
Appendix A

Efficient evidence optimization for hyperparameters

For efficient optimization of hyper parameters, we decompose the posterior moments

(fmap,Σ) into terms that depend on φ and terms that do not via a Gaussian approx-

imation to the likelihood. The logic here is that a Gaussian posterior and prior im-

ply a likelihood function proportional to a Gaussian, which in turn allows prior and

posterior moments to be computed analytically for each φ. This trick is similar to

that of the EP algorithm [1]: we divide a Gaussian component out of the Gaussian

posterior and approximate the remainder as Gaussian. The resulting moments are

H = Σ−1 − K−1 for the likelihood inverse-covariance (which is the Hessian of log-

likelihood), and m = H−1(Σ−1fmap −K−1µf ) for the likelihood mean, which comes

from the standard formula for the product of two Gaussians.

The algorithm for evidence optimization proceeds as follows: (1) given the current

hyperparameters φi, numerically maximize the posterior and form the Laplace approx-

imationN (fmapi,Σi); (2) compute the Gaussian “potential”N (mi, Hi) underlying the

likelihood, given the current values of (fmapi,Σi, φi), as described above; (3) Find φi+1

by maximizing the log-evidence, which is:

E(φ) = rT log(g(fmap))−1Tg(fmap)−1

2
log |KHi+I|−

1

2
(fmap−µf )

TK−1(fmap−µf ),

(1)
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where fmap and Σ are updated using Hi and mi obtained in step (2), i.e. fmap =

Σ(Himi + K−1µf ) and Σ = (Hi + K−1)−1. Note that this significantly expedites

evidence optimization since we do not have to numerically optimize fmap for each φ.

Appendix B

Gauss-Hermite quadrature to compute Gaussian integrals

Gauss-Hermite quadrature is to approximate the value of integrals:∫
exp(−x2) t(x)dx ≈

n∑
i=1

wi t(xi), (2)

where n is the number of sample points used and xi are the roots of the Hermite poly-

nomial Hn(xi), which is given by

Hn(xi) = (−1)n exp(x2
i )
∂n

∂xni
exp(−x2

i ), (3)

and the weights are defined by

wi =
2n−1n!

√
π

n2[Hn−1(xi)]2
. (4)

Gauss-Hermite quadrature for a Gaussian random variable f ∼ N (µ, σ2) is given by,

E[t(f)] =

∫
1√
2πσ

exp

(
−(f − µ)2

2σ2

)
t(f) df ≈ 1√

π

n∑
i=1

wi t(µ+
√

2σfi). (5)

We can use Gauss-Hermite quadrature to transform the variance of f ∼ N (µ, σ2) into

the variance of λ = g(f) as below:

E[λ] =

∫
1√
2πσ

exp

(
−(f − µ)2

2σ2

)
g(f) df ≈ 1√

π

n∑
i=1

wi g(µ+
√

2σfi),

E[λ2] =

∫
1√
2πσ

exp

(
−(f − µ)2

2σ2

)
g2(f) df ≈ 1√

π

n∑
i=1

wi g
2(µ+

√
2σfi),

V[λ] = E2[λ]− E[λ2]. (6)
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Appendix C

Pseudocode for varmin learning

This pseudocode selects a new stimulus for the next trial given the current posterior

mean and covariance of f . In pseudocode, we use the Gauss-Hermite quadrature for the

transformation of the variance from f to λ, which can be done using a pre-computed

lookup table.

input: posterior mean and covariance N (f∗|µt,Λt),

compute total posterior variance of λ and choose a next stimulus

for i=1:M do grid points {x∗i }Mi=1 for representing the posterior over f

for j=1:N do candidate points {x′j}Nj=1

Π(i, j) := σ2
t (i)−

Jµ′(j)Λ
2
t (i,j)

1+Jµ′(j)σ
2
t (j)

, update the posterior variance of f

end for

end for

V(λi|Dt, r′,x′j) := GHQuad(µt(i),Π(i, j)), using eq. 6

xt+1 = arg min{x′
j}Nj=1

∑M
i=1 V(λi|Dt, r′,x′j), select a stimulus xt+1

return a new stimulus to present xt+1 at time t+ 1.
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