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Nirenberg S, Bomash I, Pillow JW, Victor JD. Heterogeneous
response dynamics in retinal ganglion cells: the interplay of predictive
coding and adaptation. J Neurophysiol 103: 3184–3194, 2010. First
published March 31, 2010; doi:10.1152/jn.00878.2009. To make
efficient use of their limited signaling capacity, sensory systems often
use predictive coding. Predictive coding works by exploiting the
statistical regularities of the environment—specifically, by filtering
the sensory input to remove its predictable elements, thus enabling the
neural signal to focus on what cannot be guessed. To do this, the
neural filters must remove the environmental correlations. If predic-
tive coding is to work well in multiple environments, sensory systems
must adapt their filtering properties to fit each environment’s statistics.
Using the visual system as a model, we determine whether this
happens. We compare retinal ganglion cell dynamics in two very
different environments: white noise and natural. Because natural
environments have more power than that of white noise at low
temporal frequencies, predictive coding is expected to produce a sup-
pression of low frequencies and an enhancement of high frequencies,
compared with the behavior in a white-noise environment. We find that
this holds, but only in part. First, predictive coding behavior is not
uniform: most ON cells manifest it, whereas OFF cells, on average, do not.
Overlaid on this nonuniformity between cell classes is further nonunifor-
mity within both cell classes. These findings indicate that functional
considerations beyond predictive coding play an important role in shap-
ing the dynamics of sensory adaptation. Moreover, the differences in
behavior between ON and OFF cell classes add to the growing evidence that
these classes are not merely homogeneous mirror images of each other
and suggest that their roles in visual processing are more complex than
expected from the classic view.

I N T R O D U C T I O N

Sensory systems must confront the problem that their signaling
capacity is limited. To make efficient use of this capacity, it has
been hypothesized (Barlow 1961) that sensory systems exploit the
fact that the environment has statistical regularities and is there-
fore in part predictable. The predictable aspects of the environ-
ment need not be explicitly represented in the neural stream since
they are, by definition, not informative. By ignoring the predict-
able aspects of the environment, neurons can focus their signaling
capacity on what is not predictable and thus convey sensory
information in an efficient manner. However, this view immedi-
ately raises a question: as the organism moves from one environ-
ment to another, the statistical regularities of the sensory input

change. For the efficient coding hypothesis to hold, the sensory
system must adapt appropriately to these changing statistics. Here
we ask, does this happen?

Changes in the statistics of a sensory environment may consist
of a change in the range of intensities, a change in its correlation
structure, or both. Both kinds of changes are known to produce
shifts in response properties that are at least qualitatively consis-
tent with the efficient coding hypothesis. When the range of
stimulus intensities increases, the neural response gain decreases
(Brenner et al. 2000; Fairhall et al. 2001; Gaudry and Reinagel
2007a; Shapley and Victor 1978; Wark et al. 2009). When the
correlation structure of the environment changes, neural filtering
properties change, both in space (Hosoya et al. 2005; Lesica et al.
2007; Sharpee et al. 2006) and in time (Hosoya et al. 2005; Lesica
et al. 2007). Our focus in this study is on the latter.

When one considers correlations, the efficient coding hypoth-
esis translates into a design principle for sensory filters, known as
“predictive coding” (Atick and Redlich 1990; Dan et al. 1996;
Srinivasan et al. 1982): the design principle is that efficient coding
is achieved by filters that remove the correlations in the sensory
stream. The implication of this idea is that as an animal moves
between environments with different correlation structures, the
filters must change so that efficient coding is maintained.

With this in mind, and a focus on temporal correlations, we
examined the dynamics of mouse retinal ganglion cells in envi-
ronments with two very different kinds of temporal correlation
structure: natural scenes and white noise. Qualitatively, and con-
sistent with the results of others (Hosoya et al. 2005; Lesica et al.
2007), we find that filtering properties change in a manner that
tends to maintain predictive coding across conditions. When
switched between environments, neurons shift their dynamics,
becoming more high-pass in the naturalistic environment than in
white noise.

However, we also identify several aspects of the adaptation of
retinal dynamics that are not anticipated from predictive coding.
Most prominently, adaptation is not uniform across cell classes: in
naturalistic conditions, the ON cell population reduces its gain by
a factor of 10 at low frequencies, whereas the OFF cell population,
on average, reduces its gain by a factor of only 2. At high
frequencies, ON cells increase their gain by a factor of almost 2,
whereas OFF cells show no increase. We find no statistical differ-
ences between bright and dark in the naturalistic stimulus to
account for this difference between cell classes.

In addition to the differences in adaptive behavior between ON

and OFF populations, adaptive behavior is also not uniform within
the populations. As we will show, this heterogeneity is nontrivial:
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it does not arise merely because there are cells that are interme-
diate in behavior between ON and OFF.

In sum, we find that retinal dynamics shift in a manner that is
consistent with the demands of predictive coding, but only in part.
ON and OFF cells are not simply mirror images of each other, and the
way that they adapt to changes in stimulus statistics accentuates this
asymmetry and reveals heterogeneity within the cell classes.

M E T H O D S

Preparation and recording

Recordings from central retinal ganglion cells of the isolated mouse
retina were obtained via a flat array of 64 microelectrodes as described
in Dedek et al. (2008). Briefly, spike waveforms were recorded using
a Multichannel Neuronal Acquisition Processor (Plexon Instruments,
Dallas, TX). Two different standard spike-sorting methods were used:
a window discriminator or a principal component analysis (PCA)–
based waveform sorting algorithm implemented in Chronux (Mitra
and Bokil 2008) based on the method of Fee et al. (1996).

Stimuli

The white-noise stimulus consisted of a pseudorandom binary se-
quence presented in a 20 � 18 stimulus array of 80 � 80-micron (2.6 �
2.6°) square checks, updated every 67 ms. The naturalistic sequence
consisted of a movie of a ground-level animal’s view of the landscape in
New York City’s Central Park. The luminance within each 67 ms block
was averaged, rescaled to an 8-bit range [0, 255], and presented in the
same array as was used for the white-noise stimulus. The two levels used
for the binary stimulus were 92 and 202, chosen so that the two stimuli
were matched for mean (148) and SD (54). The mean luminance for both
stimuli at the retina was 0.24 �W/cm2. Each stimulus sequence was
presented for 9,000 frames, lasting 600 s.

In addition to the above-cited stimulus samples used for constructing
the model, we measured responses to repeated presentation of a valida-
tion (out-of-sample) sequence. For white noise, this consisted of 60 to 200
repeats of a 90-frame (6 s) sequence (seven retinae); for the naturalistic
stimulus (all 82 cells), this consisted of 70 to 180 repeats of a 90-frame
sequence (one retina) or a 150-frame (10 s) sequence (eight retinae).

Response modeling

To compare ganglion cell dynamics in white-noise and naturalistic
conditions in the context of the predictive coding hypothesis, we
require a filter-based description of the stimulus–response relationship
in each of the two environments. To provide these descriptions, we
fitted separate linear-nonlinear-Poisson (LNP) models (Chichilnisky
2001) to data obtained under the two experimental conditions. The
parameter-fitting strategy was based on the maximum-likelihood ap-
proach of Pillow et al. (2008) and was tailored to the needs of this
study as described in the next section.

Model structure

Neuronal firing is modeled as an inhomogeneous Poisson process
whose intensity (firing probability) p(t) is the result of filtering the
stimulus S by a linear filter L, and then applying a nonlinearity N

p(t) � N�(L � S)(t)� (1)

where � represents spatiotemporal convolution, formally defined by

(L � S)(t) � � � � L(�, x, y)S(t � �, x, y)d�dxdy (2)

Since the stimulus is constant on pixels of size �x � �y � 80 � 80
microns and frames of length �t � 67 ms, we replace this integral by a
discrete sum

(L � S)(t) � �
i�1

T

�
nx

�
ny

S(t � i��, x0 � nx�x, y0 � ny�y)

� L(i��, nx�x, ny�y)(���x�y) (3)

where i covers T � 18 time steps (1.2 s) and the spatial indices nx and
ny each cover 10 contiguous integers, corresponding to a 10 � 10
array of pixels covering and approximately centered on the receptive
field. Here, the range of stimulus intensities S is mapped to [�0.5,
0.5], with �0.5 corresponding to black and 0.5 corresponding to the
maximum luminance, i.e., 0.42 �W/cm2.

To reduce the number of free parameters, we assume that the linear
filter L is separable into a product of a temporal kernel Gtemp(�)
characterized by 18 parameters, one for each lag, and a spatial kernel
Gspat(x, y) characterized by 100 parameters, one for each pixel [Pillow
et al. (2008) used two such terms]. To remove the ambiguity of
multiplicative constants shared by these factors, the kernels Gtemp(�)
and Gspat(x, y) are normalized by �i�1

T [Gtemp(i��)]2 � 1 and
�nx

�ny
[Gspat(nx�x, ny�y)]2 � 1 and the overall size of L is brought

into a single factor kmult

L(�, x, y) � kmultGtemp(�)Gspat(x, y) (4)

To further reduce the number of free parameters and to provide for
a principled extrapolation of the temporal kernel to long times without
incurring an artifactual transient after the longest lag explicitly con-
sidered (1.2 s), the temporal kernel was constrained to be a sum of 10
basis functions (Pillow et al. 2008). The first five basis functions ej

(j � 1, . . . , 5) were set to 1 on the jth time bin (of length ��) and 0
elsewhere. The last five basis functions ej (j � 6, . . . , 10) were single
lobes of raised cosine functions in logarithmic time

ej(�) � � j�1 � cos � 	


 j
�log

�

��
� � j	
� (5)

for

�log
�

��
� � j� � 
 j

where 
j ranged from 0.22 to 0.55, �j ranged from 1.8 to 2.6, and �j

was chosen for unit normalization. This extrapolation had a negligible
effect on the estimated transfer functions, since impulse responses had
largely returned to zero at 1.2 s.

To allow for exploration of a wide range of kinds of neural
responses, the nonlinearity N of Eq. 1 was parameterized as a cubic
spline (i.e., a piecewise cubic polynomial with continuous second-
order derivatives), which was not constrained to be monotonic. This
allowed us to capture the behavior of neurons with ON– OFF charac-
teristics. As we show, this model also provided for accurate estimation
of response dynamics under both white-noise and natural scene
conditions (Figs. 1B and 2B), as is required to study adaptation.

Model fitting

Instances of the preceding model were independently fit to re-
sponses to white-noise and naturalistic stimulation by maximizing the
likelihood of the observed responses. To carry out this fit, we began
with an exponential nonlinearity N(x) � exp(x � k0), that is

p(t) � exp�(L � S)(t) � k0� (6)

because for this nonlinearity, there are no local maxima (Paninski
2004), thus facilitating the parameter estimation. We then replaced the
exponential nonlinearity by an approximating 6-knot cubic spline. The
model parameters were fit by coordinate ascent (i.e., alternating stages
of maximizing the log-likelihood with respect to (i) the spline coef-
ficients and (ii) the filter parameters, until a maximum was reached).
The spline parameters were not restricted to monotonic nonlinearities.
Empirically, this procedure did not incur a drift in the values of kmult
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or k0, even though in principle they are redundant with spline
parameters. This procedure was vetted by demonstrating that it
properly recovered the parameters of model LNP systems (includ-
ing systems with nonmonotonic nonlinearities) from their re-
sponses to both white-noise and naturalistic inputs (see Figs. 1B
and 2B).

Calculations were carried out in Matlab, using code adapted from
that of Pillow et al. (2008).

Analysis of model parameters

To calculate the frequency response, we Fourier-transformed the
temporal kernel Gtemp(�) numerically. Since the impulse response was
measured up to T � 1.2 s, frequency resolution is bounded by 1/ T �
0.8 Hz. That is, the DC value of the frequency response, which is the

average of the impulse response over the previous T � 1.2 s (18 time
points), captures the average behavior over frequencies from 0 to
0.8 Hz.

In Figs. 1– 4 we show in addition, for the interested reader, the
frequency response at a step beyond the guaranteed resolution. To
calculate this, we used the fact that the impulse response ap-
proaches zero at T � 1.2 s. Thus we tapered it to zero beyond T �
1.2 s by projecting it on the basis functions indicated in Eq. 5 and
calculated frequency responses by Fourier transformation over the
interval from 0 to 4T. As a check, we also used zero-padding and
found nearly identical results. Note that the conclusions of this
study do not depend on knowledge of this fine structure.

To measure the goodness of fit of the model, we compared the ability
of the model response to predict the neuron’s response to the neuron’s
intrinsic reproducibility. To measure the model’s predictive ability, we
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FIG. 1. A: temporal kernels (top row) and
their Fourier transforms (bottom row) of 3 ex-
ample ON retinal ganglion cells under white-
noise (solid) and naturalistic (dotted) conditions.
Under naturalistic conditions, the response at
high frequencies is enhanced and the response at
low frequencies is attenuated. Temporal kernels
are normalized (root mean squared) to unity
power; Fourier transforms maintain this normal-
ization. Bias indices for the 3 cells (from left to
right): 0.87, 0.89, 0.99. B: parallel analysis of
model linear-nonlinear-Poisson (LNP) neurons
whose parameters are chosen to match the white-
noise behavior of the neurons in A. For model
LNP neurons, the temporal characteristics are
identical under white-noise and naturalistic con-
ditions.
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used the variance explained by the model’s prediction of the response to
the out-of-sample validation trials (Chichilnisky 2001). To measure the
neuron’s intrinsic reproducibility, we compared the neural responses to
the first and second halves of the validation trials. Our measure of
goodness of fit (GOF) was the ratio of these quantities

GOF �
V(M, R1) � V(M, R2)

2V(R1, R2)
(7)

where V is the fraction of variance explained, M is the model response, R1

is the firing rate for the first half of validation-sequence trials, and R2 is
the firing rate for the second half of validation-sequence trials. Firing rates
R1 and R2 were calculated by convolving the raw spike train sequence
with a Gaussian whose standard deviation was half the bin width, 33 ms.
We report results for the goodness of fit to the natural scene stimulus,
which was measured in all cells; similar results were obtained for the
goodness of fit measured with the white-noise stimulus (53/82 cells).

Bias index

The bias index (BI) is a measure of the overall balance of ON and
OFF inputs, defined by

BI � (RON � ROFF) ⁄ (RON � ROFF) (8)

where RON is the peak firing rate following a step increase in
luminance and ROFF is similarly defined for the offset transient. Note
that for a cell that has only an ON response (RON � 0, ROFF � 0), then
BI � 1. Similarly, for a cell that only has an OFF response, BI � �1.

RON and ROFF were measured by adapting the procedure of Carcieri
et al. (2003) for use with random binary stimulation. Specifically, we
first identified the “optimal” check—i.e., the one that was closest to
the receptive field center and covered most of it. Then, to measure
RON, we calculated a poststimulus time histogram (PSTH) triggered
by portions of the stimulus sequence in which optimal check was off
for five frames (333 ms) and then on for two frames (133 ms). RON was
taken as the maximum of the smoothed (Gaussian standard deviation 20 ms)
PSTH in the window from 230 to 330 ms (see kernel functions in Figs. 1 and
2) following the onset transient. ROFF was analogously measured from
segments of the stimulus sequence in which the optimal check was on for five
frames and then off for two frames. With this method, the population
distribution of BI values was nearly identical to that reported by Carcieri et al.
(2003) who used an “optimal spot,” rather than the optimal check used here.

R E S U L T S

Our goal is to determine whether ganglion cells adapt to
changes in the statistics of their inputs, focusing on temporal
changes. To do this, we used a model similar to that of Pillow
et al. (2008) to characterize ganglion cell response dynamics in
two environments: white-noise checkerboards and naturalistic
stimuli with the same spatial discretization and the same mean
and variance. This model describes the neural response as the
result of three transformations: a linear spatiotemporal filter L,
followed by a static nonlinearity N, followed by Poisson spike
generation. Because the dynamics are described by the filter L,
we focus on it.

We first consider individual example cells and then the
behavior of the ON and OFF cell populations as a whole. Data are
presented from 82 ganglion cells (38 ON, 44 OFF) in nine
retinae.

Example cells

Figure 1A shows that in typical ON cells, a change in the
temporal statistics of the sensory input induces a change in

response dynamics. In the top row, we compare the temporal
kernel of the linear filter measured under white-noise condi-
tions (solid) and naturalistic stimulation (dotted). Visual in-
spection shows that the temporal kernel under naturalistic
conditions has a larger initial transient and a smaller under-
shoot, suggesting that a change in dynamics has occurred. To
understand the implications of this shape change for frequency
tuning, we Fourier-transformed the temporal kernels (Fig. 1A,
second row). The results showed that sensitivity is augmented
at high frequencies (3 to 5 Hz), by a factor of 2 in these
examples, corresponding to the larger initial transient. Sensi-
tivity is strikingly attenuated at low frequencies, by a factor of
up to 3 to 5 in these three examples and by a factor of 10 on
average, as shown in the next section. This loss of low-
frequency sensitivity corresponds to the change in the under-
shoot, resulting in an equalization of the area under the two
lobes of the temporal kernel.

To be sure that this change represents an adaptation of
ganglion cell dynamics, rather than a behavior built into the
LNP model or a result of errors in estimating model parame-
ters, we carried out a simple simulation: we used the LNP
model obtained from white-noise conditions, simulated its
responses to the white-noise and the naturalistic inputs, and
then estimated model parameters from those responses accord-
ing to the procedures described in METHODS. This shows what
one would expect for a cell whose intrinsic characteristics do
not change and controls for errors in estimating model param-
eters from the naturalistic stimulus ensemble (Sharpee et al.
2006) due to its correlation structure. Results of this analysis
are shown in Fig. 1B. In contrast to the corresponding panels of
Fig. 1A, the temporal kernels (top row) and their Fourier
transforms (bottom row) obtained from white-noise and natu-
ralistic stimulation superimpose. This shows that the changes
observed in Fig. 1A cannot be explained by bias or imprecision
in the fitting procedure: when the fitting procedure is applied to
simulated spike trains generated by LNP neurons, the temporal
kernels do not change. In other words, the changes seen in Fig.
1A reflect changes in the neurons’ filtering characteristics, not
artifacts of the fitting procedure.

OFF cells (Fig. 2A) show a behavior that contrasts dramati-
cally with ON cells. First, the initial response transient changes
very little between white-noise and naturalistic conditions.
Correspondingly, as Fourier analysis shows, there is essentially
no enhancement of the response in the high-frequency range
(3 Hz) under naturalistic conditions. Second, although there
is a change in the size of the undershoot in the two environ-
ments, the Fourier analysis shows that this results in a smaller
change in the low-frequency sensitivity than that seen in ON

cells of Fig. 1A. The reason for this is that although the
undershoot amplitude changes, its area changes very little.

For completeness, we performed the same computational
control for OFF cells as that for ON cells (Fig. 2B), confirming
that the changes in the measured temporal kernels in the two
stimulus conditions indeed reflect a change in filtering charac-
teristics.

Average behavior of ON and OFF cells

Figure 3 summarizes the preceding analysis across the
population of 82 retinal ganglion cells. When shifted from
white-noise to naturalistic stimuli, average ON cell (n � 38)
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sensitivity is reduced on average by a factor of 10 at the
lowest frequencies and increases on average by a factor of
1.7 at 5 Hz.

In contrast, the OFF cell population (n � 44) shows, on
average, much less adaptation: there is a reduction in sensitiv-
ity by a factor of �2 at low temporal frequencies and no
appreciable increase at high temporal frequencies.

The shift seen in ON cells makes sense in terms of
predictive coding: sensitivity to low frequencies is reduced
in an environment in which low-frequency correlations are
more prominent. However, this behavior is only qualita-
tively consistent with the behavior expected from predictive
coding.

To work out the quantitative prediction, we determine how the
temporal kernel must change so that it removes stimulus corre-
lations as the environment changes. It is convenient to work
in the frequency domain and to characterize stimulus cor-
relations by the stimulus power spectrum P(f). Assuming
linearity and a neural transfer function A(f), the power spectrum of the
response is then R(f) � P(f)|A(f)|2. Thus to maintain R(f) constant as
the power spectrum changes from P1(f) in environment 1 to P2(f) in
environment 2, we must adjust A(f) so that P1(f)|A1(f)|

2 � P2(f)|A2(f)|
2.

This is equivalent to

�A2(f)�
�A1(f)�

�P1(f)

P2(f)
(9)
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FIG. 2. A: temporal kernels (top row) and
their Fourier transforms (bottom row) of 3 ex-
ample OFF cells. Under naturalistic conditions,
there is virtually no change in the response at the
highest frequencies, and only very modest
changes in the responses at low frequencies.
Both behaviors contrast with that of the ON cells
in Fig. 1. Bias indices for the 3 cells (from left to
right): �0.27, �0.26, �0.81. Other details as in
Fig. 1. B: parallel analysis of model LNP neu-
rons whose parameters are chosen to match the
white-noise behavior of the neurons in A. For
model LNP neurons, the temporal characteris-
tics are identical under white-noise and natural-
istic conditions.
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That is, the change in the transfer function should be in-
versely proportional to the square root of the change in the
power spectrum.

Here, the power spectrum of the white-noise stimulus is flat
[P1(f) � K1], whereas the power spectrum of the naturalistic
stimulus is approximately P2(f) � K2f�a, where a � 0.83, as

determined empirically from our stimulus (see Supplemental
Fig. S1).1 Thus, the preceding analysis predicts that adaptation
to the naturalistic stimulus would result in a change in the
Fourier transform of the temporal kernel proportional to fa/2

1 The online version of this article contains supplemental data.
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and that the behavior of ON and OFF cells would be similar to
each other. As a comparison with the line of slope a/2 shows
(Fig. 3), ON cell behavior is qualitatively consistent with this
expectation, but departs quantitatively. OFF cells, on the other
hand, show almost no shift, inconsistent with the expectations
of predictive coding.

Heterogeneity of adaptive behavior within ganglion
cell populations

At this point, we have seen that adaptive behavior is distrib-
uted in a strikingly nonuniform manner across ganglion cells:
ON cells adapt in a manner that is at least qualitatively consis-
tent with predictive coding, but OFF cells, on average, show
little adaptation. However, the ON versus OFF distinction, al-
though fundamental to any discussion of ganglion cell behavior
(Dowling 1970; Rodieck 1973), is a simplified picture of the
diversity of ganglion cell classes. In particular, it represents a
dichotomy along a continuum of a range of weightings of ON

and OFF inputs (Carcieri et al. 2003).
Thus given that ON and OFF cells, on average, have distinct

adaptive behaviors (Fig. 3), one can anticipate that individual
ganglion cells will differ in their adaptive behavior, reflecting
the balance of their ON and OFF inputs. To test this hypothesis,
we analyzed how adaptive behavior of individual cells de-
pended on the relative contribution of their inputs. The results
of this analysis are shown in Fig. 4. As the figure shows, there is
heterogeneity in adaptive behavior, although it substantially exceeds
what would be expected by a mixing of ON and OFF signals.

To show this, we used the “bias index” (BI, Eq. 8) to
quantify the relative contribution of ON and OFF inputs to each
ganglion cell (Carcieri et al. 2003). A BI of �1 indicates
that a cell receives exclusively OFF input; a BI of �1 indicates
that a cell receives exclusively ON input. As seen in Fig. 4C, the
BI accounts for only a small fraction of the cell-to-cell varia-
tion in adaptive behavior. Moreover, the cells with BI near �1
or �1 (those that are likely to have exclusively ON or OFF input)
showed a range of behavior just as large as that of the cells
whose BI was far from the extremes.

We next formalize these observations: (i) that there is a
substantial difference in adaptive behavior between ON and OFF

cell classes and (ii) that there is heterogeneity within cell
classes that is not explained by the mixture of ON and OFF

inputs.
With regard to the first observation, we compared the log of

the adaptation ratio (the ratio of the Fourier transforms of the
temporal kernels measured under the two conditions) between
cell classes. Using a bipartite subdivision into OFF and ON

subgroups as in Fig. 3, there was a highly significant difference
at DC and 5 Hz (P � 0.001). The difference at 3 Hz was less
significant (P � 0.01) and there was no significant difference
at the intermediate frequencies (0.2 and 1 Hz) shown in Fig. 4.
As noted earlier, the ON versus OFF subdivision is likely an
oversimplification: as described by Carcieri et al. (2003), the
BI distribution is trimodal, with a cutpoint between OFF and
ON– OFF subsets at a BI of approximately �0.6. However, this
refinement does not change our conclusions: with the tripartite
subdivision, we found that ON cells differed substantially from
both OFF and ON– OFF cells at DC and 5 Hz (P � 0.001),
whereas OFF and ON– OFF cells differed only minimally from
each other (P � 0.05 at DC, NS at 5 Hz).

With regard to the second observation, heterogeneity within
cell classes, we used the BI as a measure of the mixture of ON

and OFF inputs and regressed the log of the adaptation ratio
against the BI, separately within each cell class. Within each
cell class (using either the bipartite or tripartite division), no
more than 10% of the variance could be accounted for by the
BI. We conclude that the heterogeneity within cell classes was
not simply a result of a mixture of ON and OFF inputs.

It is interesting to note that the heterogeneity within categories
does not merely represent random variation of responses: there is
structure to the distribution of adaptive behavior. Specifically,
ganglion cells that show adaptation at low temporal frequencies
also tend to show adaptation at high temporal frequencies. Figure
5 shows this, by comparing the adaptation ratio at DC and at 5 Hz.
Across all cells, these ratios are strongly negatively correlated
(r � �0.48, P � 0.001). This covariation is concentrated within
the ON subpopulation (r � �0.40, P � 0.01).

Finally, we rule out the possibility that modeling error
accounts for the observed heterogeneity. To do this, we exam-
ined the adaptation ratio as a function of goodness of fit of the
response model (see METHODS). As seen in Fig. 6, across the
range of cells that were fit well by the model and cells that were
fit poorly, a much smaller effect cells decreased their responses
at DC and increased their responses at 5 Hz, whereas OFF cells
showed a much smaller effect. Correspondingly, there was no
correlation between adaptation ratio and goodness of fit (DC:
r � �0.02; 5 Hz: r � 0.12, both P � 0.05).

In sum, we found that retinal ganglion cells adjust their
dynamics so that their low-frequency sensitivity is reduced and
their high-frequency sensitivity is enhanced, when moved from
a white-noise environment to a naturalistic one. However, this
difference is only qualitatively consistent with the expectations
of predictive coding and there is substantial nonuniformity,
both between and within cell classes.

D I S C U S S I O N

Predictive coding in a changing environment

Sensory systems have limited signaling capacity and must
operate in many kinds of environments. To confront the prob-
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lem of limited signaling capacity, sensory systems make use of
predictive coding (Barlow 1961; Laughlin 1981; Srinivasan et
al. 1982). The idea of predictive coding is that a sensory system
need not signal what is predictable about its environment and
thus can concentrate its capacity on the aspects of the incoming
sensory signals that cannot be guessed. To implement this, the
filtering properties of a sensory system need to decorrelate the
input signal—i.e., remove what is predictable about its envi-
ronment. This, indeed, is what is found experimentally, both in
the spatial domain (Atick and Redlich 1990, 1992; Hosoya et
al. 2005; Sharpee et al. 2006; Srinivasan et al. 1982) and in the
temporal domain (Dan et al. 1996; Hosoya et al. 2005; Lesica
et al. 2007; Srinivasan et al. 1982).

However, sensory systems must also operate in many dif-
ferent environments and these environments may have differ-
ent statistical characteristics. If predictive coding is to be
effective as the environment changes, the filtering properties of
the sensory system must adapt to its changing correlation
properties.

Our main finding is that this expectation holds (Hosoya et al.
2005; Lesica et al. 2007), but in a heterogeneous fashion across
and within cell classes. Specifically, when shifted from a white-
noise environment to a naturalistic one, ON cells, on average,
change their gain in a manner that approximately compensates for
the statistics of natural scenes, but OFF cells, on average, do not (Fig.
3). Moreover, we also find that adaptive behavior is heterogeneously
distributed within the cell classes (Figs. 4 and 5). We now consider
the functional implications of these two levels of heterogeneity.

Heterogeneity between cell classes

The simplest functional hypothesis that might account for
the differences between ON and OFF cells is that it merely
reflects statistical asymmetries in the environment. For exam-
ple, if the bright regions of natural scenes were temporally
correlated but the dark regions were not, then predictive coding
would in fact account for this asymmetry. However, although
there are notable asymmetries in the spatial correlation struc-
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ture of bright and dark regions (Balasubramanian and Sterling
2009), no such differences in the temporal correlation structure
have been identified (Dong and Atick 1995a) and our analysis
confirms this (Supplemental Fig. S1). Thus the observed dif-
ference in adaptive behavior between ON and OFF cells does not
appear to be driven merely by the needs of predictive coding.

An alternative hypothesis is suggested by the recognition
that adaptation has potential disadvantages (Wark et al. 2009).
If a sensory system completely adapts to the statistics of its
sensory environment, then its ability to communicate those
statistics has been lost. Similarly, if a sensory system adapts
based on an incorrect inference that the environment has
changed, it becomes less efficient than if it did not adapt. These
losses are mitigated if there is a population of ganglion cells
that does not adapt (or that adapts differentially), which is what
OFF cells appear to do.

ON and OFF classes are not mirror images

The differences in adaptive behavior reported here are part
of the larger picture of growing evidence that ON and OFF

pathways are not simply mirror images, but differ in a more
fundamental manner. These differences encompass not only
the way that ON and OFF cells adapt, but also the basic aspects
of their behavior in a single environment.

At the most basic level, the synaptic mechanisms that
provide input to ON and OFF ganglion cells differ in their
linearity, their contrast–response characteristics (Zaghloul et
al. 2003), and their temporal characteristics (Murphy and Rieke
2006). Their filtering properties differ as well: OFF cells are
more numerous and have smaller receptive fields than those of
ON cells (Balasubramanian and Sterling 2009) and this differ-
ence in spatial resolution persists into visual cortex (Zemon et
al. 1988). Our data add a difference in the temporal filtering
properties: ON cells are more broadband than OFF cells (Fig. 3),
which corresponds to the observation that ON cell temporal
kernels tend to be biphasic, whereas OFF cell temporal kernels
tend to be triphasic (Figs. 1 and 2).

Further differences between ON and OFF cells are revealed by
examining how they adapt to a changing environment, includ-
ing (i) the striking differences reported here, (ii) the differences
in adaptation rates following steps changes of white-noise
stimuli reported by Wark et al. (2009), and (iii) evidence that
ON cells adapt their dynamics much more than OFF cells during
dark adaptation (Pandarinath et al. 2009).

Although it is tempting to think of the ON and OFF pathways
as a means to subdivide positive and negative visual signals
into components that spiking neurons can transmit, the fact that
ON and OFF pathways differ in so many respects suggests that
this view is an oversimplification. As mentioned earlier, the
existence of a subset of ganglion cells that do not adapt, or that
adapt differentially, can mitigate some of the deleterious ef-
fects of adaptation. However, the fact that ON and OFF cells
differ even in their basic filtering properties suggests that they
may play different roles in specific visual tasks or environ-
ments, even when adaptive behavior is not engaged.

Qualitative, not quantitative, agreement

Even at the level of the average behavior within the ON cell
population, agreement with the expectations of predictive cod-

ing is only approximate (Fig. 3). In this section, we outline
some reasons for this. We emphasize, though, that none of
these considerations can account for the heterogeneity we
observe, either between or within cell classes.

The main reason is that to determine the consequences of the
efficient coding hypothesis for response dynamics, it is neces-
sary to make simplifying assumptions: that the environment is
Gaussian, and that neurons can be regarded as approximately
linear. In principle, the efficient coding hypothesis also applies
to scenarios in which the environmental signals have complex,
non-Gaussian statistics (Geisler 2008) and neural channels that
are nonlinear; however, to work out the consequences of the
efficient coding hypothesis in this general setting is simply not
possible. Therefore as have others (e.g., Atick and Redlich
1990, 1992; Dan et al. 1996; Dong and Atick 1995a,b; Hosoya
et al. 2005; Sharpee et al. 2006; Srinivasan et al. 1982), we
focused on the implications of the second-order correlation
properties of the stimulus. This leads to the simple, straight-
forward prediction of predictive coding: that neural filtering
will decorrelate (prewhiten) the stimulus.

Neurons have limited power and they also have noise that is
frequency dependent, although within the realm of the above-
cited approximation, this does not change the expectations of
predictive coding. To see this, we first consider such a neuron
confronted with an environment consisting of uncorrelated
Gaussian noise. Intuitively, information transmission is maxi-
mized if the neuron devotes most of its power to frequencies at
which its internal noise is low. Made rigorous, this intuition
becomes the classic “water-filling” theorem (Shannon 1948): a
recipe for the linear filter that optimizes the information trans-
mission by a noisy channel in an uncorrelated environment.
When the environment has correlations, information transmis-
sion can be further improved, by first filtering the environmen-
tal input to remove what is predictable. This yields an uncor-
related (i.e., white) signal, to which the filter specified by the
water-filling theorem can then be applied. The optimal neural
transformation is a product of these two components: one that
depends only on the environment (the decorrelating filter) and
one that depends only on the noise characteristics of the neuron
(the water-filling filter). Because the first filter does not depend
on the characteristics of the neuron, neuronal noise does not
influence how we expect the decorrelating filter to adapt. For a
more detailed analysis, see Diamantaras et al. (1999).

Heterogeneity within cell classes

Our second main finding is that even within ganglion cell
classes, adaptive behavior is heterogeneous, with the hetero-
geneity not simply accounted for by a mixing of ON and OFF

signals (Figs. 4 and 5). This conclusion holds independent of
whether we consider the gamut from OFF to ON to be a
continuous one quantified by the bias index, whether we
dichotomize this range or whether we adopt the trichotomous
classification of Carcieri et al. (2003). These authors also
identified a subset of long-latency cells with ON and OFF

responses and a subset of ON cells that were sustained. These
distinctions support the notion of dynamic heterogeneity within
the OFF and ON subsets. However, we are unable to make a
precise connection between these distinctions and the present
measurements of adaptation, since the long-latency and sus-
tained subsets were defined by Carcieri et al. (2003) on the
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basis of responses to sustained, optimal spots, a stimulus that
was not used in the present experiments.

We now consider the functional implications of this heter-
ogeneity. We begin by considering adaptation in its biological
context. Both from the point of view of analytical convenience
and the traditional approach to the analysis of neural transduc-
tions, it is natural to consider the “white-noise” condition to be
the baseline and the naturalistic stimulus to be the perturbation
to which ganglion cells adapt (as we have done earlier).
However, from a biological perspective, the opposite view is
more appropriate: the retina has evolved and developed in the
animal’s environment and the white-noise stimulus is the one
that represents a perturbation. From this perspective, it is not at
all surprising that the adaptation ratio observed is only approx-
imately what is expected from predictive coding—a white-
noise environment is only rarely encountered and, conse-
quently, one for which there is little selective pressure for
efficiency.

Conversely, the kinds of environments encountered by an
animal are likely to be more varied than just alternations
between a stereotypical “natural scene” versus white noise, for
example, dense brush, open space, and underground, in various
admixtures, viewed in a range of lighting and atmospheric
conditions. Each of these environments is characterized by
distinctive statistics. Thus, to maintain predictive coding, the
retina would be required to have a wide variety of adaptive
behaviors, to compensate for a multidimensional range of
changes in the environmental spectrum. The heterogeneity we
observe may serve this purpose.

Interestingly, one can imagine how a single mechanism for
adaptation, such as the well-described contrast gain control,
could be varied among different cells (e.g., varied among
different ON cell) to produce this heterogeneity. The action of
the contrast gain control (Shapley and Victor 1978, 1981) is as
follows: when contrast is high, low-frequency responses are
attenuated and high-frequency responses are enhanced. Impor-
tantly, the setting of the contrast gain control is determined by
a neural measure of contrast, not its physical measure, i.e., it is
determined by the cells’ sensitivity to contrast, not by absolute
contrast. This allows the contrast gain control to produce
adaptation to temporal correlations: even though the naturalis-
tic stimulus and the white-noise stimulus are equated for
physical contrast, the sensitivity is higher for the naturalistic
one because it contains more power at the frequencies that the
mouse retina is most sensitive to: �3 Hz. Thus the contrast
gain control is engaged more strongly for naturalistic stimuli
than for white noise of the same physical contrast (Lesica et al.
2007) and could suffice to account for the basic phenomenon
that low-frequency responses are attenuated for natural scenes.
If this idea is correct, then the sensitivity to contrast should
determine the extent of adaptation. This should hold not just
between white-noise and naturalistic stimuli, but between any
two environments: the extent of the change in dynamics should
be governed, quantitatively, by the extent to which the fre-
quency content of the environment activates the contrast gain
control.

In this view, variability in individual neurons’ expression of
the contrast gain control would allow different cells within a
population to adapt to different kinds of environments. This
heterogeneity in adaptive behavior could be accomplished
simply: by a linear admixture of retinal signals that are, and are

not, influenced by the contrast gain control. This simplicity
does have a limitation, though: it cannot adapt in an arbitrary
fashion, since its repertoire is limited to this one-parameter
family of mixtures. This kind of limitation may account for the
imperfect adaptive behavior that we observe.

An implication of this idea is that the mechanism for contrast
gain control might differ between the ON and OFF pathways.
This follows from the observation that both ON and OFF cells
show effects of the contrast gain control (Benardete and
Kaplan 1999; Lesica et al. 2007; Ohzawa et al. 1985; Shapley
and Victor 1978, 1981), but they differ in the way in which
they adapt to the statistics of their inputs. As mentioned earlier,
differences between ON and OFF pathways at a mechanistic level
are now well documented (Murphy and Rieke 2006; Zaghloul
et al. 2003) and a consequent difference in the mechanism of
the gain control would not be unexpected.

Whatever its mechanistic basis, the observation that retinal
ganglion cells differ in the extent to which they adapt raises an
interesting possibility: that this heterogeneity provides a way to
bootstrap adaptation along a single dimension at the level of
individual ganglion cells (e.g., a contrast gain control) into
multivariate adaptation at the population level. That is, we
speculate that local populations containing a mix of neurons
that differ in the extent to which they adapt may provide for
efficient coding in a much wider range of environments and
task demands than could be achieved by a population of
neurons that all adapted similarly.

Use of LNP models

Recently, model structures other than LN cascades have
been used to study issues related to adaptation (Borst et al.
2005; Famulare and Fairhall 2010; Gaudry and Reinagel
2007b) and this raises the question of why we used an LNP
structure. The reason was that our goal was to examine gan-
glion cell response properties in the context of predictive
coding. Since predictive coding makes predictions about filters,
we needed a model that describes the response properties in
those terms. The LNP served this purpose. If, for example, we
had fit one of these alternative models to our data and found
that it accounted for the differences in the responses in the two
environments, it would not have provided information about
whether predictive coding was occurring. To determine that, we
would have to characterize the filtering properties of the alterna-
tive model under the two operating conditions. Thus we took the
LNP approach because it is a direct way to get to the filters. Note
that our intent is not to exclude these models; we just use the LN
approach for a particular purpose.

Conclusion

We have identified adaptive behavior in retinal ganglion
cells that is qualitatively consistent with the demands of pre-
dictive coding in a changing environment, but is characterized
by heterogeneity at two levels: between ganglion cell classes
and within ganglion cell classes. We speculate that this heter-
ogeneity has a functional role: to provide for efficient coding in
multiple kinds of environments and for multiple tasks, rather
than to optimize efficiency for a single stereotypical “natural
scene.”
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