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Abstract

Editorial introduction to a special issue of Current Opinion in Neurobiology on “Machine
learning, big data, and neuroscience”.

The articles in this issue explore the growing use and uses of machine-learning methods in neuroscience.
The field of machine learning is a relatively recent one, developing in the 1980s through a convergence of
earlier ideas in computer science, statistics, and connectionist psychology. At its heart, machine learning
seeks to construct and to characterise algorithms that adapt to their input. Machine-learning algorithms
may perform different sorts of task—they may make predictions, infer underlying structure or causes in
input, or select actions to achieve a defined goal. But in all cases, the explicit rules of prediction, inference
or action are not programmed by the designer. Instead, the algorithm is designed to discover these rules
from training examples, by trial and error, or by uncovering statistically reliable structure in the inputs
alone.

In the past decade or so clever new learning algorithms, combined with the availability of large training
data sets and the relentless advance of computing horsepower, have brought machine learning to the forefront
of many applications; from functional stereochemistry to image recognition and processing, to playing the
game of Go. Indeed, machine learning methods have fueled a renaissance in artificial intelligence, which now
promises to bring to fruition many long-standing technological aspirations.

It should be no surprise that the connections between neuroscience and machine learning run deep.
Early connectionism—from Rosenblatt’s (1958) perceptron onwards—was itself inspired by the distributed
nature of neural systems; and a sense that many parts of the brain (particularly circuits in the neocortex
and the cerebellum) were essentially tabulae rasae, to be shaped primarily by interactions with the sensory
environment. The architectures explored by connectionism led directly to the distributed “neural network”
function approximators used extensively in machine learning; including the deep convolutional structures
which have revolutionised image processing (Fukushima, 1980).

Thus neuroscience has provided architectural metaphors that have proven important in parts of machine
learning. Conversely, machine learning has provided functional metaphors, which can guide hypotheses
about and explorations of neural function. Perhaps the most remarkable convergence of this sort has been
between the subfield of reinforcement learning (RL), which studies learning in agents whose actions shape
their future environment as well as their success, and the neuroscience of the basal ganglia. Most famously,
Schultz et al. (1997) suggested that the phasic activity of subcortical dopaminergic neurons corresponded
to a reward prediction error signal of exactly the sort required in the fundamental RL algorithm known
as temporal-difference learning (Sutton, 1988). Convergence between the results of RL and descriptions of
both neural activity and animal behaviour have grown to encompass a wide range of functions. Schulz and
Gershman (2019) and Cortese et al. (2019) explore some contemporary themes in this collection. Perhaps
most remarkable is that, beyond normal function, RL has also begun to provide insight into the possible
computational basis of many psychiatric diseases (Montague et al., 2012), a theme that is explored further
by Radulescu and Niv (2019).

A functional metaphor from machine learning that comes close second to RL in its influence within
neuroscience, is that of “representational learning”: broadly, the algorithmic adaptation of a distributed
encoding of sensory input. In one approach, aligned with unsupervised machine learning, this adaptation is
driven by statistical regularity within natural inputs — exemplified by the influential results of Olshausen
and Field (1996). Recent studies have elaborated extensively on the basic model of natural stimuli, with
Sanchez-Giraldo et al. (2019) discussing one such extension here. A significant recent line of work has also
investigated the potential for artificial networks trained using supervision on naturalistic tasks such as object
classification to yield representations of neural relevance; and this approach is explored by both Kell and
McDermott (2019) and Barrett et al. (2019) in this issue. Beyond such correspondence with early neural
representations, an exciting contemporary frontier is opened by the potential for machine learning to provide
a functional metaphor within which to understand higher-level cognitive representation—a theme explored
by Spicer and Sanborn (2019) and Yildirim et al. (2019) here.

Correspondences in representation are drawn between the outcomes of machine learning algorithsm and
the pattern of neural responses observed in experiments. Such correspondences raise a natural question:
might it be that the algorithmic processes that arrive at such representations in machine settings are also
reflected within learning in the brain? This remains a contentious issue. Perhaps the most suggestive
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correspondence to the algorithms of supervised learning is the match between single-layer perceptron learning
and the Marr-Albus-Ito theory of learning in the cerebellum (Albus, 1989). However correspondence in
deeper networks, or in recurrent network structures has been difficult to establish. This issue is explored
here by Lillicrap and Santoro (2019).

These forms of convergence with machine learning at the algorithmic and possibly architectural levels are
unique to neuroscience—a field that studies biological systems that adapt to information-rich environments
and complex goals exactly as machine-learning systems aspire to do. But neuroscience also benefits, in the
same way as other fields, from the remarkable power of machine learning methods to process, condense and
find patterns within data. The volume and complexity of neuroscience data have burgeoned in a technological
revolution that has paralleled that in machine learning, and neither manual inspection, nor simple statistical
methods provide the scale or power needed to analyse modern data from connectomic imaging to dense
kiloscale eletrophysiology.

The first challenge in the analysis of neural data is to take raw data (e.g. electron-micrographs, optical
or electrical measurements) and extract meaningful anatomical or functional signals at the level of neurons
or their connections. Machine learning methods play a crucial role in such ‘signal-path’ processing. Several
articles in this volume cover recent advances in methods for processing different kinds of data, ranging from
methods for connectomics and anatomy at the cellular and sub-cellular level (Lee et al., 2019; Rolnick and
Dyer, 2019; Motta et al., 2019; Vogelstein et al., 2019) to methods for inferring functional connectivity at
the whole-brain level (Foti and Fox, 2019). Methods for extracting neural activity from raw signals are
addressed for calcium fluorescence measurements (Pnevmatikakis, 2019; Stringer and Pachitariu, 2019), as
well as for electrical signals, a problem setting known as spike sorting (Carlson and Carin, 2019).

Image segmentation, spike isolation and similar signal processing algorithms convert raw data in pixels
and samples into measurements of neurally meaningful quantities such as neuronal activation or connectivity.
But even these variables form rich and varied datasets spanning many neurons with complex relationships.
To work out what they say about neural function is likely to require tools of much greater sophistication
than averaging or similar aggregation. Here too, then, machine learning methods have a key role to play.
Two articles in the current volume focus on the analysis and interpretation of neural population responses:
Saxena and Cunningham (2019) articulate a ‘neuron population doctrine’, arguing that neural populations
should be considered a fundamental unit of computation in the brain, while Williamson et al. (2019) focus
on methods for connecting large-scale theoretical models with large-scale recordings of neural activity via
dimensionality reduction. A second pair of articles focus on the use of encoding and decoding models for
interpreting neural datasets (Kriegeskorte and Douglas, 2019), and on the power of such models for moving
beyond the limits of specific paradigms and tasks (Varoquaux and Poldrack, 2019).

Finally, machine learning holds enormous promise for the production of medical knowledge and new
methodologies for the treatment of brain disfunction and disorder. In this volume, Rao (2019) exlores the
potential of modern machine learning to transform brain–computer interfaces from one-way devices that use
brain signals to control external prostheses into two-way ‘co-processors’ that also allow external signals to
affect brain states. Cornblath et al. (2019) and Rutledge et al. (2019) focus on applications in the domain of
neuropsychiatry, in particular on methods for harnessing large-scale datasets for the design of new models
and new therapies for neuropsychiatric illness.

Both neuroscience and machine learning are rapidly developing fields. The points of convergence discussed
in this volume provide a snapshot of what has been and will undoubtedly continue to be a rich and meaningful
interaction between the two disciplines.
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