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allowed investigators to link specific behaviors 
to identified neurons in a causal fashion10–13. 
Botta et al.1 take this many steps further and 
now show a receptor subunit modifying the 
activity of a specific subset of neurons that 
encodes specific information that promotes 
anxiogenic behavior.

Like most ground-breaking discoveries, 
these observations also raise intriguing ques-
tions. For example, what is the mechanism 
through which this system translates the pair-
ing between CS and unconditioned stimulus 
into a decrease in the tonic current? Is it a 
result of specific patterns of activity in afferent 
inhibitory neurons? Is there a change in glial 
uptake of GABA that causes a desensitization 
of extrasynaptic GABAA receptors? Is a spe-
cific neuromodulator involved? Along these 
lines, a recent report has shown that gluco-
corticoids are necessary for the decrease in 
Itonic in amygdala neurons following chronic 
stress14. In addition, the opposing changes in 
Itonic described in PKCδ– neurons are intrigu-
ing. Previous work from this group and other 
has shown that PKCδ+ neurons in the lateral 

region of the central nucleus of the amygdala 
(CEA) also receive local inhibitory inputs from 
PKCδ– neurons2,3, so the concerted effects of 
these reciprocal changes on the output of this 
microcircuit remain unresolved.

Finally, others have reported that these same 
neurons, when optogenetically activated, inhibit 
feeding and are anxiolytic, not anxiogenic15. 
How does one reconcile these opposing obser-
vations? One possibility is that PKCδ+ neurons 
do not comprise a homogeneous population 
with respect to output targets. Another is that 
the mode of photoactivation is important. Botta 
et al.1 used a constant pulse of blue light for 30 s,  
whereas light was delivered at 5 Hz in ref. 15. 
The latter could induce synchronization of a 
population of PKCδ+ neurons, but, according 
to Botta et al.1, pulsed light stimulation is less 
effective at increasing firing rate. The reasons 
for this are unclear and suggest that there are 
many more issues to resolve.

The implications of understanding the 
mechanistic underpinnings of fear generaliza-
tion are obvious for conditions such as post-
traumatic stress disorder, but these findings  

highlight a distinct role for tonic GABA cur-
rents and may also provide important clues 
about how differences in receptor subunits 
may predispose some individuals to be more or 
less sensitive to becoming anxious. In addition, 
the approach used here provides a template 
for other investigators to causally link specific 
receptors and proteins in defined cell popula-
tions in the brain to defined behaviors.
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explaining the especially pink elephant
Jonathan W Pillow

A new study shows that an efficient allocation of sensory resources can lead to Bayesian estimates that are biased 
away from the prior, accounting for effects such as the bias toward oblique angles in orientation perception.

Two hallmark ideas of theoretical neuro-
science are efficient coding and Bayesian per-
ception. The first of these ideas says roughly 
that sensory systems should allocate their 
resources to maximize information about 
the environment: do not waste space build-
ing detectors for pink elephants, blue mice 
or other fanciful beings that are unlikely to 
turn up very often in real life. The second idea 
says (also very sensibly) that when asked to 
make perceptual judgments we should com-
bine information from our senses with prior 
beliefs about the world: in conditions of good 
visibility we should trust our eyes, but when  
visibility is poor and our eyes report some-
thing unexpected—for example, a pink 
elephant in the room—we should rely more 
heavily on top-down, ‘prior’ information. 
Although these ideas have had major roles 

in explaining properties of sensory neural 
responses and perceptual behavior, they have 
not previously been considered in a single 
framework. A study by Wei and Stocker1 in 
this issue of Nature Neuroscience bridges this 
gap. The authors show that, remarkably, an 
observer governed by both principles may 
report seeing an especially pink elephant 
when shown only a slightly rosy one.

The study refers to such percepts as ‘anti-
Bayesian’ because they involve the percept of 
something that is less probable under the prior 
(which holds that pink elephants are unlikely) 
than the thing actually presented. This result is 
surprising and seems highly counterintuitive. 
The authors show not only that it holds math-
ematically, but that it can account for a variety 
of published effects involving the perception of 
orientation and spatial frequency1.

The starting point for this work is Attneave’s 
and Barlow’s ‘efficient coding’ or ‘redundancy 
reduction’ hypothesis2,3. This idea, which 
has guided neuroscience over the past five 
decades, seeks to understand the design 
principles governing sensory neurons using 

information theory. The basic theory states 
that neural responses should convey maxi-
mal information about the environment. 
Formally, the neural encoding distribution  
p(r | θ), which describes how a stimulus θ is 
transformed into a noisy neural response r,  
should be set up to maximize the mutual 
information between θ and r. Of course, this 
depends on p(θ), the prior distribution over 
stimuli in the natural environment.

Recent work has sought to attack this prob-
lem using Fisher information, a quantity that 
can be used to approximate mutual informa-
tion and can be calculated from neural tun-
ing curves. A powerful recent result is that an 
efficient code (that is, one conveying maximal 
information) can be obtained by setting Fisher 
information J(θ) proportional to p2(θ), the 
square of the prior distribution4,5. In essence, 
the allocation of neural resources (as defined 
by Fisher information) should be even more 
concentrated than the prior. To illustrate the 
idea, a bell-shaped prior distribution (Fig. 1a) 
defines an optimal Fisher information curve 
for a neural population, which can be achieved 
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by Poisson neurons with appropriately scaled 
tuning curves (Fig. 1b). For this population, 
the most probable stimuli (those near θ = 0) 
will elicit many spikes, whereas those in the 
tails will elicit few spikes, in accordance with 
our intuition that an efficient code should allo-
cate few sensory resources to pink elephants.

The second fundamental component of the 
work by Wei and Stocker1 is the theory of per-
ception as Bayesian inference. The core idea 
that perceptual inference depends on a com-
bination of ‘bottom-up’ sensory information 
and ‘top-down’ prior information dates back 
at least to Helmholtz, and Bayesian theories 
have a rich and successful recent history in 
perceptual psychology and neuroscience6–10. 
Formally, the theory asserts that a percept 
depends entirely on a posterior distribution  
p (θ | r), which (according to the beloved for-
mula known as Bayes’ rule) is proportional to  
p (r | θ) × p(θ), the likelihood times the prior. 
The likelihood 

 
p (r | θ) captures bottom-up 

sensory information that an observed neu-
ral response r carries about the (unknown) 
stimulus θ, whereas the prior p(θ) represents 
top-down beliefs about θ. The posterior sum-
marizes the observer’s final state of knowledge 
after combining the sensory measurements r 
with information from the prior. In Bayesian 
analyses, the posterior is always biased toward 
the prior relative to the likelihood (Fig. 1c).

Conceptually, the theories of efficient cod-
ing and Bayesian perception fit together nat-
urally. They make complementary demands 
on a neural population: efficient coding wants 
the encoding function p (r | θ) to maximize 
information about stimuli drawn from p(θ), 
whereas Bayesian perception wants decod-
ing to rely on the posterior, formed by the 
product of p (r | θ) and p(θ). How then can an 
efficient Bayesian code yield percepts that are  

systematically biased away from the prior? In 
other words, why does the natural synthesis 
have such bizarre consequences?

An intuitive explanation for the existence of 
anti-Bayesian percepts is that—in an efficient 
code—sensory responses provide relatively 
little information about the low-prior- 
probability regions of stimulus space. In 
essence, the likelihood p (r | θ) typically can-
not rule out values of θ for which p(θ) is low 
as easily as it can rule out values of θ for which 
p(θ) is high, simply because there are not many 
neural resources devoted to regions where p(θ) 
is low. This skew in the likelihood (it falls off 
more steeply on one side than the other) is 
inherited by the posterior, and the mean of the 
posterior, which Wei and Stocker1 propose as 
the basis for observers’ perceptual judgments, 
is therefore biased away from high-prior- 
probability regions of stimulus space (Fig. 1c).

Wei and Stocker1 formalize this intuition 
and show that the phenomenon holds (under 
certain regularity conditions) for other neu-
ral populations with the requisite allocation 
of Fisher information, regardless of what tun-
ing curve shapes are used to achieve it. More 
importantly, they show that the phenomenon 
arises in human observers’ judgments of ori-
entation and spatial frequency. Observers 
presented with an orientated stimulus offset 
from a cardinal orientation (0° or 90°) perceive 
it as closer to the oblique orientation (45° or 
135°) (ref. 11)—that is, away from the natural 
prior distribution over orientations. Similarly, 
observers systematically misperceive a Gabor 
grating patch as biased toward higher spatial 
frequencies, away from the 1/f distribution of 
natural images that favors low frequencies12. 
These phenomena, which seem to contradict 
the fundamental principle that Bayesian esti-
mates are biased toward the prior, are perfectly 

consistent with the Bayesian model put forth 
by Wei and Stocker1—a remarkable finding.

Of course, the old rules and intuitions around 
Bayes have not all been suspended. In the pro-
posed framework, the posterior still lives in 
between prior and likelihood, and the Bayesian 
estimate is still more biased toward the prior 
than the mean of the (normalized) likelihood. 
The key culprit is the likelihood, which can 
behave in unexpected ways when uncertainty is 
distributed unequally13. Here efficient popula-
tion codes have the surprising property that the 
likelihood tends to skew away from the prior, a 
property that the posterior simply inherits.

Wei and Stocker’s1 work represents the most 
promising attempt to date to reconcile Bayesian 
perceptual inference with the existence of anti-
Bayesian psychophysical biases, but it neverthe-
less has several possible limitations. For one, it 
relies on loss functions for encoding and decod-
ing that are slightly mismatched. The assumed 
encoder maximizes mutual information, whereas 
the assumed decoder minimizes mean-squared 
error; if these choices are made consistent,  
anti-Bayesian effects may not arise. For another, 
Fisher information provides only an asymp-
totic approximation to mutual information, 
and the optimal code for high noise levels may 
differ14,15. Nevertheless, Wei and Stocker’s study1 
represents a new and important conceptual 
advance that illuminates the unexpected power 
of Bayesian models to explain seemingly non-
Bayesian perceptual phenomena. It provides 
an elegant unification of efficient coding and 
Bayesian inference, and offers a new explanation  
for the tradeoffs between attraction and repul-
sion from the prior that will stimulate new direc-
tions of experimental and theoretical research.
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Figure 1  Efficient neural coding and Bayesian inference. (a) Example stimulus prior distribution p(θ). 
(b) The optimal encoding should have Fisher information J(θ) proportional to the prior squared (blue 
trace), which can be achieved with a population of Poisson neurons with Gaussian-shaped tuning 
curves (gray traces). (c) A stimulus θtrue = 1.4 elicits a single spike from the neuron with tuning curve 
centered at θi = 1.4 (thick gray trace in b). The resulting likelihood (dashed line) is shifted rightwards 
from θtrue as a result of a term involving the negative sum of the tuning curves. The posterior 
distribution (pink) over θ given the response, given by the normalized product of prior and likelihood, 
is slightly left of the likelihood but still biased rightwards relative to θtrue. Wei and Stocker1 show that 
this bias is a generic feature of codes with Fisher information concentrated as in b. Vertical scales  
in a and c are different; tickmarks reflect the same intervals. 
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