent of rightward choices within that bin,

calculated directly from the empirical behavior. The number in the top left is a prediction of that same percentage made using the cross-validated weights of the

model. Close alignment of predicted and empirical values in each square indicate that the model is well validated, which is the case for each of the 3 training

periods.
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indicates that the animal preferred to go right (left) when it also

went right (left) on the previous trial. This is known as a ‘‘perse-

verance’’ behavior: the animal prefers to simply repeat the

same choice it made on the previous trial, independent of reward

or task stimuli (Busse et al., 2011). Finally, the slight positive

weight on the previous stimuli indicates that the animal was

biased toward the right when the stimuli on the previous trial
8 Neuron 109, 1–14, February 17, 2021
were louder than average, just as a louder stimulus A leads to

more rightward choices. This corroborates an important finding

from the original paper: choice biases are consistent with the

rat’s memory of stimulus A contracting toward the stimulus

mean from the previous trial (Akrami et al., 2018), although we

note that the analysis there was done on post-training behavior

and used the 20–50 most recent trials to calculate an average
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previous stimulus term (see also Papadimitriou et al., 2015 and

Lu et al., 1992). To validate our use of these history regressors,

we first analyzed the empirical choice behavior to verify that

this strong dependence on the previous trial exists. Then, we

examined whether the PsyTrack model with history regressors

effectively captures this dependence.

Figures 5C–5E shows 3 different windows of 500 trials each,

taken from different points during the training of our example

rat. Within a particular window, the trials were binned according

to 3 conditions: the choice on the previous trial (‘‘prev. choice’’),

the correct answer of the previous trial (‘‘prev. answer’’), and the

correct answer on the current trial (‘‘correct side’’). This gives

23 = 8 conditions, represented by the 8 boxes. For example,

the box in the lower left corresponds to trials in which the previ-

ous choice, previous answer, and current answer all are left. The

2 numbers within each box represent the percentage of trials

within that condition (and within that 500-trial window) in which

the rat chose to go right. The number in the bottom right of

each square was calculated directly from the empirical behavior,

whereas the number in the top left was calculated from the fitted

model. Specifically, for each trial, we used the dot product of the

model weights and the inputs on that trial to calculate the prob-

ability of a rightward choice (Equation 1); we then averaged these

probabilities for all trials within a particular box. The color of each

half-box maps directly to its average P(rightward) value, red for

rightward and blue for leftward.

Focusing first on empirical data from early in training (the

values in the bottom right of each square in Figure 5C), we can

verify that behavior was strongly dependent on the previous trial.

In a well-trained rat, the left column would all be blue, and the

right column would all be red, since choices would align with

the correct answer on the current trial. Instead, the empirical

behavior was strongly history dependent, with the rat only going

right on 16%of rightward trials if the previous choice and answer

were both left (fourth row, right column). As the rat continued to

train, we observed that the influence of the previous trial on

choice behavior decreased, although it had not fully disappeared

even by trial 11,000 (Figure 5E).

With the influence of the previous trial firmly established, we

would like to compare these measurements against the model

predictions. For almost all of the boxes in each of the trial win-

dows, we observed that the predictions of the model align

closely with the empirical choice behavior. In fact, only one pre-

dicted value existed outside the 95% confidence interval of our

empirical measurement (third row, left column in Figure 5C).

This is a strong validation that the PsyTrack model accurately

captured the rat’s decision-making behavior. We repeated this

analyses in Figure S7 with a model without history regressors

and show that this model was not able to capture any of the

dependence on the previous trial evident in the empirical choice

behavior. Note that all model predictions were evaluated via 10-

fold cross-validation, so they represented true predictions on

held-out data (see STAR methods).

Behavioral trends across the population of Akrami rats
We applied PsyTrack to our entire population of Akrami rats in

order to identify commonalities and differences in learning

behavior across animals during training. Figure 6 shows inferred
weight trajectories for the first 20,000 trials of training for a pop-

ulation of 19 rats. Figure 6A shows the weights for auditory stim-

uli A and B, confirming the observation from our example rat that

the stimulus B weight tended to diverge from zero earlier than

the stimulus A weight. We observed large variability across an-

imals in the bias weight trajectory (Figure 6B), although this vari-

ability was greatest early in training and averaged out to approx-

imately 0 across animals. The slight positive weight on the

previous stimuli was consistent across all rats (Figure 6C).

Finally, the prevalence of both ‘‘win-stay/lose-switch’’ and

‘‘perseverance’’ behaviors across the population was evident

in the positive weights on the previous answer and previous

choice (Figures 6D and 6E), although there was substantial vari-

ation in the trajectories of these weights.

Figure 6F shows the average s and sday values for each

weight. The similar average s values of the weights of stimuli A

and B (blue and red circles) indicate a similar degree of smooth-

ness in weight trajectories within a session, but the stimulus A

weight exhibited much smaller changes (or ‘‘jumps’’) between

sessions, as indicated by its relatively low sday average (red

square). The individual bias weights in Figure 6B exhibited the

largest within-session fluctuations, as reflected by the bias

weight having the highest average s value (yellow circle). Finally,

the previous-stimuli weight had almost no variation across trials,

as reflected in its markedly low average s and sday values (green

circle and square, Figure 6F).

In contrast to rats, human behavior is stable
Akrami et al. (2018) adapted the same auditory discrimination

task to human subjects (Figure 7A). The weights inferred from

an example human subject are shown in Figure 7B, and the

weights from all of the human subjects are shown together in

Figure 7C.

It is useful to contrast the weights recovered from the human

subjects to the weights recovered from the rats. Since the rules

of the task were explained to human subjects, one would intu-

itively expect that human weights would initialize at ‘‘correct’’

values corresponding to high performance and would remain

constant throughout training. PsyTrack allows us to test these

expectations explicitly. Figure 7C shows that the model does

indeed confirm our intuitions: all four weights remained rela-

tively stable throughout the experiment, although choice bias

did fluctuate around zero for some subjects. Two of the history

weights that dominated early behavior in rats, previous answer

and previous choice, did not improve predictions in human

data, so we removed those weights from the model (see Fig-

ure S8). The slight positive weight on previous stimuli remained

for all subjects, however, and there was a slight asymmetry in

the magnitudes of the A and B stimulus weights in many

subjects.

Including history regressors boosts predictive power
To explore additional applications of PsyTrack, we can extend

our analysis of the Akrami rats to quantify the importance of

history regressors for characterizing decision-making

behavior. Using the example rat from Figure 5, we sought to

quantify the difference between a model that included the 3

history regressors and a model without them. To do this, we
Neuron 109, 1–14, February 17, 2021 9
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refit a model to the data from Figure 5B using only bias

and stimulus A and B weights (see Figure S7) and then calcu-

lated the predicted accuracy of both models at each trial via

cross-validation (see STAR methods). Next, we binned the tri-

als according to the predicted accuracy of the model. Finally,

for the trials within each bin, we computed the empirical accu-

racy of the model (defined as the fraction of trials in a bin in

which the prediction of the model matched the animal’s

choice). Figure 8A shows a comparison of model-predicted

accuracy and empirical accuracy for the basic model without

history weights. Points below the diagonal represent overcon-

fident predictions, where the model is correct less often than

expected from the probabilities it produces, whereas points

above the line indicate underconfidence, where the model is

correct more often than expected. The fact that the data

(shown with 95% confidence intervals on their empirical accu-

racy) lie mostly along the diagonal shows that the model is

well calibrated.

The histogram in Figure 8B shows the number of trials in each

of the probability bins in Figure 8A. We can see that the model

almost never predicted choices with >80% probability. The

black star shows the average model-predicted accuracy

(61.9%) and corresponding empirical accuracy (also 61.9%).

Figures 8C and 8D show an identical analysis for the full model

with history dependence. That most data points still lie along the

diagonal means that the model remains well calibrated. Note,

however, that the data now extendmuch further up the diagonal,

indicating that the model makes more confident predictions on

some trials. Figure 8D shows that a meaningful fraction of trials

now have a predicted accuracy greater than the most confident

predictions made by the model without history regressors. In

fact, the choices on some trials can be predicted with >95%

probability. As the black star in Figure 8C indicates, the inclusion

of history regressors improves the predicted accuracy of the

model to 68.4%. This confirms the importance of history regres-

sors when characterizing the decision-making behavior of the

Akrami rats.
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Discussion

Sensory decision-making strategies evolve continuously over

the course of training, driven by learning signals as well as noise.

Even after training is complete, these strategies can continue to

fluctuate, both within and across sessions. Tasks with non-sta-

tionary stimuli or rewardsmay require continual changes in strat-

egy to maximize reward (Piet et al., 2018). However, standard

methods for quantifying sensory decision-making behavior,

such as learning curves (Figure 3A) and psychometric functions

(Figures 1D and S5), are not able to describe the evolution of

complex decision-making strategies over time. To address this

shortcoming, we developed PsyTrack, which parametrizes

time-varying behavior using a dynamic generalized linear model

with time-varying weights. The rates of change of these weights

across trials and across sessions are governed by weight-spe-

cific hyperparameters, which we infer directly from data using

evidence optimization. We have applied PsyTrack to data from

two tasks and three species and shown that it can characterize

trial-to-trial fluctuations in decision-making behavior and provide

a quantitative foundation for more targeted analyses.

PsyTrack contributes to a growing literature on the quantitative

analysis of time-varying behavior. An influential paper by Smith

et al. (2004) introduced a change-point-detection approach for

identifying the trial at which learning produced a significant depar-

ture from chance behavior in a decision-making task. We have

extended this model by moving beyond change points to track

detailed changes in behavior over the entire training period and

beyond, and by adding regression weights for a wide variety of

task covariates that may also influence choices. Previous work

has shown that animals frequently adopt strategies that depend

on previous choices and previous stimuli (Busse et al., 2011;

Frund et al., 2014; Akrami et al., 2018), even when such strategies

are suboptimal. Our approach builds upon a state-space

approach for the dynamic tracking of behavior (Bak et al., 2016)

using the decoupled Laplace method (Wu et al., 2017; Roy

et al., 2018a) to scale up analysis andmake it practical for modern
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behavioral datasets (STAR methods). In particular, the efficiency

of our algorithm allows for routine analysis of large behavior data-

sets, with tens of thousands of trials, within minutes on a laptop

(see Figure S1).

We anticipate a variety of use cases for PsyTrack. First, exper-

imenters training animals on binary decision-making tasks can

use PsyTrack to better understand the diverse range of behavioral

strategies seen in early training (Cohen and Schneidman, 2013).

This will facilitate the design and validation of new training strate-

gies, which could ultimately open the door tomore complex tasks

and faster training times. Second, studies of learning will benefit

from the ability to analyze behavioral data collected during

training, which is often discarded and left unanalyzed. Third, the

time-varying weights inferred under the PsyTrack model will

lend themselves to downstream analyses. Specifically, our gen-

eral method can enable more targeted investigations, acting as

one step in a larger analysis pipeline (as in Figures 4 and 8). To

facilitate these uses, we have released PsyTrack as a publicly

available Python package (Roy et al., 2018b). The Google Colab

notebook accompanying this work provides many flexible exam-

ples, and we have included a guide in the STARmethods devoted

entirely to practical considerations.

The two assumptions of PsyTrack, that (1) decision-making

behavior can be described by a set of GLM weights and (2)

that these weights evolve smoothly over training, are well vali-

dated in the datasets explored here. However, these assump-

tionsmay not be true for all datasets. Behaviors that change sud-

denly may not be well described by the smoothly evolving
weights in our model (see Figure S2), although allowing for

weights to evolve more dramatically between sessions can miti-

gate this model mismatch (as in Figure 2C). Determining which

input variables to include can also be challenging. For example,

task-irrelevant covariates of decision making typically include

the history of previous trials (Akrami et al., 2018; Frund et al.,

2014; Corrado et al., 2005), which is not always clearly defined;

depending on the task, the task-relevant feature may also be a

pattern of multiple stimulus units (Murphy et al., 2008). We do

not currently consider high-dimensional inputs to our model

(e.g., images, complex natural signals), but incorporating an

automatic relevance determination prior is an exciting future di-

rection that would allow for model weights to be automatically

pruned during inference (Tipping, 2001).

Furthermore, deciding how input variables ought to be param-

eterized can dramatically affect the accuracy of themodel fit. For

example, a transformation of the contrast levels used in our anal-

ysis of data from the IBL task allows the model to discount the

impact of incorrect choices under extreme levels of perceptual

evidence (e.g., 100% contrasts; see Figure S4) (Nassar and

Frank, 2016). While many models discount the influence of

such trials using a lapse rate, PsyTrack relies on a careful param-

etrization of the perceptual input in lieu of any explicit lapse

(STAR methods). This flexibility gives the model the ability to ac-

count for a wide variety of behavioral strategies.

In the faceof thesepotential pitfalls, it is important to validateour

results. Thus, we have provided comparisons to more conven-

tional measures of behavior to help assess the accuracy of our
Neuron 109, 1–14, February 17, 2021 11
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Figure 8. History regressors improve model

accuracy for an example Akrami rat

(A) Using a model of our example rat that omits his-

tory regressors, we plot the empirical accuracy of

the choice predictions of the model against

the cross-validated predicted accuracy of the

model. The black dashed line is the identity, in which

the predicted accuracy of the model exactly

matches the empirical accuracy (i.e., points

below the line are overconfident predictions). The

choice of the animal is predicted with 61.9% confi-

dence on the average trial, precisely matching the

empirical accuracy of the model of 61.9% (black

star). Each point represents data from the corre-

sponding bin of trials seen in (B). Empirical accuracy

is plotted with a 95% confidence interval. See STAR

methods for more information on the cross-valida-

tion procedure.

(B) A histogram of trials binned according to the

predicted accuracy of the model.

(C) Same as (A), but for a model that also includes 3

additional weights on history regressors: previous

stimuli, previous answer, and previous choice. We

see that data for this model extends into regions of

higher predicted and empirical accuracy, as the in-

clusion of history regressors allows the model to

make stronger predictions. The choice of the animal is predicted with 68.4% confidence on the average trial, slightly overshooting the empirical accuracy of

67.6% (black star) of the model.

(D) Same as (B), but for the model including history regressors.
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model (seeFigures5, 8, andS5).Furthermore, theBayesiansetting

ofourmodelingapproachprovidesapproximateposterior credible

intervals for both weights and hyperparameters, allowing for an

evaluation of the uncertainty of our inferences about behavior.

The ability to quantify complex and dynamic behavior at a trial-

by-trial resolution enables exciting future opportunities for

animal training. The descriptive model underlying PsyTrack

could be extended to incorporate an explicit model of learning

that makes predictions about how strategy will change in

response to different stimuli and rewards (Ashwood et al.,

2020). Ultimately, this could guide the creation of automated

optimal training paradigms in which the stimuli predicted to

maximize learning on each trial is presented (Bak et al., 2016).

There are also opportunities to extend the model beyond

binary decision-making tasks, so that multi-valued choices (or

non-choices—e.g., interrupted or ‘‘violation’’ trials) could also

be included in the model (Churchland et al., 2008; Bak and Pil-

low, 2018). Our work opens up the path toward a more rigorous

understanding of the behavioral dynamics at play as animals

learn. As researchers continue to ask challenging questions,

new animal training tasks will grow in number and complexity.

We expect that PsyTrack will help guide those looking to better

understand the dynamic behavior of their experimental subjects.
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Key Resources Table
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Human subject behavior dataset Akrami et al., 2018 https://doi.org/10.6084/m9.figshare.12213671.v1

Mouse behavior dataset International Brain

Laboratory et al., 2020

https://doi.org/10.6084/m9.figshare.11636748.v7

Rat behavior dataset Akrami et al., 2018 https://doi.org/10.6084/m9.figshare.12213671.v1

Software and algorithms

IBL Python Library / ONE Light International Brain

Laboratory et al., 2019

https://github.com/int-brain-lab/ibllib/tree/master/oneibl

PsyTrack Roy et al., 2018b https://github.com/nicholas-roy/psytrack

SciPy ecosystem Jones et al., 2001;

Hunter, 2007

https://www.scipy.org/
Resource availability

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Nicholas A. Roy

(nicholas.roy.42@gmail.com).

Materials availability
This study did not generate any new materials.

Data and code availability
Each of the three datasets analyzed are publicly available. The mouse training data, from International Brain Laboratory et al. (2020):

(https://doi.org/10.6084/m9.figshare.11636748.v7); the rat training data, from Akrami et al. (2018): (https://doi.org/10.6084/m9.

figshare.12213671.v1); the humans subject training data, also from Akrami et al. (2018): (https://doi.org/10.6084/m9.figshare.

12213671.v1).

Our code for fitting psychophysical weights to behavioral data is distributed as a GitHub repository (under a MIT license): https://

github.com/nicholas-roy/PsyTrack. This code is also made easily accessible as a Python package, PsyTrack (installed via pip install

psytrack). Our Python package relies on the standard SciPy scientific computing libraries as well as the Open Neurophysiology Envi-

ronment produced by the IBL (Jones et al., 2001; Hunter, 2007; International Brain Laboratory et al., 2019).

We have assembled a Google Colab notebook (https://tinyurl.com/PsyTrack-colab) that will automatically download the raw data

and precisely reproduce all figures from the paper. Our analyses can be easily extended to additional experimental subjects and act

as a template for application of PsyTrack to new datasets.

Experimental model and subject details

Mouse subjects
101 experimental subjects were all female and male C57BL/6J mice aged 3-7 months, obtained from either Jackson Laboratory or

Charles River. All procedures and experiments were carried out in accordance with the local laws and following approval by

the relevant institutions: the Animal Welfare Ethical Review Body of University College London; the Institutional Animal Care and

Use Committees of Cold Spring Harbor Laboratory, Princeton University, and University of California at Berkeley; the University

Animal Welfare Committee of New York University; and the Portuguese Veterinary General Board. This data was first reported in In-

ternational Brain Laboratory et al. (2020).

Rat subjects
19 experimental subjects were male Long-Evans rats (Rattus norvegicus) between the ages of 2 and 24 months. Animal use proced-

ures were approved by the Princeton University Institutional Animal Care and Use Committee and carried out in accordance with

National Institutes of Health standards. This data was first reported in Akrami et al. (2018).
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Human subjects
11 human subjects (8males and 3 females, aged 22–40) were tested and all gave their informed consent. Participants were paid to be

part of the study. The consent procedure and the rest of the protocol were approved by the Princeton University Institutional Review

Board. This data was first reported in Akrami et al. (2018).

Method details

Optimization: psychophysical weights
Our method requires that weight trajectories be inferred from the response data collected over the course of an experiment. This

amounts to a very high-dimensional optimization problem when we consider models with several weights and datasets with tens

of thousands of trials. Moreover, we wish to learn the smoothness hyperparameters q= fs1;.;sKg in order to determine how quickly

each weight evolves across trials. The theoretical framework of our approach was first introduced in Bak et al. (2016). The statistical

innovations facilitating application to large datasets, as well as the initial release of our Python implementation PsyTrack (Roy et al.,

2018b), were first presented in Roy et al. (2018a).

We describe our full inference procedure in two steps. The first step is optimizing for weight trajectories W given a fixed set of hy-

perparameters, while the second step optimizes for the hyperparameters q given a parametrized Gaussian approximation to the pos-

terior. The full procedure involves alternating between the two steps until the hyperparameters converge.

For now, letw denote themassive weight vector formed by concatenating all of theK individual length-T trajectory vectors, where T

is the total number of trials. We then define h=Dw, where D is a block-diagonal matrix of K identical T3T difference matrices (i.e., 1

on the diagonal and �1 on the lower off-diagonal), such that ht =wt �wt�1 for each trial t. Because the prior on h is simply Nð0;SÞ,
where S has each of the s2k stacked T times along the diagonal, the prior for w is Nð0;CÞ with C�1 =DuS�1D. The log-likelihood is

simply a sum of the log probability of the animal’s choice on each trial, L=
PT

t = 1log pðytjxt;wtÞ .
The log-posterior is then given by

logpðwjDÞ= 1

2
log

��C�1
���wuC�1w

� �
+
XT

t = 1
log pðytjxt;wtÞ+ const; (Equation 3)

whereD= fðxt; ytÞgTt = 1 is the set of user-defined input features (including the stimuli) and the animal’s choices, and const is indepen-

dent of w.

Our goal is to find the w that maximizes this log-posterior; we refer to this maximum a posteriori (MAP) vector as wMAP.

We observe that the Hessian of our log-posterior is sparse:

H =
v2

vw2
log pðwjDÞ=C�1 +

v2L

vw2
(Equation 4)

where C�1 is a sparse (banded) matrix, and v2L=vw2 is a block-diagonal matrix. The block diagonal structure arises because the log-

likelihood is additive over trials, and weights at one trial t do not affect the log-likelihood component from another trial t0.
We take advantage of this sparsity, using a variant of conjugate gradient optimization that only requires a function for computing

the product of the Hessian matrix with an arbitrary vector (Nocedal and Wright, 2006). Since we can compute such a product using

only sparse terms and sparse operations, we can utilize quasi-Newton optimization methods in SciPy to find a global optimum for

wMAP, even for very large T (Jones et al., 2001).

Optimization: smoothness hyperparameters
So far we have addressed the problem of finding a global optimum wMAP, given a specific hyperparameter setting q; now we must

also find the optimal hyperparameters. A common approach for selecting hyperparameters would be to optimize for cross-validated

log-likelihood. Given the potential number of different smoothness hyperparameters and the computational expense of calculating

wMAP, this is not feasible. We turn instead to an optimization of the (approximate) marginal likelihood, or model evidence, called

empirical Bayes (Bishop, 2006).

To select between models optimized with different q, we use a Laplace approximation to the posterior,

p wjD; qÞð zNðwjwMAP;�H�1Þ, to approximate the marginal likelihood as in Sahani and Linden (2003):

p yjX; qð Þ=p yjX;wð Þ p wjqð Þ
p wjD; qð Þ z

exp Lð Þ$N wj0;Cð Þ
N wjwMAP;�H�1ð Þ: (Equation 5)

Naive optimization of q requires a re-optimization of w for every change in q, strongly restricting the dimensionality of tractable q.

Under such a constraint, the simplest approach is to reduce all sk to a single s, thus assuming that all weights have the same smooth-

ness (as done in Bak et al., 2016).

Here we use the decoupled Laplace method (Wu et al., 2017; Roy et al., 2018a) to avoid the need to re-optimize for our weight

parameters after every update to our hyperparameters by making a Gaussian approximation to the likelihood of our model. This

optimization is given in Algorithm 1. By circumventing the nested optimizations of q and w, we can consider larger sets of

hyperparameters and more complex priors over our weights (e.g., sday) within minutes on a laptop (see Figure S1). In practice, we
e2 Neuron 109, 1–14.e1–e6, February 17, 2021
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also parametrize q by fixing sk;t = 0 = 16, an arbitrary large value that allows the likelihood to determine the starting value of the weights

w0 rather than forcing the weights to initialize near some predetermined value via the prior.

Algorithm 1 Optimizing hyperparameters with the decoupled Laplace approximation

Require: inputs X, choices y

Require: initial hyperparameters q0, subset of hyperparameters to be optimized qOPT

1: repeat

2: Optimize for w given current q /wMAP, Hessian of log-posterior Hq, log-evidence E

3: Determine Gaussian prior Nð0;CqÞ and Laplace appx. posterior NðwMAP; � H�1
q Þ

4: Calculate Gaussian approximation to likelihood NðwL;GÞ using product identity, where G�1 = � ðHq +C�1
q Þ and wL = �

GHqwMAP

5: Optimize E w.r.t. qOPT using closed form update (with sparse operations) wMAP = � H�1
q G�1wL

6: Update best q and corresponding best E

7: until q converges

8: return wMAP and q with best E
Selection of input variables
The variables that make up the model input X are entirely user-defined. The decision as to what variables to include whenmodeling a

particular dataset can be determined using the approximate log-evidence (log of Equation 5). The model with the highest approxi-

mate log-evidence would be considered best, though this comparison could also be swapped for a more expensive comparison of

cross-validated log-likelihood (using the cross-validation procedure discussed below).

Non-identifiability is another issue that should be taken into account when selecting the variables in the model. A non-identifiability in

themodeloccurs if onevariable inX isa linearcombinationofsomesubsetofother variables, inwhichcase thereare infiniteweightvalues

that all correspond toa single identicalmodel. Fortunately, the posterior credible intervals on theweightswill help indicate that amodel is

inanon-identifiable regime—since theweightscan takeawide rangeofvalues to represent thesamemodel, thecredible intervalswill be

extremely large on the weights contributing to the non-identifiability. See Figure S3B for an example and further explanation.

Parameterization of input variables
It is important that the variables used in X are standardized such that the magnitudes of different weights are comparable. For cat-

egorical variables, we constrain values to be f�1; 0; +1g. For example, the previous-choice variable is coded as a�1 if the choice on

the previous trial was left, +1 if right, and 0 if there was no choice on the previous trial (e.g., on the first trial of a session). Additionally,

variables depending on the previous trial can be set to 0 if the previous trial was a mistrial. Mistrials (instances where the animal did

not complete a trial, e.g., by violating a ‘‘go’’ cue) are otherwise omitted from the analysis. The choice bias is fixed to be a constant

+1.

Continuous variables can be more difficult to parameterize appropriately. In the Akrami task, each of the variables for stimulus A,

stimulus B, and previous stimuli are standardized such that the mean is 0 and the standard deviation is 1. The left and right contrast

values used in the IBL task present a more difficult normalization problem. Suppose the contrast values were used directly. This

would imply that a mouse should be twice as sensitive to a 100% contrast than to a 50% contrast. Empirically, however, this is

not the case: mice tend to have little difficulty distinguishing contrasts of either value and perform comparably on these ‘‘easy’’

contrast values. Nonetheless, we used both contrast values as input to the same contrast weight, so the model always predicts a

significant difference in behavior between 50% and 100% contrasts.

To improve accuracy of themodel, we transformed the stimulus contrast values to bettermatch the perceived contrasts of different

stimuli, motivated by the fact that responses in the early visual system are not a linear function of physical contrast (Busse et al.,

2011). For all mice, we used a fixed transformation of the contrast values used in the experiment (though this transformation could

in principle be tuned separately for eachmouse). The following tanh transformation of the contrasts x has a free parameter pwhichwe

set to p= 5 throughout the paper: bxp = tanhðpxÞ=tanhðpÞ. Specifically, this maps the contrast values from [0, 0.0625, 0.125, 0.25, 0.5,

1] to [0, 0.302, 0.555, 0.848, 0.987, 1]. See Figure S4 for a worked example of why this parametrization is useful.

More generally, this particular transformation of contrasts allows us to avoid the pressure exerted on our likelihood by the most

extreme levels of perceptual evidence (e.g., 100% contrast values). In many behavior fitting procedures, this issue is avoided via

the inclusion of an explicit lapse rate which discounts the influence of incorrect choices despite strong perceptual evidence. Since

our model does not include explicit lapse rates, transformations to limit the influence of the strongest stimuli may be necessary for

robust fitting under many psychophysical conditions (Nassar and Frank, 2016).

IBL task
Here we review the relevant features of the task and mouse training protocol from the International Brain Laboratory task (IBL task).

Please refer to International Brain Laboratory et al. (2020) for further details.
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Mice are trained to detect of a static visual grating of varying contrast (a Gabor patch) in either the left or right visual field (Figure 1A).

The visual stimulus is coupled with themovements of a responsewheel, and animals indicate their choices by turning the wheel left or

right to bring the grating to the center of the screen (Burgess et al., 2017). The visual stimulus appears on the screen after an auditory

‘‘go cue’’ indicates the start of the trial and only if the animal holds the wheel for 0.2-0.5 s. Correct decisions are rewarded with sweet-

ened water (10% sucrose solution; Guo et al., 2014), while incorrect decisions are indicated by a noise burst and are followed by a

longer inter-trial interval (2 s).

Mice begin training on a ‘‘basic’’ version of the task, where the probability of a stimulus appearing on the left or the right is 50:50.

Training begins with a set of ‘‘easy’’ contrasts (100% and 50%), and harder contrasts (25%, 12.5%, 6.25%, and 0%) are introduced

progressively according to predefined performance criteria. After a mouse achieves a predefined performance criteria, a ‘‘biased’’

version of the task is introduced where the distribution of stimuli switches in blocks of trials between 20:80 favoring the right and

80:20 favoring the left. The length of each block is sampled from an exponential distribution of mean 50 trials, with a minimum block

length of 20 trials and a maximum block length of 100 trials.

Akrami task
Here we review the relevant features of the task, as well as the rat and human subject training protocols. Please refer to Akrami et al.

(2018) for further details.

Rats were trained on an auditory delayed comparison task, adapted from a tactile version (Fassihi et al., 2014). Training occurred

within three-port operant conditioning chambers, in which ports are arranged side-by-side along one wall, with two speakers placed

above the left and right nose ports. Figure 5A shows the task structure. Rat subjects initiate a trial by inserting their nose into the

center port, and must keep their nose there (fixation period), until an auditory ‘‘go’’ cue plays. The subject can then withdraw and

orient to one of the side ports in order to receive a reward of water. During the fixation period, two auditory stimuli, A and B, separated

by a variable delay, are played for 400 ms, with short delay periods of 250 ms inserted before A and after B. The stimuli consist of

broadband noise (2,000–20,000 Hz), generated as a series of sound pressure level (SPL) values sampled from a zero-mean normal

distribution. The overall mean intensity of sounds varies from 60–92 dB. Rats should judge which out of the two stimuli, A and B, had

the greater SPL standard deviation. If A > B, the correct action is to poke the nose into the right-hand nose port in order to collect the

reward, and if A < B, rats should orient to the left-hand nose port.

Trial durations are independently varied on a trial-by-trial basis, by varying the delay interval between the two stimuli, which can be

as short as 2 s or as long as 6 s. Rats progressed through a series of shaping stages before the final version of the delayed comparison

task, in which they learned to: associate light in the center poke with the availability of trials; associate special sounds from the side

pokes with reward; maintain their nose in the center poke until they hear an auditory ‘‘go’’ signal; and compare the A and B stimuli.

Training began when rats were two months old, and typically required three to four months of training to display stable performance

on the complete version of the task.

In the human version of the task, similar auditory stimuli to those used for rats were used (see Figure 7A). Subjects received, in each

trial, a pair of sounds played from ear-surrounding noise-cancelling headphones. The subject self-initiated each trial by pressing the

space bar on the keyboard. Stimulus Awas then presented together with a green square on the left side of a computer monitor in front

of the subject. This was followed by a delay period, indicated by ‘‘WAIT!’’ on the screen, then B was presented together with a red

square on the right side of the screen. At the end of the second stimulus and after the go cue, subjects were required to compare the

two sounds and decidewhich onewas louder, then indicate their choice by pressing the ‘‘k’’ keywith their right hand (Bwas louder) or

the ‘‘s’’ key with their left hand (A was louder). Written feedback about the correctness of their response was provided on the screen,

for individual trials as well as the average performance updated every ten trials.

A practical guide
In order to facilitate easy application of our model to new datasets, we have assembled a list of practical considerations. Many of

these have already been addressed in the main text and in the STAR methods, but we will provide a comprehensive list here for

easy access. We divide these considerations into three sections. First, model specification for considerations that arise

before attempting to apply PsyTrack to new behavioral data. Second, fitting and model-selection for considerations that occur

when trying to obtain the best possible characterization of behavior with the model. And finally, post-modeling analysiswhich is con-

cerned with the interpretation and validation of the model results.

Model specification

Is the behavior appropriately described by a binary choice variable?
e4 N
d The current method cannot handle more than two choices, though the extension to the multinomial setting is an exciting

future direction that has already received some attention (Bak and Pillow, 2018).

d Early training in many tasks often results in a high proportion of ‘‘mistrials,’’ i.e., trials where the animal responded in an

invalid (rather than incorrect) way. These mistrials are omitted in our model (though they can indirectly influence valid trials

via history regressors).
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What sort of variability is expected from the behavior?

d If there is reason to believe that behavior is static (e.g., human behavior or behavior from the end of training), then PsyTrack

may not offer anything beyond standard logistic regression. However, one major benefit is that PsyTrack will infer static

behavior rather than assume it (see Figure 7).

d If behavior is expected to ‘‘jump’’ at known points in training (e.g., in-between sessions), consider using sday to accommo-

date that behavior (see Figures 2C and S6 for creative usage of sday).

d If behavior is expected to ‘‘jump,’’ but it’s uncertain when those sudden changes might occur, be aware of how the model

makes a smooth approximation to a sudden change (Figure S2).

What input variables should be tried?

d Relevant task stimuli should certainly be included. Choice bias is also a good bet.

d The irrelevant input variables can be harder to settle upon. It is often worth a preliminary analyses of the empirical data to see

if certain dependencies are clearly present (e.g., Figures 5C–5E verifies a behavioral dependence on the choice and correct

answer of the previous trial).

Fitting and model-selection

Which candidate input variables should ultimately be chosen?
d For models with the same number of hyperparameters, we use the model evidence (Equation 5) to performmodel selection.

d For models with different numbers of hyperparameters, we can use the Bayesian Information Criterion (BIC), given by �
2E +KlogT, where E is the log-evidence,K is the number of hyperparameters, and T is the number of trials. Select themodel

with lowest BIC.

d Users may also performmodel selection via cross-validation. This involves dividing the data into a training and test set, then

selecting themodel with highest cross-validated log-likelihood on the test set. This approach ismore principled than the BIC

but computationally more expensive.

How should input variables be parametrized?

d The default option is consolidated to f�1;0; +1g for discrete variables and to standardize continuous variables (subtract

mean and divide by standard deviation).

d If weights ever grow to be greater than 5 (or less than�5), this is generally a red flag. This oftenmeans that the corresponding

variable should be reparametrized to discount the effect of extreme evidence (see Figure S4 and STAR methods).

d Example alternate parametrizations in the current work include: (i) combining the left and right contrast weights in the IBL

task into a single contrast weight (where left contrasts are encoded as negative values); (ii) increasing the number of history

regressors in the Akrami task to capture more specific effects (e.g., a weight to capture the specific impact of previously

choosing rightward on a leftward trial).

d Again, model evidence (Equation 5) can be used to decide between different parametrizations.

Over what time frame should the model be applied?

d While the weights of the model vary smoothly, the hyperparameters do not. For example, if you apply the model to two

consecutive sessions where a particular weight is static for the first session then highly variable for the second session,

the model will settle on a compromise value for that weight’s s. It may be preferred in such a situation to apply the model

to each session separately.

d If you are looking for fine-scale fluctuations (e.g., bias weight fluctuations in response to bias blocks in Figure 4), it is often

better to look at shorter time frames, down to a single session.

Post-modeling analysis

How should the weights of a model be interpreted?
d The credible intervals around the weights can help gauge the model’s uncertainty about that weight’s value at a particular

point in training (and also alert you to non-identifiability in your input variables, see Figure S3).

d Keep in mind that the weights trajectories are conditioned on a point estimate (the MAP estimate) of the smoothness hyper-

parameters. Uncertainty in the s values can also be calculated (Figures 2B and 2D).

d Remember that the model is not causal: information from future trials is free to affect the weight values at earlier points in

training (see Figure S6).

d PsyTrack is a descriptive, not normative, model of behavior. There is no notion of what an animal ought to be doing; in fact,

task rewards do not play a part in the model inference at all (though previous rewards could be included as an optional input

variable).

How should the results of a model be validated?

d The best way to validate a model is to compare model predictions (optimally using cross-validated weights) against empir-

ical measure direct from the choice behavior.

d For example, Figures 5C–5E validates that the added history regressors are indeed capturing a dependence on the previous

trial (especially when compared to Figures S7C–S7E). Figure S5 validates the predictions of the model against to the stan-

dard psychometric curve.
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Quantification and statistical analysis

Cross-validation procedure
When making predictions about specific trials, the model should not be trained using those trials. We implemented a 10-fold cross-

validation procedurewherewe fit themodel using a training set composed of a random90%of trials at a time, and used the remaining

10% for predicting and testing. We modified the prior S such that the gaps created by removing the 10% of test set trials were taken

into account. For example, if trial t is in the test set and trials t � 1 and t + 1 are in the training set, then we modify the value on the

diagonal ofS corresponding to trial t � 1 from s2 to 2s2 to account for themissing entry inS created by omitting trial t from the training

set.

To predict the animal’s choice at a test trial t, we first inferred the weights for a training set of trials that excludes t, as described

above. Then we approximated wt by linearly interpolating from the nearest adjacent trials in the training set. We repeated this to

obtain a set of predicted weights for each trial. Using the predicted weights wt and the input vector xt for that trial, we calculated

a predicted choice probability PðGo RightÞ (as in Figure 5), and compared this to the actual choice yt to calculate the predicted ac-

curacy (as in Figure 8). The cross-validated log-likelihood L, calculated using predicted weights, can be used to choose between

models in lieu of approximate log-evidence.

Calculation of posterior credible intervals
In order to estimate the extent to which our recovered weights w are constrained by the data, we calculated a posterior credible in-

terval over the time-varying weight trajectories (e.g., the shaded regions shown in Figure 5B). Specifically, we approximated the 95%

posterior credible interval by using 1.96 standard deviations. The standard deviation is calculated by taking the square-root of the

diagonal of the covariance matrix at wMAP.

The covariance matrix can be approximated by the inverse Hessian, but inversion of a large matrix can be challenging. Here, we

adapted a fast method for inverting block-tridiagonal matrices (Rybicki and Hummer, 1991), taking advantage of the fact that our

Hessian (while extremely large) has a block-tridiagonal structure, and that we only need the diagonal of the inverse Hessian. If H

is the Hessian matrix of our weights at the posterior peak wMAP (also with the highest log-evidence, according to the optimization

procedure in Algorithm 1), this method calculates a diagonal matrix,

A = diag
�
H�1

�
; (Equation 6)

such that we can take the square root of the diagonal elements of A to estimate one standard deviation for the corresponding weight

on each trial. The algorithm requires order TK3 scalar operations for calculating the central blocks of our inverse Hessian (for T trials

and K weights).

To calculate the posterior credible intervals for our hyperparameters q, we took the same approach of inverting the K3 K hyper-

parameter Hessian matrix (or 2K32K if sday is used). The difficulty here is not in inverting this Hessian matrix, since it is much smaller,

but in calculating the Hessian in the first place. We calculated each entry in our Hessian numerically, determining each of the

KðK + 1Þ=2 unique entrieswith finite differencing. Oncewe have determined the Hessianmatrix for the hyperparameters, it is straight-

forward to calculate the 95% posterior credible intervals for each hyperparameter using the square root of the diagonal elements of

the inverse Hessian, the same procedure as in the case for the weights.
e6 Neuron 109, 1–14.e1–e6, February 17, 2021
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Figure S1. Related to Figure 2, Compute time and model accuracy
(A) The model fitting time as a function of the number of weights K = {2, 4, 6} and the number of trials T =
{1000, 200, 4000, 8000, 16000}. Weights are simulated as in Figure 2A. For each pair of K weights and T trials, 20
sets of weights are randomly simulated (with each log2(σk) ∼ U(−7.5,−3.5); no σday was used), and recovered by the
model (the calculation of credible intervals on the weights was omitted). We plot the average recovery time across
the 20 iterations, ±1 standard deviation. We can see that even a reasonably complex model (6 weights and 16000
trials) only takes around 5 minutes to fit on average. All models were fit on a 2012 MacBook Pro with a 2.3 GHz
Quad-Core Intel i7 processor.
(B) The mean-squared error (MSE) calculated across all weights across all trials (between the true weights and
recovered weights), as a function of the total number of weights and total number of trials in the model. Calculations
used the same models run in (A). The average MSE across the 20 iterations of each model is plotted, ±1 standard
deviation. We can see that the recovery of the weights is relatively independent of the number of weights (color
coded as in (A)) and number of trials.
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Figure S2. Related to Figure 2, Recovering sudden changes in behavior with smooth weight trajectories
(A) To examine how the model handles “jumps” in behavior (that do not occur at session boundaries), we attempt
to recover the same simulated weights from Figure 2C without using any σday hyperparameters. While our model is
no longer able to capture the explicit “jumps” in the true weights (solid lines, yellow and blue simulated with a σday

hyperparameter), the recovered weights (dashed lines) smoothly track these sudden shifts as a sigmoid (e.g., the blue
weight at trial 1000).
(B) Since the recovered σ hyperparameters also have to account for variability in the weight due to the simulated σday

hyperparameters, the recovered σ values tend to be larger than the simulated σ values. The σ for the yellow weight
(simulated with both σ and σday) does indeed overshoot it’s true value, while the σ for the red weight (simulated
with only σ) is accurately recovered. The blue weight was not simulated with σ at all, so the recovered σ is capturing
variability exclusively due to the simulated σday.
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Figure S3. Related to Figure 3, Adding weights to early training sessions in IBL mice
(A) Here we refit the data first presented in Figure 3B, but now adding two additional weights: a Previous (Correct)
Answer and Previous Choice weight. While these history weights massively impact choice behavior during early
training in all the Akrami Rats (see Figure 6D-E), they have negligible impact on the behavior of our example IBL
mouse.
(B) Here we refit the data first presented in Figure 3B, but now adding a bias weight. While a bias weight is very
useful for describing the behavior of IBL mice later in training (see Figure 4), we omit the bias weight during early
training due to an issue of non-identifiability. During the initial sessions of training, IBL mice are only presented
with “easy” contrast values of 50% and 100%. These contrasts are perceptually very similar (i.e. a 100% contrast
is not twice as difficult as a 50% contrast), which we account for with a tanh transformation of the contrasts (see
Figure S4). Thus, the task in the earliest stages of training has effectively only two types of trials: ∼ 100% left
contrast trials and ∼ 100% right contrast trials. With a task this simple, behavior is over-parameterized by having
a bias weight and two contrast weights, introducing the non-identifiability. Explicitly, a model with hypothetical
weight values of [bias, left, right] = [0, -1, +1] is nearly identical to a model with values [-1, 0, 2]; in fact, there
are an infinite number of weight values for these three weights that would all describe behavior on this simplified
task in approximately the same way. Fortunately, the posterior credible intervals on the weights can indicate that
a model is in a non-identifiable regime. Because there are so many settings of possible weight value, the intervals
become abnormally large and overlapping, as shown here. See the STAR Methods for more details about model
non-identifiability.
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Figure S4. Related to Figure 4, The impact of the tanh transformation of IBL contrasts on model weights
(A) The effect of the tanh transformation on the IBL contrast values for several settings of the free parameter
p. A tanh transformation is applied to the contrast values, c, in the IBL task such that the relative values of the
transformed contrasts, ĉp = tanh(pc)/ tanh(p), better aligns with their relative perceptual difficulty. In this work,
we use p = 5 to transform the contrasts (purple line), such that c = {0, 0.0625, 0.125, 0.25, 0.5, 1} are transformed
to ĉ5 = {0, 0.303, 0.555, 0.848, 0.987, 1} (left contrasts are coded as having negative value here). This value was
anecdotally observed to work well across a large variety of mice and sessions, but it could be optimized for each
model.
(B) Here we refit the data first presented in Figure 4B, forgoing the tanh transformation and using the original
contrast values c instead. We see that the right contrast weight grows to massive values and fluctuates wildly. Using
Equation 1, we can calculate that with a weight of 15, the model predicts that a 100% right contrast would result
in a P (Go Right) of over 99.9999% (disregarding the impact of the much smaller bias weight, for simplicity). This
is an absurdly confident prediction, even for the best trained mouse, but it represents a compromise the model was
forced to make. We can calculate that the predicted P (Go Right) on the most difficult right contrast value, a 6.25%
contrast, is a much more reasonable 71.9%. A well-trained mouse could certainly be performing better than this on
the hardest contrast. However, in order to reflect a higher P (Go Right) on this hard contrast, the right contrast
weight would need to become even greater, resulting in even more absurdly confident predictions on the 100% contrast
trials. All right contrast values share the same weight, forcing a single compromise weight value between them. By
using the raw contrast value, the model assumes that a 100% right contrast is 16 times more salient to the mouse
than a 6.25% contrast, which is empirically untrue (Busse et al., 2011). Applying the tanh transformation brings the
relative value of the two contrasts into a much more reasonable regime. With p = 5, a 6.25% contrast is encoded as
0.303 while the 100% contrast remains at 1.0, making the 100% contrast only 3 time more salient than the 6.25%
contrast. See the STAR Methods for more details about the parametrization of input variables.
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Figure S5. Related to Figure 4, Validating the model with a comparison to empirical psychometric curves
(A-C) In order to validate that our model is accurately characterizing choice behavior, we can compare a psychome-
tric curve generated directly from the primary behavioral data against a curve generated from the (cross-validated)
weights of our model. Here, we show a sample of three sessions from our example IBL mouse, taken from distinct
periods in training (see Figure 4A). We use our cross-validation procedure to infer weights for each session.
(D-F) For each of the three example sessions, we show both the empirical (black) and model predicted (pink)
psychometric curve (each with ±1SE). That is, for each unique stimulus used during the session (sessions early in
training operate with a restricted “easy” stimulus set) we calculate the percent of trials where the animal went right
in response to that stimulus. Similarly, for each trial we can derive from our model a cross-validated P (Go Right) and
average those values according to the stimulus. We can see that for each of the example sessions there is agreement
between the empirical data and the model’s predictions.
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Figure S6. Related to Figure 4, Allowing the bias weight to reset between bias blocks with σday

When inferring weights with our model, it is important to remember that the value of a weight at a particular trial
t is a function of not just previous trials, but also future trials. Our analyses in Figure 4 could be misinterpreted as
showing that the mouse anticipates the start of a new block since the bias weight will often reverse direction before
the end of the current block. This apparent anticipation is confounded by the smoothing of our model, which is
especially dramatic around “jumps” in a weight (see Figure S2). Fortunately, we can adapt our model to remove
this confound with two steps. First, we treat the boundary between each bias block as a session boundary such that
the size of the jump at each boundary is parametrized not by σ, but by σday (for the bias weight only). Second,
instead of inferring the value of our σday hyperparameter as we have done throughout the paper, we fix the value of
σday to be very high (σday = 25). Effectively, this means that the bias weight is free to “reset” itself to any value at
the start of each new bias block. This prevents blocks ahead of (or behind) the current block from influencing the
values of the bias weight within that block. Figure 4 has been recreated here with this new adaptation to the model:
the sharp transitions between blocks are now apparent in (B) and (C), but the qualitative results shown in (D-F)
remain largely unaffected.



0 2000 4000 6000 8000 10000 12000

−1

0

1
Bias 

Stim. A 

Stim. B 

Stim. A

St
im

. B

Go
Left

Go
Right

Trial Start Stim. A Delay Stim. B Choice

W
ei

gh
ts

A

B

C
Trials

2000—2500 6500—7000 11000—11500
D E

Pr
ev

.
C

ho
ic

e
Pr

ev
.

An
sw

er
Pr

ev
.

R
ew

ar
d

Correct
Side

42 48

44 47

42 47

43 47

17 16

74 71

34 42

62 83

40 57

40 57

40 56

37 58

15 29

46 56

30 61

54 80

31 66

31 66

32 66

31 66

20 60

32 53

30 71

36 84

C D E

Trial Range:

100%0% P(Go Right)

Predicted

Empirical

Average P(Go Right)

Figure S7. Related to Figure 5, Example Akrami rat without history regressors
In order to better understand the contribution of the three history regressors to our model, we reproduce the analyses
of Figure 5 with a model that omits the history regressors. In (B), we see that the trajectories of the Stim. A, Stim.
B, and Bias weights remain qualitatively the same. However, (C-E) shows that this model does not capture the
dependence on the previous trial that is clearly reflected in the empirical choice behavior, especially early in training.
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Figure S8. Related to Figure 7, Modeling the Akrami human subjects with the Previous Choice and Previous Answer
weights
(A) Here we refit the data presented in Figure 7B, but now we add both a Previous Choice and a Previous (Correct)
Answer weight. Since human subjects are given task instructions before starting, we would not expect their behavior
to be affected by either their choice or the correct answer on the previous trial. Indeed, we see that both new history
weights are always approximately 0 for our example subject.
(B) Here we refit the data presented in Figure 7C, but now we add both a Previous Choice and a Previous (Correct)
Answer weight for all the human subjects. We plot only the two new weights from each refit model, for clarity. We
see that, in general, both the choice and the correct answer on the previous trial have a relatively small impact on
human choice behavior.
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