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Abstract

White noise analysis methods for characterizing neurons typically ignore the dynamics of neu-
ral spike generation, assuming that spikes arise from an inhomogeneous Poisson process. We
show that when spikes arise from a leaky integrate-and--re mechanism, a classical white noise
estimate of a neuron’s temporal receptive -eld is signi-cantly biased. We develop a modi-ed
estimator for linear characterization of such neurons, and demonstrate its e/ectiveness in simu-
lation. Finally, we apply it to physiological data and show that spiking dynamics may account
for changes observed in the receptive -elds measured at di/erent contrasts.
c© 2003 Elsevier Science B.V. All rights reserved.
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White noise analysis has become a widely used technique for characterizing response
properties of spiking neurons in sensory systems. A sequence of stimuli are drawn
randomly from an ensemble and presented in rapid succession, and one examines the
stimuli that elicit action potentials. In the most widely used form of this analysis, one
estimates a linear approximation to the receptive -eld (i.e. -rst-order Wiener kernel)
by computing the spike-triggered average (STA); that is, the average stimulus preceding
a spike (e.g. Refs. [6,8]). Under the assumption that spikes are generated by a Poisson
process with instantaneous rate determined by linear projection onto a kernel followed
by a static nonlinearity, the STA provides an unbiased estimate of the underlying
kernel [5].
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The white noise approach is considered to have several advantages over traditional
characterization approaches, including the ability to explore a large portion of the
input space, and receptive -eld estimation that is robust to drift or Cuctuation in the
responsiveness of a neuron. Despite these advantages, it has also become clear that there
are drawbacks to the standard characterizations obtained with white noise methods. One
such shortcoming is the well-known phenomenon that the shape of the STA varies with
the amplitude (e.g. contrast) of the white noise stimuli. (e.g. Refs. [4,9,13]). This type
of change cannot be explained by a linear model followed by a static nonlinearity and
Poisson spike generation (the L–N-P model), since it implies a change in the linear
front end. We have previously shown that nonlinear suppressive interactions such as
those found in cortical neurons can explain biases in the STA, that a spike-triggered
covariance analysis can be used to characterize these suppressive interactions, and that
the resulting corrected model can account for the changes of STA with contrast [10].
Here, we explore another potential source of failure in white noise characterization:

the assumption of Poisson spike generation. The signi-cance of temporal dynamic (i.e.
non-Poisson) properties of biological spike generation for white noise characterization
of neurons has not been thoroughly analyzed 1 . However, we show that in simulated
white noise experiments, a linear model which drives an integrate-and--re spiking
mechanism is inaccurately characterized by the STA. Furthermore, we show that the
integrative behavior of this model can account for some of the changes in the STA
estimated at di/erent stimulus amplitudes in real neurons. Finally, we propose a new
method for recovering the linear temporal -lter governing neural response. We demon-
strate through simulation that this approach can correctly estimate the linear kernel
of a model neuron, and we also apply our method to real neural data, demonstrating
that the recovered linear kernel is fairly stable with changes in stimulus contrast. We
thus conclude that the recovered linear kernel may provide a more fundamental func-
tional description of neural behavior, and might well be more directly related to the
mechanisms underlying neural response.

1. Leaky integrate-and-�re model

Our analysis is based on a leaky integrate-and--re (LIF) model. The input is
convolved with a linear -lter K , and this response drives a leaky integrator. When
the level of this integrator reaches a threshold value, the neuron -res a spike and the
integrator is reset to zero. The time evolution of the model membrane potential V (t)
is characterized by a single di/erential equation

dV
dt

=−1
�
V (t) + I(t); (1)

1 However, Arcas et al. have recently examined the behavior of a Hodgkin–Huxley model under white
noise stimulation, and have made a number of interesting observations regarding the spike-triggered stimulus
ensemble [2].
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where � is the time constant governing decay of the membrane potential, and I(t)
is the input current, generated by convolving the input signal S(t) with the -xed
kernel K :

I(t) = K ∗ S(t) =
∫ 0

−∞
K(u)S(t − u) du: (2)

This model has an analytical solution relative to the time of the most recent spike:

V (t) =
∫ t

t−
I(u)e(u−t)=� du; (3)

where t− is the time of occurrence of the last spike before t. This dependence on the
time of the previous spike (and past input to the integrator) represents a fundamental
departure from L–N-P model described earlier, where the probability of -ring a spike
is an instantaneous function of the projection of the stimulus onto K .

2. Simulation results and comparison

We simulated a white noise analysis experiment with the model described above.
In our simulations, the kernel K was chosen to be a 32-sample function whose shape
loosely resembles temporal kernels measured in retinal ganglion cells. As in classi-
cal white noise experiments, we generated a random discrete stimulus S(t) that was
temporally white, drawing the stimulus intensity as an independent Gaussian random
variable in each time step. We computed the STA as the average stimulus in the 32
time bins preceding each spike.
Fig. 1 (left) shows a plot of the actual kernel K superimposed on the STA for three

di/erent values of the membrane time constant �. First, note that in all three cases, the
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Fig. 1. Simulation of integrate-and--re neuron. Left: STA kernels retrieved for three di/erent contrast levels
(solid lines), plotted along with the true model kernel (dashed curve). Right: Kernels recovered using our
algorithm.
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STA di/ers signi-cantly from K . This bias reCects the integrative spiking mechanism
of the LIF model, as the STA is quite close to K if the same input were given to an
L–N-P model [5]. Furthermore, the discrepancy between K and the STA depends on
�. For small � (i.e. rapid decay of V ), the STA more closely resembles K , whereas
larger � (slower decay) gives rise to an STA which is smoother and more biased away
from the true K . Note that although this basic e/ect is unsurprising, it is not the case
that the STA shape arises simply from a low-pass -ltering of K with an exponential
-lter. Speci-cally, the STA measured for a stand-alone LIF spike generator is decidedly
non-exponential.
Physiological evidence indicates that at higher -ring rates, the membrane conduc-

tance of neurons increases, which corresponds to a decrease in membrane time constant
� [1,3,7]. Moreover, STAs measured in real neurons at high contrast tend to be nar-
rower than those measured at low contrasts. This suggests that an integrative spiking
mechanism with time constant that depends on -ring rate is at least consistent with
contrast-dependent changes in the STA of real neurons.

3. Recovering the linear kernel

Assuming that the input to an integrate-and--re spiking model is determined
by projection onto a linear kernel, how can the kernel be recovered from the response
to white noise stimuli? Eq. (3) provides a deterministic expression for the voltage
at any time since the most recent spike. The voltage at any spike time is therefore
given by

V (t+) = Vth =
∫ t+

t−
[K ∗ S(t)]e(t−t+)=� dt; (4)

where Vth is threshold, t− is the time index of the previous spike and t+ that of the
current spike. Using Eq. (2), we can rewrite this (by switching the order of integration):

Vth =
∫ 0

−∞
K(u)

[∫ t+

t−
S(t − u)e(t−t+)=� dt

]
du: (5)

Note that, for -xed �, this equation provides a linear constraint on K , since it expresses
Vth as the inner product of K with the exponentially weighted S (back to the time of
the previous spike). Every spike in the spike train provides one such constraint, so
a discretized K can be overconstrained so long as its dimensionality is smaller than
the number of spikes collected. K can easily be estimated by -nding the least-squares
solution to this overconstrained linear system.
In practice, one would like to estimate both � and K simultaneously, since both

are unknown for data collected in real neurons. This can be achieved simply using a
nested optimization (a line search algorithm) to -nd the � which minimizes the squared
error in the least-squares solution for K . This algorithm is guaranteed to converge, and
although the solution may be only a local minimum, in simulations it was well-behaved
for a wide variety of kernel shapes and a large range of � values. Fig. 1 (right) shows
the kernels estimated for simulations conducted with three di/erent values of �. Close
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Fig. 2. Analysis of in vitro ganglion cell data in monkey retina. Left: STA estimates based on responses
recorded at two di/erent input contrast levels. Right: Kernels recovered using our procedure. The associated
time constant estimates are 19.1 and 6:5 ms.

estimates of the true values of � were also obtained. For both graphs in this -gure, the
stimulus contained 40,000 time samples and approximately 2000 spikes were collected
for each �.
It should be noted, -nally, that this estimator for K and � ignores a huge set of

additional constraints—namely, that V (t) be less than threshold at all times within the
interspike interval. However, because the problem is already overconstrained by the
constraint on V (t) at spike times, and because the additional constraints are much harder
to implement, they can be ignored. A signi-cant improvement to the estimator may
nevertheless be obtained by considering additional constraints only on the time steps
immediately preceding a spike. (This can be implemented by allowing a contribution to
the squared error for any pre-spike time bin where V exceeds threshold). Monte Carlo
simulations exhibit rapid convergence to the true values of K and � for this revised
estimator.

4. Recovering a kernel from neural data

Our procedure for linear kernel estimation is based on an overly simplistic integrate-
and--re model for neural spike generation. We thus cannot be sure it will be applicable
to real neural data. But we note that STA techniques have been used for decades
to estimate linear kernels under the assumption of a Poisson spike generator. The
integrate-and--re model incorporates a dependence on the time of the previous spike
and is likely to provide a more accurate description of spiking in real neurons.
We have applied our procedure directly to data drawn from a monkey retinal ganglion

cell [4]. The data were recorded in vitro, using a stimulus consisting of 80,000 time
samples of full--eld 120 Hz Cickering binary white noise. The stimulus vectors s̃ of
this sequence are de-ned over a 25-segment (0:21 s) time window. Two data sets were
recorded, at contrasts of 32% and 64%.
Fig. 2 (left) shows STA estimates for both contrast levels. The kernels are quite

di/erent; the low-contrast STA is smoother and its peak is shifted earlier in time than
the high-contrast STA. Fig. 2 (right) shows the kernels resulting from our estimation
procedure. Note that the estimated kernel is now quite stable across di/erent contrasts,
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a desirable property for a functional description of neural behavior. The recovered time
constants of 19.1 and 6:5 ms are within ranges considered biologically plausible, al-
though their ratio indicates a greater change with amplitude than is commonly reported
for cortical neurons (e.g. Refs. [1,3,7]).

5. Discussion

Our results show that spike generation mechanisms can a/ect the interpretation of
results obtained with white noise analysis. In particular, we have shown that even
for a simple integrate-and--re model, the temporal STA does not accurately recover
the temporal linear input kernel. For this model, the magnitude of bias in the STA
is inCuenced by the membrane conductance, which is believed to vary with stimulus
strength. This amplitude-dependence of the STA mirrors changes in the STA of real
neurons measured at di/erent contrasts, and cannot be captured by an L–N-P model.
Based on this simple LIF model, we have developed a new method for the recovery

of the linear kernel and integration time constant from responses to white noise stim-
luli. To our surprise, this kernel estimation procedure recovers a stable linear kernel
when applied to data recorded from monkey retinal ganglion cells, and the associated
estimates of membrane conductance are within a biologically plausible range. Finally,
while not discussed here, our technique also appears to be quite robust to the presence
of noise in the membrane potential.
We are currently exploring the generalization of these results to more realistic mod-

els. In particular, we have found that the incorporation of a voltage Coor in the model
(corresponding to an ionic reversal potential) produces an STA which is sharper and
closer to the true input kernel at high contrast, independent of any changes in mem-
brane conductance. The signi-cance of this phenomenon, along with that of other
nonlinearities associated with spike generation, remains to be analyzed.
Our results suggest a mechanistic explanation of the behaviors captured by current

functional models of retinal ganglion cells (e.g. Ref. [12]), in which a nonlinear feed-
back signal is used to adjust the gain of the neuron. We have also previously shown
that nonlinear gain control operations might account for a variety of apparent changes
in receptive -eld properties at di/erent contrast levels [11]. The results presented in
this paper suggest that some such changes might be due to intracellular mechanisms
of spike generation. It would be interesting to test such hypotheses against intracellular
measurements.
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