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Perceptual Completion across the Vertical Meridian
and the Role of Early Visual Cortex

(LOC) shows strong BOLD responses to Kanizsa-type
illusory contours, with very little or no activation de-
tected in earlier cortical areas (Mendola et al., 1999).
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4 Washington Place LOC is anterior to V4 and has been shown to pool infor-

mation from large portions of the visual field and toNew York, New York 10003
respond preferentially to familiar objects and object
fragments (Grill-Spector et al., 1998; Malach et al., 1995;
Tootell et al., 1998). The much stronger responses toSummary
ICs in LOC have cast doubt on the role that early cortex
plays in perceptual completion, raising the possibilityPerceptual completion can link widely separated con-

tour fragments and interpolate illusory contours (ICs) that the early responses observed in electrophysiologi-
cal studies might be due to feedback from higher areas.between them. The mechanisms underlying such long-

range linking are not well understood. Here we report The idea that completion is achieved in LOC may seem
particularly appealing for very long ICs, given the largethat completion is much poorer when ICs cross the

vertical meridian than when they reside entirely within receptive fields of cells in LOC (Grill-Spector and Ma-
lach, 2001). However, large receptive field cells are notthe left or right visual hemifield. This deficit reflects

limitations in cross-hemispheric integration. We also the only mechanism by which long-range completion
could be achieved. Visual information can be integratedshow that the sensitivity to the interhemispheric divide

is unique to perceptual completion: a comparable task over large retinal distances in early cortex as well, via a
cascade of activity percolating through a chain of lateralwhich did not require completion showed no across-

meridian impairment. We propose that these find- connections (Gilbert et al., 1996; Gilbert and Wiesel,
1985; cf. Field et al., 1993; Geiger et al., 1998; Sha’ashuaings support the existence of specialized completion

mechanisms in early visual cortical areas (V1/V2), and Ullman, 1988; Ullman, 1976 for models of such
mechanisms). Thus, while physiological studies havesince those areas are likely to be more sensitive to

the interhemispheric divide. not provided conclusive evidence that perceptual com-
pletion relies on computations done in early cortex, the
architecture of early cortex in and of itself does notIntroduction
preclude this possibility, even for long-range linking.

Behavioral studies can play a key role in exploringIllusory contours (ICs) are surface boundaries which are
perceived in the absence of any luminance gradient the functional significance of neural activity observed

in physiology and imaging experiments. In particular,(Kanizsa, 1955, 1976, 1987; see also Figures 1A and
1B). ICs have been used extensively to study perceptual finding that a well-performed sensory skill breaks down

under very specific conditions can be revealing aboutcompletion—the reconstruction of occluded or missing
edges in images of 3D scenes. Human observers can the mechanisms underlying that skill (Blake, 1995). This

is the approach we take here. While studying the forma-use ICs to make very accurate judgments about the
shapes of the surfaces bound by those ICs (Gold et al., tion of ICs using a shape discrimination task, anecdotal

observations suggested that IC completion was rela-2000; Kellman et al., 1998; Ringach and Shapley, 1996).
Good performance is maintained even when the lumi- tively weak for ICs traversing the vertical meridian. We

conjectured that this impairment might be related to thenance-defined fragments of the contour are separated
by very large gaps, of 10� visual angle or more (Ringach interhemispheric divide, and that this could in turn shed

light on the mechanisms underlying contour completion.and Shapley, 1996; Rubin et al., 1997; see also below).
The ability of the visual system to link such widely sepa- Here, we present evidence that IC completion is indeed

impaired when information about the contour must berated contour fragments is well motivated ecologically
since real-world scenes often contain very large occlud- integrated from both hemispheres. We also show that

a visual task which requires integration of visual informa-ing surfaces. At the same time, explaining how long-
range completion is performed by the brain presents tion from similar spatial locations, but which does not

involve perceptual completion, does not show sensitivitysignificant challenges.
Physiological studies have so far not provided a clear- to the hemispheric divide. Thus, perceptual completion

suffers uniquely from the need to integrate informationcut answer as to how contour completion is achieved
in the brain. There is evidence that V1 and V2 neurons from the two hemispheres. We discuss the implications

of these findings, and propose that they provide evi-in the macaque monkey respond to ICs, i.e., to stimuli
which contain no luminance gradients within their “clas- dence for the involvement of early cortex in perceptual

completion.sical receptive field” (Bakin et al., 2000; Grosof et al.,
1993; Lee and Nguyen, 2001; Peterhans and von der
Heydt, 1989; Sugita, 1999; von der Heydt et al., 1984; Results
see also Seghier et al., 2000). However, a recent fMRI
study reported that the human lateral occipital complex The quality of IC perception was assessed with a task

which required observers to discriminate the shapes of
slightly deformed Kanizsa-type illusory squares (Ka-1Correspondence: nava@cns.nyu.edu
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Figure 1. Stimuli and Experimental Paradigm

(A) Example illusory square stimulus, with de-
formed top and bottom (across-hemifield)
ICs. The central dot is the fixation point, and
gray arrows indicate the two relevant types
of ICs, whose curvature was varied indepen-
dently.
(B) A set of stimuli used to evaluate the per-
ception of within-hemifield ICs (top row) and
across-hemifield ICs (bottom row). Stimuli are
labeled by the deviation of inducer openings
from 90�. Angle of the inducer openings
grows monotonically from left to right, giving
rise to IC curvature that varies from very con-
cave (at left) to very convex (at right).
(C) Experimental paradigm. Each trial con-
sisted of a single IC stimulus, which observ-
ers then had to classify on the basis of the
direction of curvature of its ICs. Both types
of stimuli (within- and across-hemifield) were
randomly interleaved during an experimental
block. The briefly presented stimulus was fol-
lowed by a mask to limit processing time.

nizsa, 1976; Ringach and Shapley, 1996). Previous stud- for across-hemifield ICs. Figure 2B shows the results
for all the observers who participated in the experimenties have shown that good performance in this task de-

pends on the ability to perceive ICs (Gold et al., 2000; (see Experimental Procedures). All eight observers per-
formed better on within-hemifield than on across-hemi-Ringach and Shapley, 1996; Rubin et al., 1997). It was

also shown that the dependence of performance in this field ICs. Seven observers had a highly significant differ-
ence in thresholds (p � .005), comparable to or greatertask on the visual field location of the ICs can shed light

on the underlying brain organization (Rubin et al., 1996). than that shown by LS, while for one subject (MI) the
difference was not statistically significant.The original task was modified to allow for independent

assessments of within-hemifield and across-hemifield A second experiment examined whether the difficulty
integrating visual information across the vertical merid-perceptual completion. The angular openings of the in-

ducers were varied so that two of the ICs of the Kanizsa ian is specific to perceptual completion. The task re-
quired integration of information from spatial locationsfigures were curved. The difficulty of the task was con-

trolled by varying how much the angular openings devi- similar to those in the first experiment, but the stimuli
did not give rise to perceptual completion. Observersated from 90�, which induced differing degrees of curva-

ture in the illusory edges. The curvature of the top/ were asked to determine the relative displacement of
two parallel, nearly colinear line segments. The linesbottom (across-hemifield) and side (within-hemifield)

ICs was varied independently. Observers were asked to were widely separated and were shifted so as not to be
precisely colinear; we term this the distal misalignmentdetermine the direction of curvature (convex or con-

cave). Figure 1 illustrates the experimental paradigm (DM) discrimination task. As in the IC experiment, there
were two conditions: within-hemifield and across-hemi-used.

The results show a marked advantage for discrimina- field (see Experimental Procedures and illustrations in
Figure 3). Given that the spatial (and temporal) distribu-tion of within-hemifield ICs compared to across-hemi-

field ICs. Figure 2A shows the results of an individual tion of information in this task was nearly identical to
that in the first, one might expect a similar differenceobserver (LS) for the two types of stimuli. (LS was naive

to the purpose of the experiment.) The graph shows the in performance between within- and across-hemifield
stimuli. However, the DM line segments do not givefraction of times the observer judged the IC to be convex

as a function of the amount of curvature in the ICs (deter- rise to perceptually completed contours or surfaces.
Therefore, if the difficulty integrating across-hemifieldmined by the deviation of the inducer openings from 90�;

negative values denote concave IC curvature). Defining information is unique to perceptual completion, the DM
task should not show performance asymmetry. (Therethreshold as the amount of curvature an observer

needed to perform at the 82% correct level, LS had is evidence that line segments that lie along a smooth
arc are perceptually linked, albeit more weakly, eventhresholds of 2.5� for within-hemifield ICs versus 7.4�
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Figure 2. Results of Main IC Experiment

(A) Comparison of performance on within-
hemifield and across-hemifield ICs for ob-
server LS. Each graph shows the fraction of
“convex” responses as a function of the devi-
ation from 90� of the angular inducers. The
gray line is a fitted psychometric function,
used to calculate discrimination threshold
(see Experimental Procedures). Threshold of
2.5� on within-hemifield IC stimuli (left) indi-
cates much better performance than on
across-hemifield ICs (right, threshold � 7.4�).
(B) Comparison of thresholds across observ-
ers. All observers show better performance
on within-hemifield ICs, seven of the eight
with a significance level of p � .005. Error
bars show �1 SD confidence intervals for
threshold, based on bootstrap resampling of
the data (N � 2000).

when they do not depict occlusion; cf. Murray et al., formance asymmetry were considered. One is that ob-
servers might have a bias to attend to the sides of the2001. For this reason, we used misaligned line segments

rather than simply replacing the “pacmen” edges with figure more than to the top and bottom. The sides of
the figure contained within-hemifield ICs and the topline segments. See Discussion.)

The results showed no consistent asymmetry be- and bottom contained across-hemifield ICs. Because
the two types of stimuli were presented randomly withintween the within-hemifield and across-hemifield condi-

tions for the DM task. Figure 3A shows the results when the same experimental session, an observer who at-
tended preferentially to the side ICs would be expecteddata from all six observers are averaged: the psychomet-

ric functions for the two conditions are statistically indis- to better discriminate curvature in within-hemifield ICs
than in across-hemifield ICs. To test this possible expla-tinguishable. Individually, three observers showed no

significant difference between conditions, two per- nation, we repeated the experiment using a blocked
design. Each block of trials contained only within-hemi-formed better on the across-hemifield condition, and

one performed better on the within-hemifield condition. field or only across-hemifield stimuli. Thus, observers
knew which part of the image contained the task-rele-Note that although performance is rather poor in this

task (i.e., thresholds are high), we need not be con- vant information, and could allocate attention optimally
in each case. Five observers participated in this experi-cerned that the similar performance in the two condi-

tions is due to a “floor effect.” The psychometric func- ment. Figure 4 shows their averaged performance for
the within-hemifield (left) and across-hemifield (right)tions span a range of performance up to 80% correct,

ensuring that the two conditions are performed similarly experimental blocks. The thresholds obtained were 2.4�
and 5.1�, respectively. Under these conditions of re-even at rather high performance levels. (Similar thresh-

olds were also obtained when the masks were removed, duced uncertainty, performance increased for both
types of stimuli, but the superior performance for within-leading to substantially higher levels of performance;

data not shown.) Thus, not all tasks that require integra- hemifield ICs persisted, indicating that better perfor-
mance on within-hemifield ICs cannot be accountedtion over wide gaps are impaired when information is

distributed on opposite sides of the vertical meridian. for by an attentional bias. The results of this control
experiment also suggest that the stronger “behavioralPerceptual completion seems to show unique sensitivity

to across-hemifield integration. receptive fields” found along the within-hemifield ICs
by Gold et al. (2000) reflected a difficulty in across-Finally, we conducted a series of control experiments

to confirm that the poor performance in the across- hemifield integration, and not an attentional bias.
A second alternative explanation for the performancehemifield completion IC task indeed resulted from

greater difficulty performing completion across the verti- asymmetry is that it was related to the underlying shapes
used in the discrimination task, not to the completioncal meridian. Three alternative explanations for the per-
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Figure 3. Results of the Distal Misalignment Discrimination Task

Icons above each graph show the types of stimuli used. Observers had to determine the direction of relative displacement in pairs of nearly
colinear line segments. (Each stimulus contained two line pairs with identical displacements, so observers could base their judgments on
either pair.) When the line segments were vertical (left graph), each pair of lines was contained within a single hemifield. When the segments
were horizontal, the task required across-hemifield comparison (right graph). Graphs show the average performance of six observers (J.L.,
J.P., M.I., N.R., T.J., V.K.) on these two conditions. Thresholds were computed as the amount of displacement needed for 82% correct
discrimination (in degrees visual angle). Confidence intervals (�1 SD) are shown below each threshold estimate, and were computed using
bootstrap resampling of the data. The thresholds obtained (41’ and 41.7’) were not significantly different, indicating that the DM task shows
no deficit when information is integrated across the vertical meridian.

process. In other words, even when the shapes are fully task was not determined by a differential sensitivity to
the underlying shapes used for testing within- andbounded by luminance edges, the curvature of the top

and bottom edges may be more difficult to discriminate across-hemifield completion. We also addressed the
question of what happens for intermediate cases, wherethan the curvature of the sides. Figure 5 shows that this

is not the case. Observers discriminated equally well the proportion of the shape outlined by real versus illu-
sory contours takes on intermediate values. We ex-using the top/bottom contours as using the side con-

tours when the contours are defined by luminance plored this question by varying the size of the angular
inducers while leaving the size of the illusory surfaceedges. This means that performance in the completion

Figure 4. Results for Blocked-Trials Control Experiment

Separate experimental blocks were used for within-hemifield stimuli (left) and across-hemifield stimuli (right). Graphs show psychometric
functions for the averaged performance of five observers (VK, TY, TJ, JP, MI). Threshold values indicate that better performance on within-
hemifield IC stimuli persists (p � .001) when spatial attention is allocated to optimize performance for each type of stimuli. Numbers below
each threshold indicate confidence intervals of �1 SD, based on bootstrap resampling of the data. Individually, four of the five observers
showed better performance on within-hemifield than across-hemifield ICs, while one observer (MI) showed no difference in performance.
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Figure 5. Results for Real Contour Control
Experiments

(A) Averaged performance of six observers
(HG, JL, JP, MH, TY, VK) discriminating thin/
fat or tall/short shapes bounded by real con-
tours. Icons above bars show schematics of
the stimuli used (see Experimental Proce-
dures). The difference in performance be-
tween the two types of stimuli is not statisti-
cally significant.
(B) Averaged performance of four observers
(HG, JP, MH, VK) on within- and across-hemi-
field discrimination as a function of support
ratio (the fraction of the perimeter defined by
real contours). Consistent with the results in
(A), the difference in performance between
within- and across-hemifield stimuli vanishes
as the length of the “illusory” (i.e., completed)
part of the contour decreases. Error bars
show �1 SD based on bootstrap resampling
of the data.

fixed. Figure 5B shows that as the fraction of the perime- formance of a group of four observers. For these eccen-
tric stimuli, overall performance was worse than before,ter defined by illusory contours becomes smaller, the

difference in performance between within- and across- but there was no consistent difference in performance
for vertical versus horizontal IC stimuli. Thus, horizontalhemifield performance goes smoothly to zero. This is

consistent with our interpretation that performance ICs are not intrinsically more difficult to perceive than
vertical ICs, and the differences in discrimination perfor-asymmetry between these two conditions is a hallmark

of perceptual completion processing. mance on within- and across-hemifield ICs cannot be
attributed to their different orientations.A third possible explanation for the observed perfor-

mance asymmetry is that vertical ICs might be pro-
cessed better than horizontal ICs, independent of their Discussion
location in the visual field. (The within-hemifield ICs pre-
sented were vertical, while across-hemifield ICs were We assessed the quality of perceptual completion

across different portions of the visual field with an illu-horizontal.) To test this hypothesis, we conducted a
control experiment where the entire IC shape was con- sory contour (IC) shape discrimination task. We found

a marked deficiency in processing illusory contours thattained within a single quadrant, located so that the hori-
zontal and vertical IC edges were at an equal distance cross the vertical meridian (across-hemifield ICs), com-

pared to ICs of the same eccentricity confined to onefrom the fixation point. Figure 6 shows the average per-

Figure 6. Results for Peripheral IC Shape Control Experiment

Graphs show psychometric functions for the averaged data of four observers (VK, TJ, NR, JP). The icons (above each graph) show sample
stimuli, with IC figures peripheral to the fixation point and scaling of the inducers to compensate for cortical magnification. Threshold estimates
of 6.1� for vertical ICs and 6.5� for horizontal ICs are not statistically different, indicating that the performance asymmetry in the original
experiment did not result from a difference in processing horizontal versus vertical ICs.
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hemifield (within-hemifield ICs). This difference was
found only for perceptually completed contours, and
not for luminance-defined contours. Two other control
experiments showed that the superior performance on
within-hemifield ICs was not a result of attentional bias,
nor was it due to an inherent advantage for vertical over
horizontal ICs. We conclude that the difficulty integrat-
ing visual information across the vertical meridian was
a consequence of the interhemispheric divide in the
representation of the visual field. Furthermore, sensitiv-
ity to the interhemispheric divide was unique to percep-
tual completion. This was demonstrated using a task

Figure 7. Two Types of Models to Implement IC Completion in the
which did not involve perceptual completion, the distal Brain
misalignment (DM) task. Like the IC task, the DM task (A) The receptive field approach: ICs are detected by a single unit
required integration of visual information from widely sensitive to the presence of the inducing elements of a particular
separated locations in the image, and yet it showed no contour in visual space.

(B) The cascade approach: ICs are generated via a cascade ofdifference in performance between within-hemifield and
activity passed between neighboring, small receptive-field units.across-hemifield conditions.
(C) Cascade models can provide flexibility and precision in repre-The differential sensitivity to the interhemispheric di-
senting ICs of many possible shapes, sizes, and orientations.vide of the IC and DM tasks suggests that these tasks

involve different cortical mechanisms. This is consistent
with the fact that the tasks also differ greatly in ecologi- same level of performance, supporting the notion that
cal relevance. Perceptual completion is an important it is performed with greater efficiency.
component of visual segmentation. The ability to link To see how our findings may shed light on the cortical
together image fragments which belong to the same mechanisms underlying perceptual completion, we first
surface is of central importance in vision, given the fre- make a distinction between two possible models of link-
quent occurrence of occlusion in real-world scenes. It is ing. One option is that each IC is detected by a single
therefore reasonable to expect that the brain developed unit which responds whenever two (or more) line seg-
expert mechanisms to perform perceptual completion ments that induce this IC fall within the unit’s receptive
accurately and efficiently. (That perceptual completion field (Grossberg, 1997; Heitger et al., 1992). This is sche-
is poorer across the interhemispheric divide does not matized in Figure 7A. Since the brain is able to link
refute the existence of such mechanisms, but rather widely separated contour fragments, many of these hy-
illustrates their limited flexibility—a common character- pothetical units would need to pool information from
istic of highly specialized brain processes; cf. Ellis and large portions of the visual field. The natural cortical loci
Young, 1988; Fodor, 1983). to posit for such units would therefore be higher level

In contrast, the DM task has little ecological relevance.
visual areas such as LOC or IT, where cells have large

Two misaligned contour segments are not likely to be-
spatial receptive fields. We term this the “receptive field”

long to the same surface, and therefore there is no rea-
approach.

son to link them. Generally, contour segments will tend
An alternative model for linking involves populationsto be linked if they are “relatable”—roughly speaking, if

of small receptive-field units that tile the entire visualthey can be connected with a smooth contour without
space and can interact laterally, in analogy to the archi-inflection points. (Kellman and Shipley, 1991. Relatable
tecture of early visual cortex (V1/V2). In such a network,contours fragments may lead to some perceptual com-
long-range linking may be achieved by propagating in-pletion even when they do not depict occlusion; cf. Mur-
formation across chains of neighboring units. This “cas-ray et al., 2001.) The inducing edges of the ICs are indeed
cade” approach, schematized in Figure 7B, has beenrelatable, while the misaligned segments in the DM task
used in several models of segmentation (Field et al.,are not. In the absence of perceptual linking, it is likely
1993; Geiger et al., 1998; Sha’ashua and Ullman, 1988;that observers had to resort to ad hoc strategies to
Ullman, 1976; Williams and Jacobs, 1997; Yen and Fin-judge the direction of misalignment of the two widely
kel, 1998).separated line segments. Inspection of the level of per-

We propose that our results are more consistent withformance in the two tasks supports this conjecture.
IC completion relying on cascade-like mechanisms inWhile it is not straightforward to compare the perfor-
early cortex than on receptive-field IC detectors inmance in the IC and DM tasks due to the different stimu-
higher cortex. Within each hemisphere, information canlus manipulation in each, some rough comparisons can
be propagated through the dense network of lateralbe made. To achieve threshold performance (82% cor-
connections known to exist in early cortex (Gilbert etrect) in the DM task, the contour segments had to be
al., 1996; Gilbert and Wiesel, 1985). Propagation of infor-displaced by 41 arcmin visual angle (on average). In the
mation between the two hemispheres, on the otherwithin-hemifield condition in the IC task, the angular
hand, would need to make use of callosal connections.opening of the luminance-defined inducers had to be
The callosal connections in early cortex are limited toset at 2.7� to achieve threshold performance. This corre-
connections between cells with receptive fields near thesponds to a displacement of only 5.1 arcmin of visual
vertical meridian (Clarke and Miklossy, 1990; Innocenti,angle of the corner of the luminance-defined edge. Thus,
1986; Kennedy et al., 1986; Newsome and Allman, 1980).the within-hemifield IC task required a significantly

smaller physical change in the stimulus to achieve the Those connections could be used to link cascade pro-
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cesses across the two hemispheres, but it is likely that ing process should be able to complete smooth con-
this would cause cross-hemispheric integration to be tours of a very large number of different lengths and
less efficient than within-hemisphere integration. There curvatures. The abundance of small receptive field V1/
is evidence that callosal transfer can indeed slow propa- V2 cells sensitive to different locations and orientations
gation of information in early cortex. In a recent study, offers a natural substrate within which to implement this
Wilson et al. (2001) measured the rate at which waves requirement via a cascade mechanism. This is illustrated
of monocular stimulus dominance swept across cortex in Figure 7C for three sample curves. In contrast, with
during binocular rivalry. They found that propagation the receptive-field approach, one would have to posit
rates were constant throughout cortex, except when the that the brain prewired units to detect and represent
wave crossed the vertical meridian. They concluded that each of the completed contours in Figure 7C—and, by
propagation through the corpus callosum entailed a extension, all other possible contours. This would lead
“time penalty” averaging 173 ms, presumably reflecting to a “combinatorial explosion” in the number of high-
callosal transit as well as some time to “rekindle a [ri- level units required (Mumford, 1994). Another advantage
valry] wave in the opposite hemisphere.” Given the brief of implementing completion in early cortex is that those
presentation of our stimulus (97 ms), it is therefore con- areas have immediate access to high spatial resolution
sistent that cascade mechanisms implemented in early information about the image, and details at those resolu-
cortex should fail to complete the across-hemifield ICs. tions can often determine whether illusory or occluded
(Interestingly, Wilson et al. also found that propagation contours are perceived (Gillam, 1987; Lee et al., 1998;
speed doubled when waves traveled along continuous Minguzzi, 1987; Rubin, 2001). Similarly, binocular dispar-
contours, which is also consistent with an implementa- ity information, in particular the presence of unpaired
tion of linking mechanisms in early cortex. See also Field points in the image, can provide important occlusion
et al., 1993.) cues (Anderson, 1994; Nakayama and Shimojo, 1990),

In contrast, the deficit we observed in across-hemi- and therefore it would be advantageous to perform seg-
field completion is not naturally explained by receptive- mentation computations in areas where eye-of-origin
field type mechanisms for IC completion implemented information is readily available. Given those advantages,
in higher cortex. Although high-level visual areas, such the difficulty in integrating cross-hemifield stimuli may
as IT in the monkey and LOC in the human, also rely on be a reasonable cost. (Note, moreover, that the deficit
the corpus callosum to integrate information from the in perceiving across-hemifield ICs is limited to briefly
two hemispheres, it is likely that the efficiency of callosal presented stimuli, and does not extend to steadily
transfer in those areas is high. Interhemispheric integra- viewed IC figures; the reader can see this by fixating
tion is crucial for high-level visual cortex, which special- the center of one of the IC surfaces in Figure 1B.)
izes in tasks such as object recognition. Since visual Finally, while we interpret our results as evidence that
information about objects often spans both hemifields, early visual cortex (V1, V2, or both) plays a functional
inefficient interhemispheric integration would lead to no- role in contour completion, we do not propose that com-
ticeable costs in performance. Such performance costs pletion relies exclusively on computations in early cor-
are not observed behaviorally: observers are able to tex. Feedback from higher visual cortical areas may be
recognize objects that span the vertical meridian even quite important for completion—for example, in direct-
when they are presented as briefly as 100 ms (Biederman ing early cortex to launch cascade processes in only
et al., 1974; Potter, 1975). Physiologically, the dense restricted parts of the image in cluttered scenes. This
callosal connections reaching all parts of high-level vi- may explain the observations of fMRI activation of area
sual cortex (Gross et al., 1977; Innocenti, 1986) offer a LOC in response to illusory contour stimuli (Mendola et
natural substrate to implement this efficient integration. al., 1999), as well as more recent VEP findings of LOC
Estimates from visual evoked potential (VEP) studies activation in response to IC stimuli (Murray et al., 2002).
in humans put the temporal delay for interhemispheric

Behavioral studies showing the effects of attention and
transfer in area LOC at only 15–20 ms (Saron et al., 2002;

learning on perceptual completion also point to the
see also Ringo et al., 1994 for a slightly higher estimate

involvement of higher level areas (Peterson, 1994; Rock,of 25 ms in IT). If the linking of contour fragments neces-
1987; Rubin et al., 1997; Wallach and Slaughter, 1988).sary for perceptual completion were performed by cells
There are also indications that within early cortex itself,in high-level visual areas, it would therefore be hard to
V1 may be receiving feedback from V2 in processing ICsexplain the poor performance on across-hemifield ICs.
(Lee and Nguyen, 2001). Taken together, the evidenceOf course, these arguments cannot rule out the possibil-
suggests that perceptual completion, a central compo-ity that linking is nevertheless achieved by high-level
nent in scene segmentation, involves a large, multilevelcells, and that the deficit we observed arises for other
network comprising both early and high-level visualreasons—e.g., because the brain simply devotes fewer
cortex.such units for detecting across-hemifield ICs. But, in

the absence of any obvious a priori reason for such a
strategy (completion across the vertical meridian is as Experimental Procedures
ecologically relevant as within a hemifield), such an ac-

Stimuli were generated on a Silicon Graphics computer and pre-count seems less plausible.
sented at a refresh rate of 72 Hz. Viewing distance was 60 cm andImplementing perceptual completion in early cortex
stimuli had a Weber contrast of 57%. Stimuli were presented for 97

might seem like a doubtful strategy if it leads to problems ms, followed by a blank screen for 69 ms, and then a mask for
in across-hemifield linking. There are nevertheless sev- 250 ms (see Figure 1C). Prior to participating in the experiments,
eral reasons why it might be advantageous to achieve observers were tested to establish that they could perform shape

discrimination based on such briefly presented ICs at an adequatecontour completion in early visual cortex. A reliable link-
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level. Eleven out of fifteen observers were asked to participate in located 10.8� from the fixation point on average, but the entire stimu-
lus was shifted randomly on each trial (orthogonal to the line orienta-the experiments reported here based on this screening procedure.

In all experiments, there was a fixation point at the center of the tion) uniformly over the range �3�. This random shifting ensured
that the position of line segments relative to the fixation point couldscreen and observers were instructed to look at it at all times.

Observers indicated their responses by pressing buttons on a com- not be used as a cue. The gap between a pair of DM line segments
was 9.8�. The independent variable in these experiments was theputer mouse.

The IC inducers had a radius of 1.8� visual angle. They were distance one member of a DM line pair was shifted relative to the
other. Stimuli were presented in mixed blocks (within- and across-presented 10.5� away from the fixation point (distance from fixation

to inducers’ centers), at the four corners of a square. This gave rise hemifield stimuli randomly interleaved) and uniform blocks (one kind
of stimulus for an entire block). Mixed and uniform blocks gave riseto ICs that subtended 11.1� visual angle. The support ratio, defined

as the fraction of the IC square’s perimeter bounded by luminance to similar results. Data presented here were averaged over both
kinds of blocks. The method of constant stimuli was used, with shiftedges, was 0.25 (except where noted, see below). Pilot experiments

showed that this support ratio gave rise to nonsaturating perfor- values of 6.6, 7, 26.5, and 40 arcmin of visual angle. Each observer
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