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Abstract

We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more
extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify
spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify
synchronous or near-synchronous spikes: cases in which multiple spikes overlap. Here we investigate the geometry of
failures in traditional sorting algorithms, and document the prevalence of such errors in multi-electrode recordings from
primate retina. We then develop a method for multi-neuron spike sorting using a model that explicitly accounts for the
superposition of spike waveforms. We model the recorded voltage traces as a linear combination of spike waveforms plus a
stochastic background component of correlated Gaussian noise. Combining this measurement model with a Bernoulli prior
over binary spike trains yields a posterior distribution for spikes given the recorded data. We introduce a greedy algorithm
to maximize this posterior that we call ‘‘binary pursuit’’. The algorithm allows modest variability in spike waveforms and
recovers spike times with higher precision than the voltage sampling rate. This method substantially corrects cross-
correlation artifacts that arise with conventional methods, and substantially outperforms clustering methods on both real
and simulated data. Finally, we develop diagnostic tools that can be used to assess errors in spike sorting in the absence of
ground truth.
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Introduction

Action potentials, often referred to as ‘‘spikes’’, are the

fundamental unit of communication in much of the nervous

system. The problem of estimating the timing and identity of

spikes from extracellular analog voltage recordings, generally

known as spike sorting, was originally studied for recordings of single

neurons on single electrodes. However, many newly developed

multi-electrode recording techniques aim to examine the simul-

taneous activity of populations of neurons in a neural circuit [1–6].

With a few notable exceptions, spike-sorting methodologies have

not kept up.

Most spike-sorting techniques rely on the observation that

individual neurons produce stereotyped spike waveforms. The

earliest methods, developed for single neurons recorded on single

electrodes, rely on the basic strategy of matched filtering: the

electrode waveform is compared against a temporally sliding

template and a spike is identified whenever the two are found to

match within some tolerance. This methodology predates the era

of digital computers, when the matching was done using hand-

adjusted threshold triggers on an oscilloscope [7]. A form of this

technique is still widely used in single-cell electrophysiology, where

the electrode position is adjusted to maximize the waveform

amplitude of one cell. In general, matched filtering is known to be

optimal for detecting isolated waveforms of known shape and

amplitude in a background of white noise [8]. However, this

optimality degrades quickly when waveforms of more than one

spike overlap, as is common in extracellular recordings. In fact,

much of the ‘‘background’’ noise in neural recordings is likely due

to spikes of other cells [9]; if those spikes are large enough, any

methodology based on template matching is likely to fail [10,11].

Moreover, because it typically requires hand-adjustment of

thresholding parameters, matched filtering is not practical for

sorting multi-electrode data from large electrode arrays.

Modern methods have extended the matched filtering strategy

to identify spikes from multiple cells, measured with multiple

electrodes, by first selecting short segments of the recorded

waveforms during which the voltage exceeds some threshold, and

then identifying individual neurons and their spikes by identifying

clusters within the space spanned by these segments [12,13]. A
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variety of different clustering methodologies have been explored as

well as new methods for selecting appropriate waveform features

(e.g., [14–19]). But clustering methods, just like the matched

filtering methods that preceded them, exhibit failures when spikes

from two or more cells are superimposed [4,20–22]. Despite these

drawbacks, clustering methods are the current de facto standard;

they are distributed in analysis software by manufacturers of multi-

electrodes [23] and are considered adequate for most experiments

in which a relatively small number of neurons are recorded or

analyses in which a small fraction of errors are acceptable.

We suggest that the errors that occur when spikes are

superimposed are more severe than is commonly assumed. First,

these errors are not random, but highly systematic, and can

complicate conclusions regarding the occurrence of near-synchro-

nous spikes, and their role in network activity. Accumulating

evidence suggests that correlated or synchronized firing amongst

cells within a network is likely to be far more prevalent than

previously believed. For example, recent analysis of retinal

ganglion cells show that synchronous spikes constitute up to

60% of all spiking activity and can occur in events constituting a

large fraction of the neurons recorded [2,24]. Second, as recording

technology advances, increases in both the number of electrodes

and the recording fidelity of electrodes lead to ever more frequent

occurrences of spike superposition. Thus, spike sorting solutions

that directly address the superposition problem are clearly needed.

Several recent papers have addressed the problem of spike

sorting while explicitly addressing the problem of overlapping

spikes [4,25–28]. (See Discussion for a more detailed comparison).

Here we make several new contributions to the study of this

problem. First, we carefully examine the failure of clustering

methodologies in cases where spikes from multiple neurons

overlap. We examine how these failures lead to systematic artifacts

which can be used to diagnose any spike-sorting algorithm in the

absence of ground-truth. Second, we propose a framework for

spike sorting based on a simple generative model of extracellularly

recorded data. This model formalizes a set of prior beliefs and

assumptions about neural spike trains and waveforms and how

these signals combine to generate a noisy voltage waveform. In

particular, this model specifies that overlapping spikes from nearby

neurons superimpose linearly in the recorded voltage signal. We

introduce a greedy algorithm – ‘‘binary pursuit’’ – for obtaining

the approximate maximum a posteriori (MAP) estimate of the spike

trains given the voltage data under this model. We demonstrate

that in comparison to clustering methods, binary pursuit can

reduce both the number of missed spikes and the rate of false

positives. Finally, we develop a new method for assessing the spike

sorting error rate in the absence of ground truth, and we use this to

demonstrate the quality of our results on real data.

Results

Failures of Clustering Methods
We begin by examining the geometry of extracellular spike

recordings in order to provide an intuitive illustration of the

limitations of clustering methods, and to motivate our proposed

methodology. Clustering methods for spike sorting follow several

generic steps. First, putative spike times and their associated

waveforms are isolated from an analog voltage trace. Then, the

voltage traces in the vicinity of these spike times are grouped into

clusters. The centroid of each cluster is identified as the spike

waveform of a neuron, and all traces that fall within a cluster are

then labelled as spikes of the corresponding neuron (see Methods).

Although the details vary, these steps constitute the primary

elements of most spike sorting algorithms described in the

literature [13,16,21] as well as most commercially available spike

sorting systems [23].

Clustering methods are generally successful when each neuron’s

spike waveform is sufficiently distinct from background noise and

from those of other neurons, or when spikes occur primarily in

isolation. However, these methods generally fail when spike

waveforms from multiple neurons are superimposed [4,10,11,30].

Specifically, if two neurons fire synchronously, the resulting

voltage trace will resemble the sum of the individual waveforms

[31]. The sum of the two spike waveforms forms a pattern that is

distinct from the waveforms considered separately, and clustering

methods will either assign the composite spike waveform to a

distinct cluster–thus ‘‘hallucinating’’ a fictitious neuron–or discard

the observation as an outlier that does not match any neuron.

Figure 1 demonstrates the systematic failure to identify the near-

synchronous spikes of two neurons recorded in primate retina

[29,32]. Figure 1A–B shows the superposition of synchronous

spike waveforms, which a clustering method fails to identify. The

problem is not limited to synchronous spikes, as shown in Fig. 1

C–D: any spikes whose waveforms exhibit non-zero dot product

can give rise to an unrecognizable composite waveforms when

superimposed. The feature-space trajectory of overlapping spikes

can trace out regions of feature space distinct from the waveforms

of each constituent neuron. These points will also typically be

discarded as outliers by traditional clustering methods.

The failure to correctly identify near-synchronous spikes in a

pair of neurons leads to an artifact that can be observed directly.

Figure 2 A shows the cross-correlation function (CCF) between

recovered spike trains of an adjacent pair of ON parasol retinal

ganglion cells (RGCs), which are known to exhibit some synchrony

in their spiking. The cross-correlation function provides an

estimate of the instantaneous spike rate of the second cell relative

to the time of a spike in the first cell. The plot in Figure 2 A shows

an increase in rate over the interval jtjv5 ms, which is typical for

the timescale of synchrony in these cells [33–35]. But one can also

see a pronounced CCF notch in the interval jtjv1 ms, which

corresponds to the most highly synchronized spikes. This notch

has been observed in extracellular but not intracellular recordings

[34,36], and its duration is matched to the interval over which the

clustering failures identified in Figure 1 occur. These two facts

suggest that the notch is an artifact that corresponds to spikes that

the clustering method has failed to identify.

This sharp notch in the cross-correlogram is quite common.

Figure 2 B shows a grayscale image whose rows are cross-

correlograms between pairs of simultaneously recorded adjacent

RGCs. The vertical black streak at t~0 corresponds to the notch,

and is seen to occur for many neuron pairs. Amongst synchronous

cells, we can further demonstrate that the strength of the notch

artifact is related to the geometry illustrated in Fig. 1. Intuitively,

the magnitude of the waveform of the secondary cell determines

how frequently spikes of the primary cell will fall outside of its

cluster (and thus be classified as outliers). Figure 2 C quantifies this

relationship, plotting a measure of the strength of the artifact

against the magnitude of the secondary neuron waveform, across

all pairs of adjacent RGCs. The significant correlation (r2~0:73)

supports the interpretation that the notch is an artifact arising from

failures of clustering for near-synchronous spikes.

Estimating Spike Trains with Binary Pursuit
We formulate spike sorting as a statistical estimation problem.

Specifically, we develop a generative model that describes how the

measurements (extracellular voltage measurements) relate to the

quantities to be estimated (spike times and spike waveforms). We

also develop an algorithm for inferring spike times and waveforms

Spike Sorting for Removing Correlation Artifacts
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from measurements under this model [21]. We provide a

summary of our solution here; full details are provided in Methods.

Our model assumes that each neuron’s spikes give rise to a

characteristic space-time voltage pattern or ‘‘waveform’’ on the

recording electrodes. Spike waveforms may extend several

milliseconds in time and across many electrodes, depending on

the three-dimensional layout of electrodes and neurons, as well as

their electrical properties. We denote the waveform of the j’th

neuron with a vector-valued quantity, ~wwj(t), which has indices

across all electrodes at each time t relative to a spike time. We

Figure 2. Cross-correlation artifacts induced by failure of clustering method for temporally overlapping spikes. (A) The cross-
correlation function (CCF), which expresses the firing rate of one neuron relative to the spike times of another neuron. The CCF shows a substantial
elevation in the firing of the primary cell in a time window extending roughly 6 5 ms around the spike of the secondary cell, as well as a sharp notch
at the origin (width roughly 6 1 ms). The timescale of this notch matches the range of times over which the waveforms interfere with each other, as
shown in Figure 1. (B) Summary of pairwise cross-correlations for all adjacent ON retinal ganglion cells within a simultaneously recorded population
(338 pairs). Each row of the image represents the CCF between a pair of cells (shade of grey represents firing rate relative to the mean). Rows are
sorted according to the value of the center time bin. (C) For pairs of neurons with significant synchronized firing, the magnitude of the secondary
spike waveform (corresponding to the length of the red vector in Figure 1 ) provides a strong prediction of the strength of the CCF artifact (r2~0:73).
We quantify the strength of the CCF artifact (index on vertical axis) as the difference between the average firing rate during the intervals of +(1,5) ms
and ({0:4,0:4) ms, divided by the baseline firing rate.
doi:10.1371/journal.pone.0062123.g002
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Figure 1. Geometric picture of failures in clustering-based spike sorting, with multi-electrode retinal data [29]. (A) Synchronous spike
waveforms on a single extracellular electrode from two different neurons (black and red), which sum linearly to form a new waveform (blue) when
these neurons fire synchronously. (B) Spike waveforms from these same two neurons projected into a two-dimensional linear feature space. Each
point in this space corresponds to a single recorded waveform. Black and red vectors indicate the waveforms shown in (A), and the corresponding
clusters of colored points around each vector indicate the samples that were assigned to each neuron. Synchronous spikes from these two neurons
give rise to voltage waveforms that lie near the sum of these two vectors (blue vector), and these points (gray) are generally discarded as outliers. (C–
D) More generally, overlapping spikes with different temporal offsets produce different waveforms (example, with second waveform offset 20.45 ms
relative to first, shown in (C). These summed waveforms lie along a trajectory in the feature space, parameterized by their temporal offset. Several
examples (blue points) are shown in (D), along with their associated waveforms.
doi:10.1371/journal.pone.0062123.g001
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assume the voltages measured across electrodes during an

experiment are a sparse linear superposition of these spike

waveforms, contaminated with background noise, ~gg(t):

~vv(t)~
Xnc

j~1

Xnt

t~0

xj(t{t)~wwj(t)z~gg(t), ð1Þ

where~vv(t) is a vector-valued function of time whose components

contain the raw voltage traces recorded on each electrode, and

xj(t) is a binary variable that indicates whether the jth neuron has

spiked at time t. Note that we have discretized time (i.e., t takes on

integer values corresponding to discretized time bins), in antici-

pation of a numerical optimization algorithm that will be

implemented on a digital computer. The sum over time represents

a convolution of each waveform ~wwj with the corresponding

neuron’s spike train xj . The constant nc is the number of neurons

in the population. The constant nt is the number of time steps in

the spike waveform (assumed the same on all electrodes for all

neurons).

We assume the probability distribution of the background noise

can be approximated as a multivariate Gaussian, which specifies

the conditional probabilistic relationship between the desired spike

times and waveforms, and the observed electrode voltages:

p VjX,Wð Þ! exp {
1

2
(V{W � X)TL{1(V{W � X)

� �
, ð2Þ

Where V, W, and X are vectors containing the full content of~vv(t),
~wwj(t), and xj(t) across space and time, and the bilinear term

W � X denotes the convolution expressed in Eq. 1. Note that V
denotes the vector formed by taking the entire time|space matrix

of recorded electrode data and reshaping it into a single column

vector, while W � X denotes a vector of the same size, formed after

temporally convolving the waveform matrix ~wwj(t) with the binary

spike train xj(t) for each neuron and summing across neurons.

The covariance matrix L characterizes the spatiotemporal

covariance of the noise in the recorded voltage signal, which is

largely due to background electrical activity in the surrounding

neural tissue(some of which may be due to spikes that are too small

to reliably detect), and exhibits strong correlations in space and

time, particularly for dense arrays. We discuss estimation of L in

Methods.

To complete the generative model, we need to specify prior

probability distributions over the spike trains xj(t) and spike

waveforms ~wwj(t). For spike trains represented at high temporal

resolution, a natural prior is a Bernoulli distribution:

p(xj(t))~P
t

p
xj (t)

j (1{pj)
1{xj (t), ð3Þ

where xj is a binary variable representing a spike (or lack thereof)

for the jth neuron, in a single time bin t. The parameter pj

specifies the prior probability that a time bin contains a spike, and

is generally quite small. Given a voltage sampling rate of

20,000 Hz, for example, a neuron spiking at 40 Hz emits an

average of one spike per 500 bins, corresponding to a Bernoulli

prior with pj~0:002. This prior assumes that spikes in different

time bins, and for each neuron, occur independently. Finally, we

imposed a sparseness penalty on the spike waveforms ~wwj(t),

exploiting the fact that the waveforms tend to be localized across

electrodes, and to reduce the computational cost of inference (see

Methods for details).

This completes our generative model, consisting of a likelihood

P(VjX,W) and priors p(X) and p(W). From these ingredients, we

can use Bayes’ rule to obtain the posterior distribution over spikes

and waveforms given the data: p X,W jVð Þ!p(VjX,W)p(X)p(W).
Our goal here is to develop a computational algorithm for

maximizing this posterior, that is, to obtain the maximum a posteriori

(MAP) estimate of the spikes and waveforms. (See [16] for a

discussion of more general Bayesian inference methods, which can

be made tractable for much lower-dimensional data). The negative

log-posterior provides a quadratic objective function that we will

seek to minimize for X and W:

L(X,W)~
1

2
(V{W � X)TL{1(V{W � X)

� �
zcT X, ð4Þ

where c is a vector of constants that depend on the prior Bernoulli

spike rates fpjg. In essence, this objective function consists of two

terms that impose differing constraints on the solution. The first is

the squared error between the linear superposition of spike

waveforms and the voltage data (measured in the space of the

noise covariance). The second, which comes from the Bernoulli

prior, places a penalty on each spike, and thus serves to reduce the

number of spikes. The penalty (cost per spike) differs for each cell,

and is derived from the prior probability of spiking in that cell (see

Methods).

This is a hybrid discrete/continuous objective function (W is

continuous, X contains binary spikes), and there are no known

methods for finding unique global minimum apart from brute-

force search. Instead, we search for a local minimum using

coordinate descent, which involves alternating between solving for

each of these unknowns while holding the other fixed. Specifically,

the algorithm uses the following steps:

1. Initialize using a standard clustering algorithm to identify the

number of neurons and their approximate firing rates fpjg.
2. Estimate the spike waveforms for all neurons across all

electrodes by minimizing the objective function L (Eq. 4 ) for

W; this is a simple least-squares linear regression problem.

3. Estimate the noise covariance L from the residual prediction

errors, then whiten the data by the inverse square root of L and

re-estimate waveforms ŴW.

4. Estimate spikes by minimizing L for X. This is a sparse binary

linear inverse problem [37], and the exact solution is

intractable. Instead, we develop a greedy method that we call

binary pursuit. Binary pursuit greedily inserts and removes spikes

so as to maximally decrease the objective function until a local

optimum is reached.

5. Return to step 1 and repeat until the estimated spike times and

waveforms change minimally.

We provide the full details of this algorithm, along with practical

and theoretical justification, in Methods.

Performance Comparison
To evaluate our algorithm, we examined data recorded with a

multi-electrode array in primate retina [29]. The custom 512-

electrode array samples electrical activity at 20 kHz, providing

approximately 30 samples for each &1:5ms action potential (Fig. 1

a) [32]. This data set contains 364 identified retinal ganglion cells,

spiking at an average rate of 10 sp/s. This dataset is especially

challenging due to the high degree of multiplexing: each electrode

records spikes from many different neurons, and each neuron

projects to many (w50) electrodes. Spike superposition is

0.

1.

4.

3.

2.
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exacerbated by the fact that mammalian retina exhibits substantial

synchronous spiking activity [33,38,39].

We compared spike train estimates obtained with traditional

clustering and with binary pursuit. The most immediate difference

was that binary pursuit identified a larger number of spikes for

every cell. These additional identified spikes generally overlapped

the spikes of other cells, as illustrated in Fig. 3. The left column

shows the spikes of four example cells obtained using a clustering

method.

For each example cell, the spikes of a second cell recorded on

similar electrodes are also shown (gray points). Binary pursuit

identifies a number of additional spikes, which are scattered in

multiple directions away from those identified by clustering (red

points). The red points are incorrectly classified as outliers by

clustering. (Note that some points do not appear to be outliers

within the two dimensions displayed, but are outliers along other

dimensions.) The middle column shows the predicted locations of

the superpositions of the spike waveforms of the two cells with

different temporal offsets. The right column shows additional

spikes of the primary cell identified by binary pursuit, color coded

according to whether they overlapped a spike of the second cell,

and if so, at what temporal offset. The estimate spike times are

consistent with the predicted superpositions in the middle panel.

Note that synchronous spikes (zero temporal offset) deviate furthest

from the cloud of isolated spikes.

We also compared the cross-correlations of spike trains

estimated with binary pursuit and clustering. Figure 4 A shows

examples for eight pairs of adjacent parasol cells (four ON, and

four OFF pairs). As shown in Fig. 2, the clustering method leads to

an artifact in the CCF (a notch at + 1 ms), but this artifact is

reduced or eliminated for the spike trains estimated using binary

pursuit. Figure 4 B summarizes this improvement across all pairs

of ON and OFF parasol cell in a single recording. Cells of opposite

polarity are known to exhibit weak anti-correlation [33,40], as can

be seen in cross-correlations of four example ON-OFF pairs,

shown in Fig. 4 C. Again, the clustering method produces an

artificial notch at the origin, indicating a failure to correctly

identify spikes that are near-synchronous, and this artifact is

systematically removed under binary pursuit. A summary across

the population is shown in Fig. 4 D. Curiously, on a small fraction

of cell pairs, a spurious peak in cross-correlation is observed even

for binary pursuit, which we believe reflects a lack of discrimina-

bility of the two waveforms (see Discussion).

The black curves in the panels of Fig. 5 summarize the relative

behavior of the two spike sorting methods. Figure 5 A shows that

binary pursuit identifies more spikes for every cell in our

population (N = 293 cells). Figure 5 B shows a comparison of the

magnitude of the CCF artifact. The spike trains obtained using

binary pursuit are seen to have little or no artifact. From these two

plots, one might be tempted to believe that binary pursuit has

solved the spike sorting problem. But further examination reveals a

new problem: an increase in refractory-period violations, which

provide another indicator of spike-sorting errors [4,15,24,41–43].

We quantify these errors in terms of the ‘‘contamination rate’’ for

each neuron, defined as the ratio of the frequency of occurrence of

spikes within the refractory period (v1:5 ms) to the baseline

frequency of spikes outside this window. (A contamination rate of

50% indicates that the rate of spikes detected during the refractory

window is equal to half the rate of spikes detected outside this

window). Figure 5 C shows a comparison of the contamination

rate for spikes sorted by clustering and binary pursuit. We see that

for a large proportion of the cells, binary pursuit has a significantly

higher contamination rate than clustering, and thus some of the

increase in spike rate seen in these cells is likely due to inclusion of

erroneous spikes.

Spike sorting is a type of signal detection problem, and it is well

known that failures in such problems come in two forms: misses (in

which a true spike is not detected), and false positives (in which an

artificial spike is inserted). The CCF artifact provides a measurable

indicator of misses, whereas the contamination rate is a

measurable indicator of false positives. In classical signal detection

theory, misses and false positive errors trade off against each other

as one adjusts the decision threshold [44]. In the context of a

Bayesian approach, one may accomplish this tradeoff by adjusting

the prior probability on signal occurrence. This idea may be used

directly with our spike sorter to trade off the CCF artifact against

the contamination rate, as shown in Fig. 5. Reducing the Bernoulli

spike rate decreases the number of estimated spikes, increases the

CCF artifact, and decreases the contamination rate (Fig. 5 A–C,

blue curves). However, a more moderate reduction in the

Bernoulli rate results in a contamination rate significantly below

that of clustering, while minimally increasing the CCF artifact

index (Fig. 5 B–C, purple curves). Thus, for these data, there exist

prior settings for which both types of errors occur less frequently

than with clustering.

Estimating Error Rates in the Absence of Ground Truth
The results of Fig. 5 show that spikes sorted with binary pursuit

depend significantly on the choice of prior spike rate, and suggest

that this value could be selected to simultaneously minimize both

the CCF artifacts (misses) and the refractory contamination (false

positives). These two measurable errors are only proxies for the true

errors that one would like to minimize. In general, one does not

know the true errors and we cannot assume that the true errors are

proportional to their corresponding measurable quantities.

We can use signal detection theory to develop a method for

assessing the error rate of individual neurons in the absence of

ground truth. This can be used both to select prior values for each

cell, and to determine which neurons have acceptable spike sorting

errors. The method is based on a simple observation: In a

Bayesian setting, if an estimate is well constrained by the data,

then the value of the prior parameter has little effect [45]. Thus, if

the spike waveform of a cell is easily distinguished from the

background noise and from the waveforms (or superpositions of

waveforms) of other cells, the number of spikes found for that cell

should be insensitive to the parameter value chosen. Fig. 6A

illustrates this effect by showing the sensitivity of spike count to the

Bernoulli prior parameter for two different RGCs. The well-

isolated cell shows a spike count that is stable with respect to

changes in threshold up to an order of magnitude in either

direction. In contrast, the poorly-isolated cell is highly sensitive to

the threshold value.

This behavior is nearly identical to that obtained from

simulation of a simple signal detection problem. Figure 6 B shows

results for detecting a scalar value from a scalar measurement

corrupted by additive Gaussian noise. Optimal detection (in the

sense of minimizing errors) is achieved by thresholding the

measurement at a value that depends on the prior probability of

occurrence of the signal [46]. For high SNR, the number of

detected events is stable over a broad range of thresholds, whereas

for low SNR, the number of detected events is highly sensitive to

the choice of threshold. This sensitivity provides an indication of

how cleanly the signal can be isolated from the noise, which is

directly related to the error rate in the two situations, as illustrated

in Fig. 6 C.

To make use of this relationship in spike sorting, we need to

estimate the relationship between the sensitivity and the error rate.

Spike Sorting for Removing Correlation Artifacts
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Figure 3. Comparison of spikes estimated using clustering and binary pursuit. Each row shows results for one example neuron. Each plot
depicts the 2D linear feature space used for clustering (see Fig. 1 ). Left column: Black and gray points indicate spikes obtained by clustering for two
cells. Additional spikes obtained for the black cell by binary pursuit (but ignored as outliers by clustering), are scattered in various directions relative
to this ellipse (red points). Note that some points do not appear to be outliers within the two dimensions shown, but are outliers in other dimensions.
Middle column: When the spikes of these two cells overlap in time, the resulting superimposed waveform is predicted to lie along a trajectory (see
Fig. 1 ). Filled black and gray ellipses correspond to the location of isolated spikes for the primary and secondary cells, respectively. Size and shape of
ellipses corresponds to the level curve (at one standard deviation) of the estimated (Gaussian) noise distribution. Colored ellipses indicate predicted
locations of noisy superimposed waveforms, with color indicating their temporal offset. Right column: Subset of spikes identified by binary pursuit
that were either isolated (black and gray points), or overlapping (colored points, with color indicating the temporal offset of the two spikes).
doi:10.1371/journal.pone.0062123.g003
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Figure 4. Cross-correlation artifacts introduced by clustering techniques are greatly reduced with binary pursuit. (A) Cross-correlation
between four distinct pairs of adjacent ON parasol cells (left column) and OFF parasol cells (right column), for spike trains estimated using clustering
(gray bars) and binary pursuit (red line). Dashed line indicates baseline firing rate. (B–C) Summary of cross-correlations between adjacent pairs of
neurons (338 ON and 369 OFF neuron pairs), with spike trains obtained from clustering (left column) and binary pursuit (right column). Within a single
image, each row represents the cross-correlogram between a single pair of neurons, with intensity indicating firing rate relative to mean rate. Rows
are sorted by the firing rate of the bin at t~0. The artifactual notch at zero that arises from cluster-based sorting is now visible as a dark streak at
t~0, and largely disappears with binary pursuit sorting. (D) Cross-correlation between four distinct pairs of adjacent ON and OFF parasol cells. (E)
Summary of cross-correlations between 225 pairs of adjacent ON and OFF parasol cells.
doi:10.1371/journal.pone.0062123.g004

Figure 5. Comparison of spike trains estimated using binary pursuit and clustering. Three different summary statistics are computed and
compared for 293 retinal ganglion cells. For each statistic, the data are shown as ‘‘Q–Q’’ plots: Each line spans the range of quantiles from 5% to 95%,
and points are plotted at corresponding deciles of the distributions from 10% to 90%. Different colored lines correspond to different Bernoulli spike
rate priors: values in legend indicate a multiplicative factor on the log-prior, relative to the firing rate estimated from clustering. (A) Spike rate. (B)
Cross-correlation function artifact index measures the depth of the ‘‘notch’’ at the origin of the cross-correlation function between a pair of cells, a
measure of missed spikes. (C) Refractory period contamination rate, which is a measure of false positives. Note that the purple curves (which arise
from using a prior for each cell that is six times the firing rate of spikes estimated using clustering) show a reduction in both contamination and CCF
artifacts relative to clustering.
doi:10.1371/journal.pone.0062123.g005
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We simulated 120 seconds of electrode data using the generative

model of Eq. 1 for 293 neurons, and estimated the spikes of each

neuron using binary pursuit. We recomputed these estimates while

varying the prior of each neuron individually. Figure 7 A shows a

scatter plot of the relationship between the sensitivity (quantified as

the derivative of the spike count with respect to the threshold for

each neuron), and the spike sorting error rate in the simulated

data. The data are reasonably well fit by a power law (straight line

fit on a log-log plot, r2~0:99).

As an example of the use of this relationship, suppose one

wanted to analyze only those neurons with a spike sorting error

rate less than 2%. Using the scatter plot of Fig. 7 A, we find that

that the estimated spike trains for 285 of the simulated neurons

had error rates v2% (Fig. 7 B). We then use the relationship

between sensitivity and error rate to estimate the error rates in the

real data. Figure 7 C suggests that the 49 neurons with a spike rate

sensitivity w0:07 are likely to have error rates w2%.

Discussion

We have formulated the spike-sorting problem in a statistical

estimation framework based on a generative model of extracellular

electrode data. The model, while extremely simple, provides an

explicit statement of the assumptions underlying our methodology:

the recorded voltage traces arise as a linear superposition of spike

waveforms from multiple neurons, along with additive correlated

Gaussian noise, with a prior on the frequency of each neuron’s

spikes.

We have shown that clustering methods, which are the current

de facto standard for sorting spikes, exhibit systematic failures,

arising from an implicit assumption that the spike waveforms

contained in the recorded voltage traces do not overlap. We

developed binary pursuit, an algorithm for finding a (local)

maximum of the posterior expressed by our model, and

demonstrated its capabilities in sorting multi-electrode data from

the retina, using refractory violations and cross-correlation

artifacts as measurable indicators of errors. In addition, we’ve

shown that a statistical formulation of the estimation problem

allows us to test the robustness of the spike sorting results to

perturbations in the prior parameters, providing a measure of the

quality of the results in the absence of ground truth.

Relationship to Previous Work
Previous literature on spike sorting is quite extensive, but focuses

mostly on variants of matched filtering or clustering [13]. The

artifacts that can arise in these methods have been previously

documented [10,11,13,47], and a few authors have developed

post-processing algorithms for repairing them [4,11,26,28,48].

Such repairs can be effective in some situations, but since they are

generally not tied to any particular generative model, it can be

difficult to state the conditions under which they will succeed.

Several methods operate by identifying portions of the voltage

trace that are likely to contain spikes, and then searching

exhaustively for the combination of spikes (and temporal offsets)

that can best explain them. This type of method can be quite

effective for small numbers of cells, but the computational cost

scales exponentially with the number of cells, rendering it

intractable for large multi-electrode arrays.

One method closely related to our own uses a convex relaxation

of the discrete (binary) optimization problem [25]. Specifically, the

authors use an L1-norm (or ‘‘lasso’’) penalty on positive, real-

valued spike coefficients [49]. The resulting objective function is

identical to ours, but is convex on the augmented space of positive

(as opposed to binary) coefficients, meaning that a unique global

maximum can be obtained via quadratic programming. Spikes are

then obtained by thresholding these coefficients. We have

experimented with this approach on smaller datasets (using spike

trains from 27 neurons on 76 electrodes, published in [50]). We

found that the algorithm gave results of comparable quality to

binary pursuit, but required an order of magnitude more

computation time, making it impractical for datasets of the size

considered here.

Recent work from Prentice et al [26] describes a method for

Bayesian (MAP) spike train estimation that also has a number of

similarities to our own. In fact, that paper provides a more

complete method for spike-sorting, as it uses a clever method for

clustering multi-electrode data and estimating the number of

neurons (whereas we have relied a standard clustering method to

initialize our algorithm). However, [26] does not specifically

discuss cross-correlation artifacts or methods for assessing perfor-

mance in the absence of ground truth. The dataset examined in

[26] had a 30-electrode recording from 107 neurons with 1.5 sp/s

average spike rate; this differs substantially from our dataset, which

Figure 6. Sensitivity of number of spikes recovered to the prior on spike rate. (A) Results for two example cells, one well-isolated (blue),
and one poorly isolated (red). Adjusting the Bernoulli prior parameter (for each cell individually) alters the threshold used for spike identification (see
Methods), which leads to an increase or decrease in the number of estimated spikes. (B) Simulation of detection of a scalar signal contaminated by
Gaussian noise, for two different SNRs. Insets indicate histograms of noise observations (black) and signal observations (gray). The number of
detections (‘‘hits’’ plus ‘‘false positives’’) varies with the choice of threshold, and the shape of the curve depends on the SNR. (C) Error rates (‘‘misses’’
plus ‘‘false positives’’) as a function of threshold for the simulations in (B).
doi:10.1371/journal.pone.0062123.g006
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had a 512-electrode recording from 298 neurons with 10 sp/s

average spike rate. Cross-correlation artifacts were likely a larger

problem in our dataset due to the higher spike rates and higher

density of neurons. Differences in the two algorithms reflect some

of the differences in datasets. For example, [26] used periods of

silence to estimate the noise covariance, and extracted isolated

(multi-neuron) firing events from the raw datastream before

sorting. By contrast, our recordings rarely exhibited total silence

across the array, and single-neuron waveforms often extended

across more than 100 electrodes. This high degree of temporal and

spatial overlap precluded the extraction of isolated ‘‘spiking event’’

data vectors, and required temporally traversing the entire raw

datastream to estimate spikes. In this sense, our algorithm more

closely resembles the methods of [4,28], which also involve greedy

subtraction of spikes from the raw data.

Taken together, it is clear that the recent literature has seen

the development of several closely-related methods, all involving

MAP inference under a generative model with Gaussian noise and

a sparse prior on spike trains. We believe there is much to be

gained by comparing, synthesizing and extending these algorithms

to improve speed, computational complexity, accuracy, and

robustness.

Sources of Error
We cannot provide guarantees on the absolute performance of

our algorithm, since performance is inherently limited by noise

level, the number of neurons, and the discriminability of their

waveforms. The presence of noise generally implies the possibility

of errors, and one should think in terms of understanding and

bounding the errors. In this regard, statistical formulation allows

us to partition errors into three categories, and to separately

consider improvements that might reduce each.

The first of these are irreducible model errors; that is, errors that

would be incurred if the data actually arose from the process

assumed in our model. One asks ‘‘what is the probability that any

particular spike or combination of spikes might be mistaken for

background noise, a different spike or combination of spikes.’’ This

is a multi-dimensional signal detection problem, and the error rate

will be a function of the amplitude and similarity of the spike

waveforms (at all relative temporal offsets), relative to the

amplitude of the noise. These errors can be examined through

simulations (i.e., by applying the spike sorter to artificial data

generated by drawing samples from the model), although it is

important to recognize that such simulations will also include the

effects of algorithmic errors (see next paragraph). Some authors

Figure 7. Quantifying the robustness of spike sorting in the absence of ground truth through a prior sensitivity analysis for all
parasol cells ().N~293 (A) The sensitivity of the spike rate to the prior distribution plotted against the spike sorting error rate in simulated data (see
text for details). Note that both axes are plotted in logarithmic space. Dashed line is best fit line (r2~0:99). Gray box indicates spike rate sensitivities
achieving v2% error. (B) Distribution of error rates across simulation. The solid blue line indicates 2% error rate in simulation. (C) The distribution of
spike rate sensitivities from simulation (top) indicate that 8 cells contain spike rate sensitivities which imply an w2% error rate. Distribution of spike
rate sensitivities calculated from real data suggest that 49 cells contain w2% error rates.
doi:10.1371/journal.pone.0062123.g007
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have examined such errors (specifically, the tradeoff between hits

and false alarms) in the context of single neuron spikes [51].

The second type of error arises from failures of the optimization

algorithm. Our algorithm operates by taking iterative steps, each

of which decreases the negative log-posterior; we can therefore

guarantee that it will reach a local minimum. However, since the

objective function is not convex, this minimum is not guaranteed

to be a global minimum. The solution is also susceptible to

numerical approximation errors (e.g., Taylor series), although

careful implementation can ensure that these are not significant.

The sparse linear inverse problem has become a focus of intense

study over the past ten years, and the literature can be loosely

partitioned into two general classes: the greedy pursuit methods

(including iterative thresholding), and the convex relaxation

methods (e.g., basis pursuit). The greedy methods (such as the

one we have presented here) tend to make mistakes in which

overlapping spike waveforms are ‘‘explained’’ with an incorrectly

placed spike or combination of spikes. This could potentially be

improved with post-processing, in which one examines those

spikes or combinations of spikes that are most likely to generate

superposition errors (e.g., [48]). We have also begun to examine

relaxation methods [52].

The third type of error arises from incorrectness of the model.

The most common of these are likely to be errors in the assumed

waveforms or noise description. For example:

N the set of model waveforms might include a false waveform.

For example, if a clustering method is used to obtain initial

waveform estimates, two cells with a high degree of synchrony

can result in identification of a false neuron associated with the

combined waveform.

N the waveforms of real cells are variable, exhibiting slow drift or

systematic changes in amplitude or shape (e.g., during spike

bursts) [53,54].

N the electrode ‘‘noise’’ does not arise from a Gaussian process,

but primarily from the superposition of spikes of unsorted cells

[9]. Although it is generally intractable to fully incorporate this

into the model, some authors have modeled the non-

Gaussianity of these signals using heavy-tailed noise distribu-

tions [55,56].

We have deliberately designed our spike train model to be

simple, but the basic framework can be extended to incorporate

additional constraints on spike trains (e.g., refractoriness, joint

activity, stimulus dependencies) or variability (e.g., priors on the

waveform shapes, or on their drift in shape over time, [54]). In

general, additional constraints serve to further restrict the set of

possible solutions, which can improve the results if the constraints

correspond to true properties of the neurons, and assuming they

can be readily incorporated into the optimization algorithm. On

the other hand, over-constraining the solution can lead to

additional ‘‘Miss’’ errors. Similarly, the model could be relaxed

to allow more substantial variability in the spike waveforms, but if

this enlarges the set of possible solutions and can thus open the

door for additional ‘‘False Positive’’ errors.

Future Directions
We have focused on the problem of identifying spikes under the

assumption that the number of neurons is known. (Specifically, we

used a clustering analysis to estimate the number of neurons). A

full solution to the spike sorting problem should incorporate

uncertainty about the number of neurons as well. Recently

developed non-parametric Bayesian clustering methods based on

the Dirichlet process, which do not yet take account of

superposition but might be extended to do so, provide one

promising direction for future work [16]. Another important

direction is to improve the speed and computational efficiency of

our method, either through parallelization or perhaps through

greedy methods that employ binary pursuit only in restricted

spatio-temporal regions of the recording (i.e., where a region of

spike overlap can be identified through an increase in residual

error). Further improvements might be achieved by explicitly

modeling temporal dependencies in spike trains [43,53], tuning

information [58,59], non-stationarity of spike waveforms (due to

shifts in tissue or biophysical changes in the neurons themselves

[53,57]), and non-stationarities in the noise distribution. In our

view, the primary virtue of a model-based approach is that it

requires formalizing one’s assumptions about the statistical

structure of the data, making it possible to achieve improvements

either by identifying and replacing inaccurate assumptions, or by

observing new statistical features of the data that can make the

problem easier.

Summary
We have provided a thorough analysis of superposition errors

that arise in clustering-based methods, a new spike-sorting

algorithm based on a generative model that allows for spike

overlap, and accompanying methods for assessing the robustness

of the estimated spike trains. These results provide a principled

and self-consistent formulation of the problem that can serve as a

substrate for the development of new model-based spike sorting

methods.

Methods

Mathematical Details of Sorting Algorithm
Our algorithm seeks to maximize the joint posterior L(X,W)

~ log p(X,WjV,L,fpjg) (Eq. 4 ) over spike trains X and spike

waveforms W given the voltage data V, the noise covariance L,

and prior spike probabilities fpjg. Our general inference strategy is

to maximize the log-posterior via coordinate ascent, which means

alternating between maximizing L for W and for X. This

procedure is guaranteed to converge to a local maximum of the

posterior.

The geometry of the log-posterior informs our optimization

strategy, and may in the future be exploited to design improved

spike train estimators. The expected voltage is a bilinear function

of X and W. Gaussian noise implies that maximizing L for W
given X is a linear least squares problem, which can be solved

efficiently by linear regression. Maximizing L for X given W is also

a linear least squares problem, due to the fact that the log

Bernoulli prior (Eq. 3 ) is linear in X. However, the discreteness of

X–each component must be zero or one–means that this

optimization is a non-convex problem. We therefore resorted to

a greedy algorithm for estimating X given W. However, the

convex relaxation that results from allowing scalar-valued X in the

interval ½0,1� does does have a unique global maximum. Spike

sorting methods that make use of this scalar solution for initializing

a search over binary spike trains may provide one promising

avenue for future research (see [25]). We implemented this method

but did not find any substantial improvement over the current

algorithm, suggesting that the additional computational cost of

such an approach is not justified for the recordings considered

here. We summarize the details of our algorithm below.

Waveform Estimation
We begin by estimating the spike waveforms W using an initial

estimate of the spike trains X(0), the latter of which is provided by a
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clustering-based method (see Methods). The rationale for estimat-

ing W first is that the clustering-based method uses a low-

dimensional linear feature space derived from a small neighbor-

hood of nearby electrodes (depicted in Figs 1 and 3), and we would

like to learn each neuron’s full spatiotemporal spike waveform

across all electrodes to better identify spikes.

Given X(0), we maximize the posterior (Eq. 4 ) for W using an

initial assumption of independent noise (L equal to the identity

matrix). This yields the solution:

W(1)~ argmin
W

(V{W � X(0))
TL{1(V{W � X(0))~

(MX(0)
MX(0)

){1MT
X(0)

V,
ð5Þ

where MX(0)
is a toeplitz matrix formed from the elements of

X(0) such that MX(0)
W~W � X(0). This solution minimizes the

quadratic term in L.

We then prune W(1) by subset selection [60] on the vector norm

of Wij(1), the waveform of the i’th neuron on the j’th electrode.

That is, we set Wij(1) to zero if jjWij(1)jjva, where a was a

constant multiple of the noise on the j’th electrode. Subset

selection effectively induces sparsity on the estimate of W (see, e.g.,

[49,50,61–63]), which regularizes and reduces computational cost,

but does not bias estimates of large-amplitude waveforms.

Noise Covariance and Whitening
The next step is to estimate the noise covariance L from initial

estimates of the spike trains X(0) and waveforms W(1). Knowledge

of this covariance will allow us to sphere the noise so that it is

independent in time and across electrodes [64]. This will

transform the first term in the log-posterior (Eq. 4 ) from a

weighted to an unweighted sum of squares, which reduces the

computational cost of spike train estimation.

We could in principle estimate L using the covariance of the

residual errors in predicting V, that is, L̂L~cov(V{W(1) � X(0)).

However, this matrix is far too large to estimate, or even to store in

memory. We therefore modeled the noise as having a separable

space-time correlation structure, with a limited extent in time. This

allowed us to whiten the data using a step-wise whitening

procedure: first, we estimated the temporal noise covariance Lt

on each electrode using a 16 time-bin (0.8 ms) window, and then

filtered the data from that electrode with the central column vector

of L
{1

2
t . Then, we estimated the instantaneous noise covariance Lx

across all 512 electrodes in the array (a 512|512 matrix) and

multiplied the vector of data in each time bin by whitening matrix

L{1
2

x .

Let ~VV denote the whitened electrode data obtained from this

two-stage whitening procedure. (The residuals of ~VV had approx-

imately flat autocorrelation in both time ans space, indicating that

the assumption of space-time separable noise was a reasonable

assumption). We then re-estimated and sparsified the waveforms

(as described above) to obtain ~WW(1), the whitened spike waveforms.

Spike Train Estimation
The most computationally intensive step in the algorithm is

estimating the set of spike trains X given W. This involves

maximizing the log-posterior in the space of whitened voltage

signals, which can be written:

~LL(X, ~WW)~{
1

2
(~VV{ ~WW � X)T (~VV{ ~WW � X) { cT X: ð6Þ

The final term cT X arises from the Bernoulli prior over each

neuron’s spike train. We initialize the prior probability of a spike in

each neuron using X(0), the spike train estimate returned by

clustering-based method (see Methods). We set p̂pj~nj=nT , where

nj is the number of spikes from the j’th neuron, and nT is the total

number of time bins in the experiment. The weights fĉcjg
composing c are then given by

ĉcj~{ log (p̂pj)z log (1{p̂pj), ð7Þ

which follows from the fact that the log of the prior (Eq. 3 ) can be

written log p(xj)~xj( log pj{ log (1{pj))zc.

As noted above, maximizing ~LL for X is a quadratic optimization

problem on a binary lattice, since each element of X is 0 or 1. The

advantage of working in the whitened space is that the log-

posterior is just the sum of the residual errors plus the penalty term

from the Bernoulli prior; when inserting or a removing a particular

spike, we need only compute the change in residuals on the bins

where the expected voltage ~WW � X changes, i.e., the electrodes and

time bins affected by a particular spike waveform.

Greedy binary optimization procedes as follows. Let Xi denote

the ith bin of X and let X\i denote the vector X with the ith bin

removed. Let Mw denote the (highly sparse) toeplitz matrix for

convolution of waveforms with the spike trains, so MwX~W � X.

Let wi denote the ith column of the waveform matrix Mw, and M \i
w

denote the same matrix with the ith column removed. We can now

evaluate ~LL with Xi~0 and Xi~1 in order to determine whether

the bin should contain a spike or not. Assuming that noise variance

s2~1 after whitening, we have, for all i:

~LL(Xi~0jX\i)~{
1

2
(V{M \i

wX\i)T (V{M \i
wX\i){(c\i)T X\i

~LL(Xi~1jX\i)~{
1

2
(V{M \i

wX\i{wi)
T (V{M \i

wX\i{wi){

(c\i)T X\i{ci

ð8Þ

The difference gives the change in the log-posterior for

changing Xi from 0 to 1:

D~LLi~VT wi{wT
i M \i

wX\i{ci{
1

2
wT

i wi, ð9Þ

and {D~LL gives the change in the log-posterior for changing Xi

from 1 to 0. We can compute this difference for every bin i, with

initial setting X~X0. An obvious strategy for maximizing the

posterior is then to proceed greedily, selecting the bin i for which

(1{2Xi)DLi is largest, and flipping Xi from 0 to 1 or vice versa, as

determined by the sign of DLi. This strategy leads to a highly

efficient computational algorithm, since after flipping a bin Xi, we

only need to update DL in the bins j for which wT
j wi is non-zero

(i.e., only bins nearby in time and space to neuron i). Moreover, we

can pre-compute wT
i M\i

w for all i, making it extremely fast to
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perform updates to DL (eq. 9) following a spike insertion or

deletion.

To reduce the computational cost of searching for the

maximum of D ~LL, we processed the data in 1 s blocks. This made

X a vector of length 512620,0000 = 10,240,000 for each block.

The algorithm terminates when ~LL can no longer be increased by

inserting or deleting a spike in any neuron in any time bin.

The full MAP inference algorithm (summarized in Algorithm 1

below) involves coordinate ascent, which involves cycling through

and re-estimating W, L, and fpjg in turn as described above,

repeating until the log-posterior cannot be increased further. In

practice, however, the high cost of running multiple rounds of

coordinate ascent, and the relatively good performance achieved

with a single round of updates led us to stop with X(1), the spikes

obtained from the first maximization of ~LL for X.

Empirically, we found that sorting with the sparsity penalty c
determined from the ‘‘plugin’’ estimate for the Bernoulli param-

eter p̂pj (Eq. 7) led to an undesirably large increase in contami-

nation rate for many cells (see Fig. 5). For this reason, we

systematically varied c by a multiplicative factor, and found that a

reasonable tradeoff between CCF artifact and contamination rate

was obtained with penalty increased by a factor of 6, giving

ĉcj~6( log (1{p̂pj){ log p̂pj).

Accounting for Spike Waveform Variability
The algorithm described above assumes that spikes occur on a

fixed lattice of discrete time points (with 0.05 ms spacing, given the

20 KHz sampling of our data). One consequence of this

discretization is that ‘‘true’’ spike waveforms present in the analog

voltage trace may be shifted relative to the waveform templates

subtracted or added during binary pursuit. To address this form of

aliasing error, we used a local expansion of the waveform of each

neuron to account for shifts in the exact spike time and variations

in the spike amplitude and spike width. This additional flexibility

allows us to resolve spike times to a finer resolution than the

sampling rate of the analog trace, and to account for variability in

spike waveform height and amplitude that arises (for example)

during bursting activity.

We account for such variability by assuming that a spike

waveform ~ww can vary slightly in time t (relative to the discrete time

lattice), amplitude a or width s each time it appears in the data.

Specifically, we represent each spike in the data using a local

Taylor series approximation centered on the ‘‘canonical’’ wave-

form:

~̂ww~ww~~wwza1
d~ww

dt
za2

d~ww

da
za3

d~ww

ds
, ð10Þ

where the waveform derivatives can be computed numerically:

d~ww

dt
~
~ww(tzD){~ww(t)

D
,

d~ww

da
~~ww(t),

d~ww

ds
~
~ww((1zD)t){~ww(t)

D
:

ð11Þ

For the derivative with respect to spike width s, we interpolate the

waveform and center it so that t~0 corresponds to the waveform

peak; this ensures that the time-dilation ~ww((1zD)t) increases the

width without shifting peak location. The basic intuition here is

that, for smooth waveforms ~ww(t), small shifts in spike time,

amplitude, or width can be closely approximated by adding a

small amount of the appropriate waveform derivative. (See [52]

for a more direct embedding of this idea in a convex relaxation

scheme known as continuous basis pursuit.).

For each observed spike in the dataset, the weights a1, a2 and a3

must be estimated in order to determine the exact spike time,

amplitude and width. We simplify the formula above by expressing

the ‘‘corrected’’ waveform ~̂ww~ww in matrix notation.

~̂ww~ww~~wwzGa

where G:
d~ww

dt

d~ww

da

d~ww

ds

� �
and a:½a1 a2 a3�T

If we assume that a single spike occurs, then we can express the

unknown a in terms of the voltage signal.

V~~̂ww~wwzj

~(~wwzGa)zj ð12Þ

where j is a zero-mean Gaussian noise. Given this, the least-

squares value of a may be obtained as: G:

âa~G{(V{~ww): ð13Þ

The pseudo-inverse G{ can produce large values of âa when the

data exhibits large deviations from the true waveform, causing

unrealistically large changes in spike width or amplitude. We can

keep the correction small by adding an L2 (‘‘ridge’’) penalty

ljjajj2, which shrinks âa toward zero and results in the formula:

âa~(GT GzlI){1GT (V{~ww)~G{{(V{~ww) ð14Þ

We set the regularization parameter l to minimize contamination

errors in cross-validation data. Note that the new matrix G{{ can

be pre-computed for each waveform ~ww and applied to any residual

(V{~ww) before maximizing the log-posterior to solve for the spike

times. We incorporated this update rule into the binary pursuit

algorithm described above, using it to update the residual error

between V and W � X whenever a spike was added to X.

Algorithm 1: MAP inference procedure

1. Estimate waveforms W by linear regression given voltage
data V and initial spike train estimate X(0).

2. Prune W, removing unnecessary electrodes from each
neuron’s spike waveform via subset selection (or other
feature selection method).

3. Compute the residuals R~V{W � X(0) and estimate

noise covariance L̂L~cov(R).

4. Whiten by the square root of the inverse covariance:
~VV~L̂L{1

2V and ~WW~L̂L{1
2ŴW

5. Estimate prior spike probabilities for each neuron:
p̂pj~

P
t Xj(t)=nT

6. Estimate spike trains X via binary pursuit given ~VV, ~WW,p̂p.

7. Return to 1; Repeat until convergence.
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In our dataset, we found that the temporal derivative term made

the largest contribution to performance, and that the resulting

estimates exhibited far fewer ‘‘doublets’’, where the algorithm

erroneously inserts two spikes from the same neuron in adjacent

time bins.

Clustering Method
In our multi-electrode recordings from primate retina, each

electrode samples electrical activity at 20 kHz, providing approx-

imately 30 samples for each &1.5 ms action potential (Fig. 1 a),

and each spike typically elicits voltage signals occur across multiple

electrodes, reflecting electrical propagation through dendrites,

soma and axon (Fig. 1 b; see also [65]).

To obtain initial estimates of the spike waveforms present in a

recording, we use a standard clustering methodology. The basic

steps can be summarized as follows:

1. For each ‘‘center’’ electrode, identify candidate spikes via

thresholding, and create a vector of the voltage data from a

1.5 ms window of time and neighborhood of 6 immediately

neighboring electrodes.

2. Reduce dimensionality of the resulting collection of vectors

using PCA.

3. Cluster the resulting vectors and identify the points in each

cluster as the spikes of a single neuron, with human oversight to

determine the number of clusters and assess the reliability of

cluster assignment.

The spike sorting literature contains an extensive treatment of

such methods [13,20,21].
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