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1 Materials and Methods - Behavior and electrophysiology

The data shown here have been reported previously (14). Here we briefly summarize the task and data
collection. Single units were recorded while a monkey performed a moving-dot direction-discrimination
task. The dot motion was displayed for random times, uniformly distributed from 500 to 1000 ms. The
motion was directed towards one of the two choice targets: a target placed inside the cell’s response
field (in-RF target), and one placed diametrically opposite (out-RF target). 500 ms after the motion
stimulus ended, a go-signal was provided and the monkey made a saccade to one of two choice targets,
indicating its choice of motion direction. Dot coherence (the strength of the motion stimulus) was
varied across trials. Dot coherence was drawn from conventional values of 0, 3.2, 6.4, 12.8, 25.6,
and 51.2%. Coherence levels for each trial were selected uniformly random and motion direction was
sampled independently with a 50% chance of an in-RF direction. To simplify our analysis, we collapsed
the coherences into 5 levels: zero=0%, positive/negative high ={25.6, 51.2}%, and positive/negative
low ={3.2, 6.4, 12.8}% (positive values indicate motion towards the in-RF target and negative values
towards the out-RF target). The original study included trials in which the choice targets were displayed
during the entire trial and trials in which the targets were flashed briefly before motion onset. We chose
to include only trials for which the targets were displayed throughout the trial.

In the original study (14), 80 spatially selective LIP cells were recorded from 2 adult, male rhesus
macaques (M. mulatta; 14 from monkey J, 66 from monkey P). The full population included cells with
a range of response styles, including cells selective primarily for motor response. For this study, we
wished to include only cells with choice selectivity during the motion epoch. We used a d′ analysis to
quantify choice selectivity in the spike counts of the cells during the period 200-700 ms after dot motion
onset (before the go signal was given on any trial). The d′ value measures choice selectivity for a single
cell as

d′ =
µin − µout√
1
2

(
σ2
in + σ2

out

) (1)

where µin and µout are the mean spike counts on the in-RF and out-RF trials respectively. The variance
of the spike counts on the in-RF and out-RF trials are σ2

in and σ2
out. We selected the top 50% of cells

(40 cells, 6 from monkey J and 34 from monkey P). The d′ of the 40 selected cells ranged from 0.397

to 1.661 with mean 0.819 and standard deviation 0.359.

For our statistical analyses, we used the spike trains for each trial starting 2̃00ms after motion onset (as-
suming a 200 ms latency of the decision-related activity to appear in LIP (15)) until 200 ms after motion
offset. Therefore, the spike trains we used for fitting were 500-1000 ms long, uniformly distributed on
this interval. We repeated the analyses with earlier start times and achieved similar results (Sec. 3.4).
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The mean number of trials per cell was 385 (std=148.4, range=[96 750]). The mean number of spikes
observed on each trial was 12.4 (std=11.7, range=[0 116]). This set of cells was qualitatively simi-
lar to those that have received focus in other studies, and exhibit response profiles (shown in Figures
S13- S15) similar to those present in the well-studied Roitman & Shadlen dataset (Fig. S22).

We did not attempt to elaborate our models with an urgency signal, as introduced by (15). Our LIP
responses did not exhibit an urgency signal, originally defined as the residuals between the data and
an unbiased diffusion model, and in practice characterized as the upward deflection of responses for
0% coherence trials not conditioned on choice. The latter is flat in our dataset (e.g., Figure 3A).

2 Materials and Methods - Modeling

Here we define the two models of LIP spike train responses during decision-making. The models define
an observed spike train as a Poisson process with rate determined by an unobserved (latent) noise
process on each trial, yielding a doubly stochastic model. We fit both models to each cell independently.

We use Markov chain Monte Carlo (MCMC) methods to sample from the posterior distribution of model
parameters given the observed spike trains. These methods provide samples from the posterior distri-
bution over the model parameters by alternately sampling the model parameters and the latent variables
for every trial. The resulting samples of the model parameters approximate the posterior distribution
of parameters given the data, marginalized over the latent variables. This allows us to include uncer-
tainty in our parameter estimates, and to avoid any approximations that would be required to fit these
non-linear, non-Gaussian models with deterministic algorithms such as expectation-maximization. We
fit the models to 90% of the trials for each neuron (selecting 90% from each coherence group), and held
out 10% for computing cross-validation statistics such as predictive log-likelihood. The results of this
analysis were consistent with the results obtained from DIC and Bayes Factors, but much more costly
to compute because they required 10 folds of fitting and validation, and so we have not included them
here.

We ran the MCMC algorithms for a total of 60 000 iterations and discarded the first 10 000 samples
(the “burn in” period), to ensure that the Markov Chain had converged to its asymptotic distribution,
the true posterior. With the remaining samples, we only took every 5th sample (a procedure known as
“thinning” the chain) in order to reduce autocorrelation (or increase independence) between samples.
Thus, we effectively obtained 10 000 samples from the posterior distribution of model parameters. We
used these samples to represent the posterior distribution for performing model comparison analyses
(Figs. 3B, S6-S7). For all other analyses, we used the posterior mean (mean of the 10 000 samples) as
a point estimate of the model parameters.

We implemented the sampling algorithms on a GPU using a combination of Matlab and CUDA. All
sampling and analyses were performed on single desktop computer equipped with an Nvidia GTX Titan
GPU and an Intel i7-4930K CPU (6 cores, 3.40 GHz). For the ramping (diffusion-to-bound) sampler
running on a 500 trial dataset, the MCMC required 0.35 s to generate a sample. The stepping model
sampler required 0.03 s per iteration. These times can be compared with our original CPU-only Matlab
implementation of the ramping MCMC algorithm, which required a prohibitively slow 17.6 s per sample.
Our use of both C/CUDA and a modern GPU produced an implementation suitable for running on a
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single desktop.

For computational convenience, we define the models in discrete time using bins of length ∆t (∆t = 10

ms bins here). However, we simulate spike trains at a 0.2 ms resolution, assuming a homogeneous
spike rate within 10 ms bins. Here we provide some notation for the models. We denote the entire
set of spike trains (for the single neuron being modeled) as y, and the spike counts at time bin t in
trial j as yj,t, with trials numbered 1 to N . Some parameters depend on the stimulus coherence in
the trial. We consider stimulus coherences as categorical, rather than assuming a functional form for
the stimulus-dependent parameters. The total number of categories is denoted C (here, C = 5). The
coherence for trial j is c(j). Some model parameters depend on stimulus coherence, and a subscript
(for example, pc) denotes coherence dependence. Our analysis method allows trials to be of varying
length: the length of trial j in number of discrete bins is denoted Tj .

2.1 Ramping (diffusion-to-bound) model

The spike rate in the ramping model follows a diffusion-to-bound process. The parameters of the model
are Θ =

{
β1:C , x0, ω

2, γ
}

. The β and ω2 parameters are the drift and diffusion terms (respectively) for
the drift-diffusion process. The diffusion process starts at x0, and the bound height is determined by γ.
The drift-diffusion process xj,1:Tj determines the spike rate for trial j. The full model can be described:

xj,1 = x0 + εj,0 (2)

xj,t+1 = xj,t + βc(j) + εj,t (3)

εj,t ∼ N (0, ω2) (4)

τj =

{
inf
t
xj,t ≥ 1 : if there exists xj,1:Tj ≥ 1

∞ : otherwise
(5)

yj,t|t < τj ∼ Poisson (log(1 + exp(γxt))∆t) (6)

yj,t|t ≥ τj ∼ Poisson (log(1 + exp(γ))∆t) (7)

The drift term β is the only coherence-dependent parameter (representing the strength of evidence in
the stimulus). Spike rates are kept positive with the soft-rectification function log(1 + exp(γxt)).

In our parameterization, the latent diffusion process, xj,1:Tj , does not stop at the bound, but the spike
rate is held constant after the bound crossing time τj . This is equivalent to a model that stops the
diffusion at bound hitting time, because spike rate is constant after this time in either case. Additionally,
the bound-hitting time occurs when xj,t crosses a constant bound at 1 - the bound height in terms of
spike rate changes with the parameter γ. The transfer function makes bound in spikes per second
equal to

log(1 + exp(γ)) ≈ γ. (8)

Therefore, the bound height is given by γ. Our choice in parameterization not only simplifies model
inference, but it makes the noise in the integration process independent of each neuron’s firing rate a
priori.
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2.1.1 Prior distributions: ramping model

The prior distributions for the model parameters take the following form

x0 ∼ N (µ0, σ
2
0) (9)

β ∼ N (µβ, σ
2
β) (10)

ω2 ∼ Inv-Gamma(αω, βω) (11)

γ ∼ Gamma(αγ , βγ) (12)

We chose the following values for the priors

1. µ0 = 0, σ0 = 10

2. µβ = 0, σβ = 0.1

3. αω = 0.02, βω = 0.02

4. αγ = 2, βγ = 0.05

The prior over the maximum firing rate, γ, has mean 40 spikes/s with a standard deviation of 28.3, which
covers the range of firing rates we expect to encounter in LIP. The typical values for the starting point
of the diffusion process, x0, should lie between 0 and 1, because the diffusion process runs to a bound
of 1. The broad Gaussian prior we chose for x0 is nearly uniform over this region. The diffusion slope,
β, corresponds to motion evidence (dot coherence), which was drawn for each trial from a distribution
with mean 0%. We chose the standard deviation for the β prior by considering the range of realistic
time-to-bound distributions: assuming x0 = 0, then if β > 0.1 the mean time-to-bound would be under
100 ms (extremely fast). Therefore, we chose the standard deviation for the prior on β to be 0.1, which
places most of the prior probability mass on reasonable bound-hit times, without being too constricting.

In the MCMC section, we use the prior parameter symbols instead of these specific values so that it is
clear where the priors are placed.

2.1.2 MCMC: ramping model

The sampler consists of two primary steps: (1) sampling the latent states given the previous value of
the model parameters, and (2) sampling the model parameters given the newly sampled latent states.
This gives a representation of the joint posterior of model parameters and latent states. By ignoring the
latent state samples, we obtain an estimate of the posterior distribution over model parameters given
the data alone, marginalizing over latent parameters. We sample the latent states in each step because
this results in a more efficient chain in which the model parameters are easily sampled using a fixed
value of the latent states, especially since the data are divided into independent trials (23, 24). We
initialize the sampler by setting the bound height, γ, to the average spike rate in the final bin of all in-RF
choice trials. The initial diffusion value x0 was set to 0.1. The remaining parameters were set to the
mode of the prior distribution.

Sampling the diffusion paths
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We obtain the sth sample of the latent state for all trials x(s) conditioned on the previous sample of the
parameters, Θ(s−1), and the observed spikes y. The latent state of each trial is independent of all other
trials given the model parameters and the data. Therefore, we outline the sampler for a single trial, and
we drop the subscript denoting trial number for simplicity of notation.

The posterior distribution over the latent states does not have a closed form. Instead, we decompose
the posterior using the Markovian structure of x:

p(x|y,Θ, τ) = p(xT |Θ, y1:T , τ)
T−1∏
t=1

p(xt|xt+1,Θ, y1:t, τ) (13)

Using Bayes theorem, we compute each of the right-hand side terms as

p(xt|xt+1,Θ, y1:t, τ) ∝ p(xt+1|xt,Θ, τ)p(xt|y1:t,Θ, τ) (14)

Therefore, if we can compute p(xt|y1:t,Θ, τ) for t = 1 to T and p(τ |Θ, y1:t), we can sample xT from
p(xT |Θ, y1:T ) and then work our way backwards, sampling xt from p(xt|xt+1,Θ, y1:t, τ) for t = τ to 1

in order to obtain a sample from the complete posterior distribution, p(x, τ |y,Θ).

We use a particle filter to approximate the distributions p(xt|y1:t, τ ≥ t,Θ(s−1)) for t = 1 to T (25). We
use a set of M particles (we set M = 200) to approximate a series of distributions for times t = 1 to
T . In our algorithm, a set of particles approximates the distribution of xt for paths that have not crossed
the bound by time t. At time t, particle k has position x̂(k)

t and w(k)
t which form the distribution

p(xt|y1:t, τ ≥ t,Θ(s−1)) ≈
M∑
k=1

w
(k)
t δ(xt − x̂(k)

t ) (15)

where δ denotes the Dirac delta function. The weights must sum to 1 at each time (
∑M

k=1w
(k)
t = 1).

Additionally, we augment the particle filter by tracking the distribution of the bound hit time, τ , relative
to time t: P (τ < t|y1:t,Θ

(s−1)) and P (τ = t|y1:t,Θ
(s−1)), and P (τ > t|y1:t,Θ

(s−1)). This formulation
allows us to deal with the bound without the need to track each particle’s history, which could result in
a high percentage of degenerate particles. Once we obtain these distributions over xt and τ ≥ t from
time t = 1 to T , we sample the values of x(s)

t and τ (s) by working backwards from time t = T to 1.

Initially, we set x̂(k)
0 = x0 and w(k)

0 = 1
M and P (τ > 0) = 1. Particles are propagated through time

using a sequential importance resampling (SIR) algorithm. Particle positions at time t+ 1 are randomly
sampled

x̂
(k)
t+1 ∼ π(x̂t+1|x̂(k)

t , yt+1,Θ
(s−1)) (16)

The particle weights are updated as

w
(k)
t+1 ∝ w

(k)
t

p(yt+1|x̂(k)
t+1,Θ

(s−1))p(x̂
(k)
t+1|x̂

(k)
t ,Θ(s−1))

π(x̂
(k)
t+1|x̂

(k)
t , yt,Θ(s−1))

(17)

Because we want the particles to track the distribution of x under the bound, we set the proposal to a
truncated Gaussian with mean and variance given by the drift-diffusion model

π(x̂t+1|x̂(k)
t , yt+1,Θ

(s−1)) ∝ 1(−∞,1)(x̂t+1)N (x̂t+1; x̂t + β(s−1), ω2,(s−1)). (18)
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The numerator terms are (from the model definition)

p(x̂
(k)
t+1|x̂

(k)
t ,Θ(s−1)) = N (x̂

(k)
t+1; x̂

(k)
t + β(s−1), ω2,(s−1)), (19)

p(yt+1|x̂(k)
t+1,Θ

(s−1)) = Poisson
(
yt+1; log(1 + exp(γ(s−1)x̂

(k)
t+1))∆t

)
(20)

The bound-time, τ , is tracked through time. We assume that P (τ > 0) = 1. The bound-hit time
probabilities are propagated through time, from t = 1 to T , with the following updates

P (τ < t|y1:t,Θ
(s−1)) ∝ p(yt|τ < t,Θ(s−1))P (τ < t|y1:t−1,Θ

(s−1)) (21)

P (τ = t|y1:t,Θ
(s−1)) ∝ p(yt|τ = t,Θ(s−1))P (τ = t|y1:t−1,Θ

(s−1)) (22)

P (τ > t|y1:t,Θ
(s−1)) ∝ p(yt|τ > t, y1:t−1,Θ

(s−1))P (τ > t|y1:t−1,Θ
(s−1)) (23)

and normalizing the probabilities so that

P (τ > t|y1:t,Θ
(s−1)) + P (τ = t|y1:t,Θ

(s−1)) + P (τ < t|y1:t,Θ
(s−1)) = 1. (24)

The particle distributions provide the updated probability distribution over τ relative to time t.

P (τ = t|y1:t−1,Θ
(s−1)) ≈ P (τ > t− 1|y1:t−1,Θ

(s−1))

·
M∑
k=1

w
(k)
t−1(1− Φ(1; x̂

(k)
t + β(s−1), ω2,(s−1))))

(25)

p(yt|τ > t, y1:t−1,Θ
(s−1)) ≈

M∑
k=1

w
∗(k)
t−1 p(yt|xt = x̂

(k)
t ) (26)

where w∗(k)
t+1 = w

(k)
t

p(x̂
(k)
t+1|x̂

(k)
t ,Θ(s−1))

π(x̂
(k)
t+1|x̂

(k)
t , yt,Θ(s−1))

(27)

P (τ > t|y1:t−1,Θ
(s−1)) ≈ P (τ > t− 1|y1:t−1,Θ

(s−1))

·

(
M∑
k=1

w
(k)
t−1Φ(1; x̂

(k)
t + β(s−1), ω2,(s−1))

)
(28)

Φ(x;µ, σ2) denotes the normal cumulative density function with mean µ and variance σ2. The weights,
w
∗(k)
t+1 indicate the probability of particles x̂(k)

t+1 given only y1:t (without observing yt+1).

After running the particle filter from t = 1 to T , we are ready to sample the latent trajectory x(s)
1:T and

τ (s). We accomplish this by working backwards from time T to sample the value for τ (s). Once τ (s) is
sampled, we continue sampling backwards in time to establish the latent trajectory x(s)

1:τ .

With probability P (τ ≤ T |y1:T ) (calculated by the forward-pass) we take τ (s) ≤ T . Otherwise, let
τ (s) = ∞, to signify that the diffusion process did not reach the bound on this trial. If we instead have
that τ (s) ≤ T , then τ (s) is sampled by working backwards from t = T − 1, then t = T − 2, and so on
until an exact value for τ (s) is found. We work backwards setting τ (s) ≤ t with probability

P (τ ≤ t|τ ≤ t+ 1, y1:t,Θ
(s−1)) =

P (τ ≤ t|y1:t,Θ
(s−1))

P (τ ≤ t|y1:t,Θ(s−1)) + P (τ = t+ 1|y1:t,Θ(s−1))
(29)
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P (τ = t+ 1|y1:t,Θ
(s−1)) ≈ P (τ > t|y1:t,Θ

(s−1))

M∑
k=1

w
(k)
t (1− Φ(1; x̂

(k)
t + β(s−1), ω(s−1)))

(30)

Otherwise, we set τ (s) = t+ 1.

If τ (s) > T , we sample a value for x(s)
T from the particle set at time T using the probability distribution

p(xT |y1:T , τ
(s) > T,Θ(s−1)) ≈

M∑
k=1

w
(k)
T δ(xT − x̂(k)

T ). (31)

and then work backwards in time sampling x
(s)
1:T−1 (sampling first x(s)

T−1, then x
(s)
T−2, and so on) as

described below.

If instead τ (s) < T , we set the value of x(s)
τ−1 to one of the particles x̂(k)

t where t = τ (s)− 1 by sampling
from the distribution

p(xt|τ (s), y1:T ,Θ
(s−1)) ∝ p(τ (s) = t+ 1|xt,Θ(s−1))p(xt|y1:t,Θ

(s−1)) (32)

≈
M∑
k=1

w
(k)
t δ(xt − x̂(k)

t )
(

1− Φ(1; x̂
(k)
t + β(s−1), ω2,(s−1))

)
. (33)

We can then sample the remaining trajectory, x(s)
1:τ−2, by sampling backwards through time.

Backwards sampling again requires the particles. The value of x(s)
t−1 given x(s)

t is sampled using the
approximated distribution

p(xt−1|x(s)
t , y1:t−1,Θ

(s−1), τ > t− 1) ∝ p(x(s)
t |xt−1,Θ

(s−1))p(x1:t−1|y1:t−1,Θ
(s−1), τ > t− 1) (34)

≈
M∑
k=1

δ(xt−1 − x̂(k)
t−1)N (x

(s)
t ; x̂

(k)
t−1 + β(s−1), ω2,(s−1))w

(k)
t−1 (35)

After we have sampled all the way backwards to x(s)
1 and if τ (s) ≤ T , we sample x(s)

τ (s)
from the truncated

normal distribution
p(xτ |x(s)

τ−1,Θ
(s−1)) ∝ 1[1,∞)N (xτ ;x

(s)
τ−1 + β, ω2) (36)

where 1 is the indicator function

1[1,∞)(x) =

{
1 if x ∈ [1,∞)

0 otherwise
(37)

After τ (s), the observations (spikes) no longer depend on the new values of the latent state. This
independence also means that we can actually drop x(s)

τ (s)+1:T
from the model parameter sampling step

(everything about the spike rate is given by x(s)

1:τ (s)
). Dropping these terms increases sampler efficiency.

Sampling the ramping model parameters

With the sth sample of the latent states, we sample a new set of the model parameters. We first sample
the parameters x0, β1:C , and ω2. We apply Bayes’ rule to the posterior

p(x0, β1:C , ω
2|x(s),y) ∝ p(x(s)|x0, β1:C , ω

2)p(x0, β1:C , ω
2) (38)
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in order to compute the distributions. The parameters x0, β1:C , and ω2 conditioned on x(s) are inde-
pendent of the observations and γ. The model defines the latent paths as a simple linear-Gaussian
process, and therefore the parameters can be sampled exactly using Gibbs steps. The model definition
of p(x(s)|x0, β1:C , ω

2) states that the differences (xj,t−xj,t−1) are normally distributed with mean βc(j)
and variance ω2.

We sample β(s)
1:C and x(s)

0 from independent Gaussian distributions given the previous diffusion variance
term ω2,(s−1).

β(s)
c |x(s),y, ω2,(s−1) ∼ N (B ·A−1, A−1) (39)

A =
1

σ2
β

+
1

ω2,(s−1)

∑
j∈{i:c(i)=c}

((Tj ∧ τ (s)
j )− 1) (40)

B =
µβ
σ2
β

+
1

ω2,(s−1)

∑
j∈{i:c(i)=c}

Tj∧τ
(s)
j∑

t=2

(x
(s)
j,t − x

(s)
j,t−1) (41)

x
(s)
0 |x

(s),y, ω2,(s−1) ∼ N (D · C−1, C−1) (42)

C =
1

σ2
0

+
N

ω2,(s−1)
(43)

D =
µ0

σ2
0

+
1

ω2,(s−1)

N∑
j=1

x
(s)
j,1 (44)

Tj ∧ τ (s)
j = min(Tj , τ

(s)
j ) (45)

The term Tj∧τ (s)
j signifies the bound crossing time (the “effective” length of the latent trajectory x(s)

j,1:Tj
).

The spike rate is no longer dependent on the diffusion process once the process has crossed the bound
(for t ≥ τ

(s)
j , yj,t is independent of the value of x(s)

j,t ). We therefore only need to consider the values of

xj,t for t ≤ τj in order to sample from the posterior (replacing Tj ∧ τ (s)
j with Tj results in a correct, but

slower, sampler).

The next step is to sample ω2 given the newly generated samples of β1:C and x0.

ω2,(s)|β(s)
1:C , x

(s)
0 ,x(s),y ∼ Inv-Gamma(E,F ) (46)

E = αω +
1

2

N∑
j=1

(Tj ∧ τ (s)
j ) (47)

F = βω +
1

2

N∑
j=1

[(
x

(s)
j,1 − x

(s)
0

)2

+

Tj∧τj∑
t=2

(
x

(s)
j,t − (x

(s)
j,t−1 + β

(s)
c(j))

)2

 (48)

βc depends only on trials of stimulus coherence c, while x0 and ω2 are coupled to all trials.

Even though the bound height parameter, γ, is independent of all other parameters given the latent
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states, we cannot sample γ with a closed-form Gibbs step. Instead, we generate samples via a
Metropolis-Hastings (MH) step. The MH algorithm samples γ(s) with the following steps

1 Sample γ∗ ∼ q(γ|γ(s−1)) where q is an arbitrary proposal distribution.

2 Sample u ∼ U([0, 1]).

3 γ(s) =

{
γ∗ , u < α

γ(s−1) , otherwise
where α = min

(
1, p(γ∗|y,x(s))q(γ(s−1)|γ∗)

p(γ(s−1)|y,x(s))q(γ∗|γ(s−1))

)
We use a Langevin step for the proposal distribution (26)

q(γ∗|γ(s−1),y,x(s)) = N
(
γ∗; γ(s−1) + ε2

1

2
G−1(γ(s−1))

d

dγ
L(γ(s−1)), ε2G−1(γ(s−1))

)
(49)

L(γ) = log p(y|x(s), γ) + log p(γ)

=

N∑
j=1

Tj∑
t=1

log p(yj,t|x(s)
j,t , γ) + log p(γ)

(50)

G(γ) = −Ey|γ,x(s)

[
d2

dγ2
L(γ)

]
(51)

Our proposal uses the Fisher information plus the Hessian of the log prior, G(γ), to condition the step,
as suggested by (27). The result of this conditioning made selecting an effective value for ε simple. We
set ε to a small initial value (0.1) and slowly raised it during the burn-in period to a larger value of 1.

Labeling the soft-rectifying function

h(x, γ) = log(1 + exp(xγ)) (52)

the derivative of the log likelihood is

d

dγ
L(γ) =

d

dγ

[
log p(y|x(s), γ) + log p(γ)

]
(53)

=
d

dγ

 N∑
j=1

Tj∑
t=1

(
−h(x

(s)
j,t , γ)∆t + yj,t log(h(x

(s)
j,t , γ))

)
+(αγ − 1) log(γ)− γβγ + const]

(54)

=
N∑
j=1

Tj∑
t=1

(
h′(x

(s)
j,t , γ)

(
−∆t + yj,t

1

h(x
(s)
j,t , γ)

))
+
αγ − 1

γ
− βγ (55)

where

h′(x, γ) =
d

dγ
h(x, γ) =

1

1 + exp(−xγ)
x (56)

The Fisher information combined with the prior Hessian can be calculated as

G(γ) = −Ey|γ,x(s)

 d

dγ

 N∑
j=1

Tj∑
t=1

(
h′(x

(s)
j,t , γ

(s−1))

(
−∆t + yj,t

1

h(x
(s)
j,t , γ)

))
+
αγ − 1

γ
− βγ


(57)
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= −Ey|γ,x(s)

 N∑
j=1

Tj∑
t=1

h′′(x(s)
j,t , γ)

(
−∆t + yj,t

1

h(x
(s)
j,t , γ)

)
− yj,t

(
h′(x

(s)
j,t , γ)

h(x
(s)
j,t , γ)

)2


−αγ − 1

(γ)2

] (58)

= −
N∑
j=1

Tj∑
t=1

h′′(x(s)
j,t , γ)

(
−∆t + Ey|γ,x(s) [yj,t]

1

h(x
(s)
j,t , γ)

)
− Ey|γ,x(s) [yj,t]

(
h′(x

(s)
j,t , γ)

h(x
(s)
j,t , γ)

)2


+
αγ − 1

(γ)2

(59)

Noting that Ey|γ,x(s) [yj,t] = h(x
(s)
j,t , γ)∆t

G(γ) =
αγ − 1

(γ2)
+

N∑
j=1

Tj∑
t=1

∆t

(
h′(x

(s)
j,t , γ)

)2

h(x
(s)
j,t , γ)

 (60)

2.2 Discrete stepping model

The stepping model allows the firing rate to occupy three discrete states: an initial state and two “deci-
sion” states, one for each of the two possible choices in the task. Each state is associated with constant
firing rate (α0:2), and these firing rates are constant across all trials (28). We define state transitions
(steps) as instantaneous events for simplicity. We only allow a single transition between states during
a trial (i.e., “up” or “down”), although the model does not force a step to occur on every trial.

Let zj denote the step time (in discrete bins) for trial j and dj denote the state stepped to. If zj is greater
than the trial length, then no step occurs during the trial. We refer to the initial state as state 0.

zj ∼ Negative Binomial(pc(j), r) (61)

P (dj = 1) = φc(j) (62)

P (dj = 2) = 1− φc(j) (63)

yj,t|t ≤ zj ∼ Poisson(α0∆t) (64)

yj,t|t > zj ∼ Poisson(αdj∆t) (65)

The negative binomial distribution is a discrete-time analogue of a gamma distribution. The distribution
can be interpreted as the number of coin flips needed to get r heads,where 1 − p is the probability of
a head (although we allow r to take continuous values). If the negative binomial parameter r is set at
1, then this model becomes a more commonly used Hidden Markov model (HMM), where step times
follow an exponential distribution, with added restriction that the model cannot step out of states 1 or
2. We chose not to restrict state transitions to be Markovian so that the stepping model could exhibit
similar hit-time distributions as the ramping model. Additionally, we note that trial lengths are finite, but
zj can take arbitrarily large values. Values larger than the trial length are interpreted to mean that no
step took place on the trial.

The model parameters we estimate are Ψ = {α0:2, r, φ1:C , p1:C}.

11



2.2.1 Prior distributions: stepping model

The prior distributions for the model parameters take the following form

α0 ∼ Gamma (αα, βα) (66)

α1 ∼ Gamma (αα, βα) (67)

p(α2|α1) ∝ 1(α2 > α1)Gamma (αα, βα) (68)

pc ∼ Beta(αp, βp) (69)

φc ∼ Beta(αφ, βφ) (70)

r ∼ Gamma(αr, βr) (71)

We enforced α2 > α1 with the truncated gamma prior, because we wanted state 2 to always represent
the up state and state 1 the down state (without this restriction, the model is unidentifiable because the
state labels can be swapped). Otherwise, the prior distributions are independent.

We chose the following parameters

1. αα = 1, βα = 0.01

2. αp = 1, βp = 1

3. αφ = 1, βφ = 1

4. αr = 2, βr = 1

The distribution over firing rates is broadly tuned, with both a mean and standard deviation of 100

spikes/s. The beta distributions over φ and p are uniform over the range of values [0, 1]. We chose the
prior on r to be peaked at 1, where the model becomes a HMM.

In the MCMC section, we use the prior parameter symbols instead of these specific values so that it is
clear where the priors are placed.

2.2.2 MCMC: stepping model

As with the ramping model, the sampler consists of two main steps: (1) sampling the latent stepping
process given the parameters and (2) sampling the parameters given the new latent states. We initial-
ized the chain by setting the rate parameters based on average spike rates: α0 was set to the average
spike rate over all trials in the first bin, α2 was set to the average spike rate in the final bin of all in-RF
choice trials, and α1 was set to 1

2α2. The initial values for all the φ and p parameters was 0.5 (the mean
of the prior). The final parameter, r, was initially set to the mode of the prior distribution.

Sampling the step times

Our goal is to obtain the sth sample given the (s− 1)th sample of the model parameters and the spike
times:

(z,d)(s) ∼ P (z,d|Ψ(s−1),y). (72)
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With the model parameters fixed, the trials are conditionally independent. Unfortunately, there is un-
fortunately no simple analytic form for this distribution. However, in this simple stepping case, we can
sample the step times numerically by computing the distribution on a finite grid of time points. We
truncated the grid at 1500 time bins, which is 15 times longer than the longest trial and much longer
than we would ever expect to set a step time. Therefore, the truncated distribution is an extremely close
approximation to the true distribution. We note that zj can be greater than Tj , which is interpreted to
mean no step occurred during the trial, and this does not affect the later sampling steps. For zj = 1 to
1500 and dj = 1 to 2, we calculate

p(zj , dj |yj,1:Tj ,Ψ
(s−1)) ∝ p(yj,1:Tj |zj , dj , α(s−1))p(zj |r(s−1), p

(s−1)
c(j) )p(dj |φ(s−1)

c(j) )

= p(zj |r(s−1), p
(s−1)
c(j) )p(dj |φ(s−1)

c(j) )

Tj∏
t=1

p(yj,t|zj , dj , α(s−1))
(73)

The distributions on the right side are calculated using the model definition for the Poisson obser-
vation p(yj,1:t|zj , dj , α(s−1)), the negative binomially distributed step time p(zj |r(s−1), s(s−1)), and the
Bernoulli state choice p(dj |φ(s−1)). Once all values are calculated, the joint distribution can be normal-
ized and sampled directly.

Sampling the stepping parameters

With the sth sample of the latent states, we sample a new setting for the model parameters. This step
is broken into two parts: first we sample α0:2, p, and φ. Then with the new values of p1:C and z, we
sample the final parameter: r.

α0:2, p, and φ are all sampled independently with Gibbs’ steps.

φ(s)
c |d(s) ∼ Beta (αφ +Dc, βφ +N −Dc)

Dc =
∑

j∈{i:c(i)=c}

1(d
(s)
j = 2) (74)

p(s)
c |z(s), r(s−1) ∼ Beta

αp +
∑

j∈{i:c(i)=c}

z
(s)
j , βp + r(s−1)

∑
j∈{i:c(i)=c}

1

 (75)

α
(s)
0 |z

(s),d(s),y ∼ Gamma

αα +
N∑
j=1

z
(s)
j∑
t=1

yj,t, βα +
N∑
j=1

z
(s)
j

 (76)

α
(s)
1 |z

(s),d(s),y ∼ Gamma (α1, β1) (77)

α
(s)
2 |α

(s)
1 z(s),d(s),y ∼ 1(α

(s)
2 > α

(s)
1 )Gamma (α2, β2) (78)

αi = αα +

N∑
j=1

Tj∑
t=z

(s)
j +1

1(d
(s)
j = i)yj,t (79)

βi = βα +
N∑
j=1

1(d
(s)
j = i)(Tj − z(s)

j ) (80)

The truncated gamma distribution on α(s)
2 enforces that α(s)

2 > α
(s)
1 holds (see model prior section).
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No simple closed form distribution exists for the posterior over the negative binomial parameter r. We
obtained samples using a Metropolis adjusted Langevin algorithm that uses the following proposals
(see the ramping sampler for a brief description of Metropolis-Hastings proposals):

q(r∗|r(s−1),y, z(s), p
(s)
1:C) = N

(
r∗; r(s−1) + ε2

1

2

d

dr
L(r(s−1)), ε2

)
(81)

L(r(s−1)) = log p(z(s)|r(s−1), p
(s)
1:C) + log p(r(s−1))

=

N∑
j=1

log p(z
(s)
j |r

(s−1), p
(s)
c(j)) + log p(r(s−1))

(82)

We applied a simple automatic procedure to select a value for ε. We initialized ε to a small value (0.05),
and during the burn-in period, we would raise or lower (by multiplicative factors of 1.25 or 0.75) until the
sampler stabilized to an acceptance rate in the range of 30− 70%.

The derivative can be calculated

L(r(s−1)) =

N∑
j=1

log p(z
(s)
j |r

(s−1), p
(s)
c(j)) + log p(r) (83)

=
N∑
j=1

[
log Γ(z

(s)
j + r(s−1))− log Γ(z

(s)
j + 1)− log Γ(r(s−1))− z(s)

j log(p
(s)
c(j)) + r(s−1) log(1− p(s)

c(j))
]

+ (αr − 1) log(r(s−1))− r(s−1)βr + const

(84)

d

dr
L(r(s−1)) =

N∑
j=1

[
ψ(z

(s)
j + r(s−1))− ψ(r(s−1)) + log(1− p(s)

c(j))
]

+
αr − 1

r(s−1)
− βr (85)

where Γ and ψ are the gamma and digamma functions respectively. We point out that this sampling
step uses the entire set of coherence-dependent p parameters.

2.3 Model comparison

We compared model fits to the data using the Deviance Information Criterion (DIC) (16). The metric is
defined as

DIC = 2 log p(Data|Θ̄,Mr)− 4EΘ|Data,Mr
[log p(Data|Θ,Mr)] . (86)

where Θ̄ is the posterior mean of the parameters given the data, andMr is ramping model. (For the
stepping modelMs, replace Θ with Ψ). The expectation term can be estimated using the samples from
the MCMC (Θ(1) to Θ(S))

EΘ|y,Mr
[log p(Data|Θ,Mr)] ≈

1

S

S∑
s=1

log p(y|Θ(s),Mr) (87)

Estimating log p(y|Θ(s),Mr) for each sample is computationally expensive. For the ramping model,
we estimated this value by sampling 300 trajectories for each trial from the distribution p(x|Θ(s)). For
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Fig. S1: We compare estimated DIC differences with the log Bayes factor model comparison metric for
all 40 cells. These values are highly correlated (r = 92.7, p < 10−8) and they provide the same model
comparison result for all but 3 cells (open circles), all of which had weak (< 10) model assignments from
the log Bayes factor.

the stepping model, we estimated this quantity by truncating the possible step times to a maximum of
1500 and then calculating the probability on a discrete grid over time points.

Higher DIC is evidence against a model. DIC has both a log-likelihood term of the data at the pos-
terior mean (the basic goodness-of-fit term), and a penalty term which integrates over the posterior
distribution of the parameters. This term is designed to act as an estimate of the effective number of
parameters in the model. In fact, this term converges exactly to the number of parameters in a Gaussian
model. More well-known metrics, like the Bayesian information criterion (BIC) are more difficult to apply
to latent variable models: how does one include the latent variables in the count of model parameters?
The latent spaces in the two models are starkly different: the stepping model’s latent state can be de-
scribed by two values (step time, and state stepped-to), while the state in the ramping model is much
more complex. DIC avoids this issue entirely with its estimate of the effective number of parameters.
Although DIC has not been widely applied in neuroscience, it has become a widely used model fitness
criterion within many other domains (29).

One example alternative to DIC is the Bayes factor, which compares marginal likelihoods of the data
given the proposed models:

BF =
P (Data|Mr)

P (Data|Ms)
(88)

This value also integrates over model fit uncertainty, but it also suffers from strong dependency on
the choice of prior distribution. DIC has the advantage of working with improper, uninformative priors.
However, for our data, we achieved similar results with both DIC and Bayes factors (Figure S1). The
marginal likelihoods can be calculated from the output of the MCMC algorithm (30, 31). We confirmed
that DIC is an accurate metric for model comparison using simulated data (see Section 3.1).
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2.4 Spike rate and variances

For each cell, we computed the coherence-sorted spike rates (PSTH) and variances (PSTV) shown in
Figs. 3A (left) and 4 by calculating the spike count mean and variance in a 25 ms sliding window (boxcar
filter), moved by 5 ms increments. For each trial, we performed this convolution only over the spikes
within the analysis window for that trial. We computed population rates and variances by averaging the
rates and variances from all 40 cells. Spikes occurring later than 200 ms after motion offset were not
included in the PSTH. We multiplied the mean and variance by frac10.025 to transform the PSTH into
units of spikes per second.

We compared the model predictions of the coherence sorted PSTH/PSTV to the true population spike
rate and variance during the interval 205-700 ms after motion onset (100 time points; Fig. 4A). We
simulated 1000 spike trains per coherence level per cell using the posterior-mean parameters from
each model to obtain the coherence-sorted model predicted rate (MR) and variance (MV ). We then
calculated the fraction of variance explained in the coherence-dependent PSTH (or PSTV):

R2 = 1−

5∑
c=1

700∑
t=205

(MRc,t − PSTHc,t)
2

5∑
c=1

700∑
t=205

(
PSTH − PSTHc,t

)2 (89)

PSTH =
1

5

1

100

5∑
c=1

700∑
t=205

PSTHc,t (90)

where PSTHc,t is the PSTH at time t (in milliseconds) for coherence level c. The average spike rate
over all time and coherence levels is PSTH . The sums over t are in increments of 5 ms. An R2 of 1
indicates that the model PSTH perfectly matches the data, lower values indicate a worse fit.

Credible intervals on the R2 values included uncertainty in both the measured PSTH/PSTV as well as
the model fit uncertainty. We obtained 1000 samples of the data PSTH (PSTV) by randomly drawing
a set of trials with replacement for each cell and computing the population PSTH (PSTV) with those
trials. Each sample used the number of trials per coherence as were actually observed for each cell.
We obtained errors on the model PSTH (PSTV) by using the output from the MCMC. We simulated
each model with each of the 10 000 parameter samples from the MCMC output. We calculated the R2

for each of the 10 000 simulated PSTHs (PSTVs) against the 1000 bootstrapped data PSTHs (PSTVs),
resulting 10 000 000R2 values per model (Fig. S2). The 95% credible interval was the 2.5 and 97.5
percentiles of the R2 values.

2.5 Model-based step decoding

Figures 2,4, and S13- S15 visualize the LIP responses using decoded steps. We estimated step times
and direction using a Bayesian decoder with the model fit parameters (Ψ̄ = posterior mean of Ψ). For
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a trial j, we calculated the distribution over step times, marginalizing over step direction

P (zj = z|yj,1:Tj , Ψ̄) =
∑

d∈{1,2}

P (zj = z, dj = d|yj,1:Tj , Ψ̄)P (dj = d|Ψ̄) (91)

∝ P (yj,1:Tj |zj = z, dj = d, Ψ̄)P (zj = z|Ψ̄)P (dj = d|Ψ̄) (92)

where the final terms P (yj,1:Tj |zj = z, dj = d, Ψ̄), P (zj = z|Ψ̄), and P (dj = d|Ψ̄) are all given by the
model definition. For computational tractability, we truncated the possible step times at a maximum of
1500 time steps (15 times longer than the longest trial) and normalized the distribution based on the
truncation. We then estimated the median step time as

ẑj = arg min
z∈{0,...,1500}

1

2
≥

(
z∑

x=1

P (zj = x|yj,1:Tj , Ψ̄)

)
(93)

We chose to use the median time instead of the mean because the distribution of step times tended to
be highly skewed. A MAP estimator achieved similar results.

If the step time occurred after the trial end, we decoded no step on that trial. Otherwise, step direction
was decoded as

d̂j = arg max
d∈{1,2}

P (dj = d|yj,1:Tj , Ψ̄) (94)

= arg max
d∈{1,2}

1500∑
z=0

P (dj = d|zj = z, yj,1:Tj , Ψ̄)P (zj = z|Ψ̄) (95)
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= arg max
d∈{1,2}

1500∑
z=0

P (yj,1:Tj |dj = d, zj = z, Ψ̄)P (dj = d|Ψ̄)P (zj = z|Ψ̄) (96)

where the distributions P (yj,1:Tj |dj = d, zj = z, Ψ̄), P (dj = d|Ψ̄), and P (zj = z|Ψ̄) are all given by
the model definition (product of independent Poissons, a Bernoulli distribution, and a negative binomial
distribution respectively).

2.5.1 Step-aligned figures (Figs. 2,3,4, S13- S15)

For all step-aligned figures, spike rates on each trial were estimated by smoothing the spike trains with
a centered boxcar filter (25 ms wide). The rates were then aligned to the step time on each trial and
averaged. The step-aligned average included only the segment beginning 200 ms after motion onset
until 200 ms after motion offset. This allowed our analyses to focus on the decision formation stage,
separated in time from other events like the visual onset of the targets or the saccade. For trials in which
we decoded no step (see Section 2.5), we aligned the trial to the end of our analysis period (before the
go signal).

2.5.2 Model-based choice probability (Fig. 4)

Choice probability (CP) is a widely-used metric to quantify the relationship between spike count fluctu-
ations and behavior. For a fixed stimulus, higher spike counts on single trials are often correlated with
in-RF choices. CP is the probability that a spike count observed during an in-RF choice trial is greater
than a spike count observed on an out-RF choice trial in response to the same stimulus. CP does not
consider the percentage of in-RF or out-RF choices, only the distributions of spike counts observed for
in-RF choice and out-RF choice trials. This way, we obtain a measure how the trial-to-trial fluctuations
of a neuron correlate with choice, which discards any overall bias towards one choice.

CP is equivalent to decoding choice using a neuron-antineuron pair. The “anti-neuron” is a hypothetical
neuron whose response distributions are equal to the recorded neuron, but with tuning to the targets
reversed. A decoder would chose a target by selecting which of these two neurons gives the highest
spike count on a single trial. An out-RF choice occurs when the antineuron gives the larger count, and
the in-RF choice occurs when the antineuron has the lower count.

We calculated CP conditioned on stimulus coherence and direction and took the final CP as the aver-
age across conditions. We calculated CPs using dot coherences from 0 − 12.8%. We included only
coherence levels with at least 3 in-RF choices and 3 out-RF choices into the final CPs. We chose to
average CPs across conditions instead of z−scoring each response within the stimulus categories and
calculating a single CP on the pooled responses, because z−scoring can be biased by conditions with
unbalanced choice selection (32).

In addition to the classical, spike count-based CP, we calculated a model-based CP. We used the model
fit to calculate the probability that the latent state had stepped up given a spike train. The model-based
CP is the probability that an in-RF choice trial is more likely to have stepped into the up state than an
out-RF choice trial (i.e., we calculated model-based CP by replacing the spike count observations in
classical CP with the step probabilities).
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The specific number we compare for trial j at time t is computed

Pup(j) =
P (dj = 1|yj,1:t, zj < t, Ψ̄)

P (dj = 1|yj,1:t, zj < t, Ψ̄) + P (dj = 2|yj,1:t, zj < t, Ψ̄)
(97)

where

P (dj = 1|yj,1:t, zj < t, Ψ̄) =
t−1∑
z=0

P (zj = z, dj = 1|yj,1:t, zj < t, Ψ̄) (98)

∝
t−1∑
z=0

P (yj,1:t|zj = z, dj = 1, Ψ̄)P (zj = z|Ψ̄)P (dj = 1|Ψ̄) (99)

Here, the decoder assumes that a step has been made (i.e., it returns a “best guess” about the choice).

3 Supplementary Information

3.1 MCMC Results

To assess the ability of our MCMC methods to successfully fit and identify models, we simulated trials
from the ramping and stepping models and applied the MCMC methods to the simulated data. We
examined the ability of the sampler to recover true parameters and the DIC metric to identify the correct
model.

3.1.1 Simulations: evaluating sampler effectiveness

First, to evaluate how well the MCMC algorithms were mixing (i.e., how quickly the chain could start
to produce effectively independent samples from the true posterior), we calculated the autocorrelations
in the parameter samples from the chain. This is a basic visual tool that can indicate if the chain has
reached the true posterior, and how independent the samples are (with lower autocorrelation mean-
ing more independence). We first tested this metric using all 50 000 samples from the MCMC output
(Fig. S3, top). This indicated that the ramping parameters ω2 and γ, and the stepping model parameter
r had a high autocorrelation. However, once we thinned the chain by taking only every 5th sample (de-
scribed in section 2), the autocorrelation was largely eliminated (Fig. S3, bottom). The autocorrelation
from the MCMC output of the fit to the cell shown in Fig. 2 is shown in Fig. S4.

Additionally, we confirmed our ability to estimate the true parameters from the simulations (i.e., we
asked, is the estimator consistent?). We ran the MCMC on various amounts of simulated data and
compared the posterior mean estimates of the parameters to the true parameters. Figure S5 shows
that the error is reduced with more data.
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Fig. S3: Autocorrelation plots of all the parameter samples from our MCMC for all the parameters for both
models for simulated data. The abscissa is in units of iterations of the MCMC algorithm. The top two rows
show the autocorrelation of the samples from the original MCMC output. The bottom two rows show the
autocorrelation after we thinned the chain, taking only every 5th sample. The chain was run on datasets
containing 500 trials, with 100 trials of each of the 5 possible motion coherence levels.

20



au
to

co
rre

la
tio

n

lag (samples)

au
to

co
rre

la
tio

n

lag (samples)

post-thinning

pre-thinning

ramping parameters

stepping parameters

ramping parameters

stepping parameters

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 250 500

0

0.5

1

0 250 500

0

0.5

1

0 250 500

0

0.5

1

0 250 500

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 250 500

0

0.5

1

0 250 500

0

0.5

1

0 250 500

0

0.5

1

0 250 500

0

0.5

1

Fig. S4: Autocorrelation plots of all the parameter samples from our MCMC for all the parameters for both
models for the cell shown in Fig. 2. The result is comparable to the simulation in Fig. S3
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Fig. S5: Mean-squared errors of the MCMC posterior mean estimate (log scaled) of the model parameters
as a function of the amount of simulated data. Simulated datasets containing an equal number of trials
of each of 5 possible motion coherence levels. For the 50 and 125 samples populations, 20 independent
simulations and MCMC runs were used. 10 runs were used for the remaining sample sizes. Error bars
show one standard error of the estimate of the MSE. The true parameters were chosen to be similar to the
parameters estimated for a real LIP neuron: β = {−4.7e×10−3,−2.4×10−3,−1.3×10−3, 6×10−4, 3.4×
10−3}, x0 = 0.72, ω2 = 1.7× 10−3, γ = 39.7, α = {4.1, 0.57, 41.0}, φ = {0.10, 0.30, 0.71, 0.82, 0.98}, p =

{0.990.98, 0.98, 0.975, 0.97}, r = 1.05
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Fig. S6: We confirmed our model comparison techniques by performing the model comparison procedure
on simulated data generated from the model fits to all 40 cells. Each simulation contained the same num-
ber of trials as in the actual data (on an individual cell basis). 25 out of 40 of the real cells (left) show strong
evidence of stepping. For all 40 simulations of the stepping model (right), the model comparison showed
strong evidence (DIC difference greater than 10) towards the correct model. For the ramping simulations
(center), 31 simulations showed strong evidence supporting the ramping model. Our model comparison
showed that 3 ramping simulations could be explained better by stepping, but none of these simulations
offered strong support for stepping (maximum DIC difference of 3, well below our threshold of 10 for strong
support). Median DIC differences are given by the triangles: data=22.1, ramping simulations=-20.3, and
stepping simulations=121.2.

3.1.2 Simulations: model comparison

Figure S6 demonstrates that the model comparison works on simulated data. We simulated responses
using parameters found in the model fits to actual data. The model comparison is able to consistently
identify the simulated models, although many cells show a small DIC difference in these parameter
regimes.
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Fig. S7: Example estimates of the posterior distributions for all the parameters for both models (stepping
model left 2 columns, ramping model right 2 columns) for a single example LIP cell. For the φ, p, and β
parameters, distributions for all 5 coherences are shown.

3.1.3 Data: parameter estimates

The posterior distributions for the model parameters estimated from the MCMC for one example LIP cell
are provided in figure S7. These estimated posteriors are simply histograms of the samples from the
Markov chain. For visualization purposes, these distributions are the marginal posterior distributions
for each parameter given the set of spike trains. However, the samples come from the joint posterior.
Figure S8 shows samples from the posterior distribution over the latent firing rates for the stepping
model for 15 example trials from one cell. Figure S9 shows samples from the posterior distribution over
the firing rates for the ramping model for the same trials.

As discussed in the methods, we used the posterior mean as a specific estimate for the model param-
eters for a cell. Figures S10-S11 plot the population summary of the parameters estimates for both
models, and the exact values are provided in Tables S1-S2 along with the model comparison results for
each cell.

In addition to the parameter estimates, we also estimated the step times for each trial. Figure S12A
shows the step times of 3 example cells. Figure S12C shows the average and variance of step times for
each coherence, which was calculated by first taking the average (or standard deviation) of step times
for each cell individually, then averaging across the population.
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Fig. S8: Each plot shows samples from the posterior distribution over the latent firing rates in the stepping
model (gray traces) for five example trials at each of three motion coherence levels. The black trace
shows the trial’s decoded step that was used for the step-aligned plots (Section 2.5). Rasters above each
plot indicate the spike times on each trial. (Top row) High negative coherence trials. (Middle row) 0%
coherence trials. (Bottom row) high positive coherence trials. The trials shown are from cell 10.
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Fig. S9: Each plot shows samples from the posterior distribution over the latent firing rates in the ramping
model (gray traces) for the same trials as shown in Fig. S8. The black trace shows the trial’s posterior
mean firing rate. Rasters above each plot indicate the spike times on each trial. (Top row) High negative
coherence trials. (Middle row) 0% coherence trials. (Bottom row) high positive coherence trials.
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Fig. S10: The stepping model parameters fit to all 40 cells.
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Cell αinit αout αin p−high p−low pzero p+low p+high φ−high φ−low φzero φ+low φ+high r

1* 16.8 4.1 36.3 0.972 0.975 0.977 0.968 0.951 0.02 0.35 0.82 0.88 0.98 0.55
2* 7.7 0.7 19.9 0.815 0.957 0.977 0.982 0.987 0.01 0.20 0.36 0.48 0.94 0.79
3* 8.4 3.5 20.8 0.960 0.969 0.954 0.971 0.974 0.15 0.23 0.25 0.60 0.89 1.63
4 70.9 11.1 33.2 0.944 0.968 0.972 0.981 0.991 0.46 0.51 0.53 0.59 0.80 0.94
5* 3.4 0.8 9.5 0.953 0.979 0.944 0.980 0.957 0.03 0.39 0.50 0.52 0.78 1.42
6* 18.4 6.6 23.7 0.801 0.902 0.871 0.912 0.276 0.04 0.09 0.42 0.51 0.97 3.02
7 1.7 0.4 24.1 0.852 0.947 0.958 0.971 0.964 0.02 0.48 0.74 0.93 0.97 1.71
8* 1.3 10.9 29.2 0.994 0.990 0.990 0.987 0.970 0.07 0.26 0.57 0.59 0.62 0.38
9* 74.2 11.0 39.7 0.902 0.984 0.986 0.991 0.993 0.16 0.43 0.58 0.69 0.93 0.64
10 21.0 3.6 49.5 0.975 0.984 0.982 0.983 0.992 0.08 0.25 0.51 0.62 0.86 0.68
11* 11.8 3.3 11.0 0.829 0.737 0.406 0.374 0.360 0.37 0.72 0.84 0.84 0.92 2.13
12* 2.5 3.0 8.6 0.887 0.724 0.829 0.451 0.800 0.44 0.26 0.40 0.26 0.76 4.57
13* 5.1 12.0 21.9 0.986 0.985 0.975 0.972 0.924 0.58 0.29 0.37 0.44 0.72 0.86
14* 49.4 2.6 11.0 0.401 0.524 0.981 0.444 0.489 0.03 0.18 0.38 0.44 0.88 0.04
15* 38.9 5.4 16.9 0.972 0.989 0.990 0.985 0.977 0.45 0.67 0.54 0.67 0.80 0.38
16* 14.5 8.2 20.8 0.700 0.421 0.536 0.526 0.346 0.23 0.45 0.46 0.45 0.65 1.64
17* 11.6 31.5 60.9 0.978 0.957 0.951 0.964 0.957 0.34 0.31 0.38 0.69 0.72 0.54
18* 43.6 37.2 42.7 0.467 0.445 0.433 0.461 0.462 0.17 0.12 0.38 0.49 0.90 1.80
19* 11.2 3.6 13.3 0.545 0.695 0.762 0.559 0.436 0.15 0.20 0.34 0.48 0.81 1.87
20* 21.2 10.3 26.1 0.900 0.545 0.507 0.387 0.850 0.32 0.70 0.74 0.79 0.89 2.11
21* 35.6 24.3 27.4 0.361 0.757 0.779 0.878 0.908 0.17 0.39 0.69 0.64 0.64 5.42
22* 3.5 8.5 20.4 0.970 0.964 0.965 0.882 0.957 0.41 0.44 0.44 0.37 0.65 0.91
23 19.6 8.6 41.7 0.945 0.962 0.966 0.975 0.967 0.04 0.23 0.44 0.72 0.94 2.01
24* 21.3 1.7 10.4 0.965 0.967 0.953 0.962 0.982 0.15 0.48 0.75 0.64 0.58 0.73
25 8.6 23.6 44.9 0.996 0.993 0.991 0.988 0.985 0.23 0.14 0.37 0.43 0.63 0.27
26* 4.8 15.3 33.8 0.994 0.991 0.983 0.976 0.980 0.10 0.20 0.39 0.34 0.44 0.57
27* 3.1 13.8 21.7 0.994 0.963 0.972 0.727 0.967 0.38 0.68 0.75 0.69 0.83 0.12
28* 32.9 17.6 38.3 0.766 0.876 0.934 0.542 0.323 0.04 0.26 0.26 0.60 0.65 1.53
29* 1.6 7.1 14.2 0.986 0.985 0.974 0.969 0.953 0.09 0.40 0.40 0.61 0.36 1.44
30* 19.1 5.3 25.3 0.941 0.848 0.947 0.677 0.946 0.05 0.60 0.54 0.75 0.87 1.19
31* 19.9 10.9 29.4 0.871 0.859 0.882 0.449 0.850 0.06 0.41 0.40 0.59 0.80 0.84
32 4.1 0.6 41.0 0.988 0.983 0.982 0.975 0.972 0.10 0.30 0.71 0.82 0.98 1.05
33* 24.1 2.5 9.7 0.940 0.987 0.992 0.989 0.971 0.24 0.43 0.30 0.62 0.64 0.17
34 12.6 1.5 23.7 0.935 0.971 0.980 0.973 0.987 0.03 0.37 0.53 0.70 0.55 1.56
35* 2.5 7.2 18.8 0.910 0.925 0.862 0.923 0.739 0.27 0.57 0.31 0.58 0.31 4.21
36* 7.5 10.4 26.9 0.591 0.829 0.730 0.870 0.785 0.10 0.25 0.47 0.64 0.86 4.32
37 26.7 1.4 44.1 0.955 0.985 0.984 0.986 0.985 0.05 0.21 0.54 0.53 0.81 0.70
38* 5.8 1.7 10.8 0.646 0.538 0.569 0.325 0.882 0.14 0.33 0.59 0.71 0.96 3.39
39 5.8 1.1 16.8 0.979 0.987 0.987 0.990 0.983 0.10 0.16 0.33 0.62 0.82 0.74
40* 23.5 11.3 19.3 0.689 0.531 0.497 0.252 0.399 0.24 0.18 0.53 0.70 0.88 2.37

Table S1: Posterior mean stepping model parameters for all cells. Stars next to the cell number indicate
those cells we identified as tentative steppers (positive DIC difference of any magnitude).
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Fig. S11: The ramping model parameters fit to all 40 cells.
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Cell β−high β−low βzero β+low β+high x0 ω2 γ DIC difference
1 -5.59e-03 -1.43e-03 1.02e-02 1.31e-02 3.45e-02 0.44 5.72e-03 37.0 141.8
2 -2.55e-02 -1.05e-02 -5.34e-03 8.48e-05 1.37e-02 0.36 1.09e-02 19.2 41.8
3 -1.47e-03 -3.21e-04 3.01e-05 3.28e-03 7.42e-03 0.40 3.05e-03 19.8 4.7
4* -4.42e-03 -3.71e-03 -3.77e-03 -2.35e-03 3.94e-04 0.45 1.93e-03 138.6 -151.6
5 -8.72e-03 -6.58e-04 5.76e-04 9.20e-04 6.00e-03 0.38 3.80e-03 9.4 10.9
6 -8.47e-03 -7.17e-03 -3.56e-03 -2.16e-03 1.19e-01 0.76 1.56e-03 23.4 44.0
7* -1.52e-02 -5.89e-04 4.69e-03 5.87e-03 1.21e-02 -0.05 1.01e-02 35.9 -164.4
8 -2.11e-03 1.73e-03 4.04e-03 6.12e-03 1.27e-02 0.19 6.75e-03 33.0 66.8
9 -3.45e-03 -1.97e-03 -7.70e-04 -9.58e-05 4.75e-04 0.36 1.71e-03 158.1 128.9
10* -5.08e-03 -2.55e-03 1.36e-03 2.66e-03 4.82e-03 0.32 4.92e-03 62.0 -54.4
11 -1.30e-02 -6.06e-03 7.19e-03 1.49e-03 7.89e-02 0.93 5.18e-03 10.8 22.5
12 2.37e-03 1.67e-03 2.94e-03 5.53e-03 1.45e-02 0.29 2.87e-03 7.9 53.5
13 5.99e-03 4.03e-03 6.12e-03 7.78e-03 1.32e-02 0.30 3.16e-03 21.7 10.5
14 -2.79e-03 5.44e-04 6.52e-03 9.12e-03 2.21e-01 0.27 7.17e-03 11.7 70.6
15 -3.26e-03 -1.15e-03 -1.68e-03 -1.52e-03 -1.47e-03 0.38 2.67e-03 63.9 60.7
16 -2.02e-03 8.35e-04 1.17e-03 1.93e-03 4.38e-03 0.56 2.46e-03 23.4 28.4
17 3.01e-03 3.82e-03 4.97e-03 8.25e-03 1.03e-02 0.35 3.44e-03 70.4 96.0
18 1.08e-01 1.13e-01 1.09e-01 1.03e-01 1.17e-01 0.97 9.27e-03 39.5 27.5
19 -3.50e-03 -2.55e-03 5.31e-04 2.63e-03 3.51e-02 0.48 4.43e-03 14.5 22.1
20 -4.56e-03 -2.45e-03 1.51e-02 3.14e-03 2.73e-02 0.86 3.14e-03 26.0 0.5
21 2.77e-02 1.10e-01 9.63e-02 1.15e-01 1.10e-01 0.98 4.29e-03 29.5 170.5
22 -1.32e-05 2.67e-03 2.54e-03 4.09e-03 5.81e-03 0.29 4.31e-03 25.9 1.1
23* -1.91e-03 -3.18e-04 1.36e-03 3.07e-03 5.32e-03 0.39 1.49e-03 46.4 -19.9
24 -1.07e-02 -6.20e-03 -3.44e-03 -5.04e-03 -3.94e-03 0.59 3.60e-03 25.5 38.4
25* -2.36e-04 -6.52e-04 9.40e-04 3.17e-03 7.00e-03 0.40 3.45e-03 52.7 -211.3
26 2.43e-04 7.32e-04 3.59e-03 4.24e-03 4.86e-03 0.23 3.44e-03 39.8 19.6
27 3.77e-03 1.41e-02 1.72e-02 3.19e-02 2.67e-02 0.71 1.43e-02 20.5 9.9
28 -4.65e-03 -2.38e-03 -1.25e-03 5.69e-04 3.42e-03 0.72 1.69e-03 39.7 63.0
29 1.28e-03 2.89e-03 6.13e-03 9.51e-03 1.21e-02 0.09 4.00e-03 13.6 8.9
30 -8.49e-03 -2.40e-03 -1.66e-03 1.24e-03 6.76e-03 0.71 3.98e-03 26.5 57.3
31 -4.27e-03 2.47e-05 -1.11e-04 2.48e-03 4.74e-03 0.58 1.57e-03 32.2 76.4
32* -4.55e-03 -2.68e-03 4.64e-03 8.97e-03 1.63e-02 0.03 9.99e-03 50.4 -227.4
33 -6.09e-03 -1.67e-03 -2.64e-03 -1.71e-05 1.04e-05 0.36 3.45e-03 26.6 80.7
34* -1.23e-02 -2.32e-03 2.89e-04 2.51e-03 7.81e-04 0.55 3.56e-03 23.0 -9.9
35 1.57e-02 1.91e-02 2.12e-02 1.78e-02 3.76e-02 0.01 1.93e-02 11.0 24.6
36 1.89e-03 4.17e-03 7.94e-03 7.48e-03 1.92e-02 0.27 1.93e-03 28.8 4.7
37* -2.44e-02 -9.12e-03 -3.99e-03 -3.45e-03 5.35e-03 0.65 7.49e-03 42.9 -8.9
38 -7.20e-03 -4.51e-03 4.67e-03 8.67e-03 2.11e-02 0.42 1.21e-02 11.6 22.0
39* -4.72e-03 -2.48e-03 -1.43e-04 3.28e-03 7.49e-03 0.29 3.29e-03 18.1 -0.3
40 -1.76e-03 -1.13e-03 2.03e-02 1.11e-02 7.41e-02 0.81 2.40e-03 18.2 15.9

Table S2: Posterior mean ramping model parameters for all cells, and the DIC differences from the model
comparison (positive indicating support for the stepping model). Stars next to the cell number indicate
those cells we identified as tentative rampers (negative DIC difference of any magnitude).
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Fig. S12: Model-estimated step times for our LIP cells. (A) The step times relative to motion onset
estimated for 3 example cells (blue) across all dot coherences. The model fit step time distributions are
shown in grey. (B) The step time distribution across the entire population. (C) The mean step times
averaged across cells for each coherence level (top) and the standard deviation of step times averaged
across cells (bottom). Only trials for which we could estimate a step time were used in this figure.
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3.2 Stepping model results

3.2.1 Related to main text Figure 2: single-cell examples

Here we include more single cell examples of the step-based analysis, similar to Figure 2 in the main
text (Figures S13-S15). We performed the same analysis on spike trains from a simulated ramping
cell S16.
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Fig. S13: Each column shows the responses of an example LIP cell with the same step-model analysis
performed on the cell in Figure 2A. The top row shows all the trials aligned to stimulus onset, sorted by
choice, and ordered in the order the trials were collected. 2nd row shows the average firing rate aligned
to motion onset. 3rd row is the same data as in row 1, although the trials have been ordered by step time.
In the 4th row, the trials have been aligned to the step time. The spike rate aligned to step time is given in
the bottom row. Cells that were fit better by the ramping model are labeled as “rampers” and cells better
fit by the stepping model are labeled “steppers”.
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Fig. S14: Same as Figure S13 for 3 more cells.
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Fig. S15: Same as Figure S13 for 3 more cells.
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Fig. S16: Coherence-sorted PSTH for a simulated ramping cell (solid traces) aligned to motion onset
(left) and estimated step times (right). The output of the stepping model fit to the simulated ramping
cell is plotted in the dashed traces. The step-aligned PSTH revealed an apparent step in the ramping
simulation. Although we found evidence of a nonzero slope in the step-aligned PSTHs from the ramping
simulation before and after the step, these ramping slopes were small enough that visual inspection should
be deemed insufficient (e.g., light blue curve, right panel). However, the quantitative model comparison
(Section 2.3) correctly identified the simulated responses as arising from the ramping model. Thus, the
average spike rate over trials aligned to a specific event can provide some evidence that a potential
model is a viable description of the data, but conclusive tests between ramping and stepping models
require additional quantitative assays. The Bayesian model comparison provides a stronger measure for
hypothesis testing by quantifying which model best predicts the observed spike trains.
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Fig. S17: Model comparison between the ramping model fit using all coherences compared to the ramp-
ing model fit with grouped coherence levels. The median DIC difference is denoted by the black triangle.

3.3 Model comparison results are unaffected by grouping coherence levels

We grouped stimulus coherence levels into 5 levels (±high,±low, and zero) in order to limit the number
of model parameters. To ensure that this grouping did not bias our results in favor of the stepping model,
we fit the ramping model to the data using all coherence levels (11 levels) and compared to the stepping
model fits with grouped coherences. In general, model comparison showed that the ramping model
with grouped coherence levels performed better than including all coherences (Fig. S17). Only 6 cells
showed slightly better performance on all coherence levels. Of those cells, 2 were originally classified
as “rampers”. For 3 of the remaining 4 “stepping” cells, the grouped-coherence stepping model still
provided a better fit than the all-coherence ramping model. For the final cell, the all-coherence ramping
model provided a slightly better fit than the grouped-coherence stepping model (DIC difference -1.27).
However, the stepping model fit with all coherences to this cell better described the cell than the all-
coherence ramping model (DIC difference 8.84).

3.4 Model comparison results are consistent across start time of analysis

For our main analysis, we made the assumption (used in previous publications) that the motion inte-
gration signal in LIP began at approximately 200 ms (11). However, the population PSTH in figure 3A
suggests that coherence sorting in the population may start earlier than 200 ms. We therefore repeated
the model comparison using spike trains beginning at 160 ms, 180 ms, and 220 ms after motion onset,
but still ending 200 ms after motion offset. The model comparison results were similar across all 3
analysis windows (Fig. S18). The median DIC difference was comparable across time points: 17.3,
22.4, 22.1, 23.4, for the 160, 180, 200, and 220 ms start times respectively. In the 160 ms analysis,
30 cells were better fit by the stepping model (24 showed strong support) and 10 cells were better fit
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Fig. S18: Model comparison between the ramping model fit using different start times for the analysis.
The median DIC (black) was significantly greater than 0 for all time points (sign test, p < 0.004 for each
start time). 37 cells were consistently classified as a ramper or stepper across all times (grey traces). Two
cells (red trace) were classified as a steppers by the 200 ms analyses, but showed slightly better support
for stepping at the 160 ms, 180 ms, or 220 ms analyses. Three cells (blue traces) were classified as a
stepper by the 200 ms analysis, but showed better support for ramping at one of the other start times.

by the ramping model (7 showed strong support). In the 180 ms analysis, 29 cells were better fit by
the stepping model (24 showed strong support) and 11 cells were better fit by the ramping model (7
showed strong support). In the 220 ms analysis, 31 cells were better fit by the stepping model (27
showed strong support) and 9 cells were better fit by the ramping model (8 showed strong support).

Only 3 out of the original 31 “stepping” cells were better fit by the ramping model at a different analysis
start point (Fig. S19). One of these cells showed weak support for stepping or ramping at all time points
(|DIC difference| < 10). Two of the 9 original “ramping” cells were better fit by the stepping model at
a different start point (Fig. S20). One of these cells showed only small support for the stepping model
(DIC difference = 3.5) in the 160 ms analysis. The other cell showed only weak support for ramping
in the original analysis. These model comparison changes seen in these cells do not alter the overall
result. We believe these changes are not due to an earlier onset of integration, and are primarily the
result of including responses to the onset of targets and dot motion that occur at the earlier portions of
the trials (14,33).

3.5 Comparison to existing methods

Here we compare our methods with two recent approaches for analyzing the latent dynamics of LIP
spike trains.
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Fig. S19: The three rows show the coherence-sorted PSTH (left) of cells identified as steppers in the
original analysis that were better fit bit the ramping model at different start times of analysis. (right) The
model comparison metric for each cell is given for all start times. The PSTHs were estimated using only
a 25 ms sliding window, which makes the firing rate estimate very noisy for single cells.

3.5.1 Churchland et al. (2011): moment-based (“VarCE”) method

Churchland et al. 2011 (11) introduced a method for analyzing the dynamics of spike trains based on the
variance of the conditional expectation (or “VarCE”). This method employs the law-of-total-variance to
divide the time-varying spike count variance (referred to above as the PSTV) into two components: one
due to the point process or spiking variability, and another due to the variability of the underlying latent
process. The Churchland et al. method assumes that the first component is proportional to the spike
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Fig. S20: The two rows show the coherence-sorted PSTH (left) of cells identified as rampers in the
original analysis that were better fit bit the stepping model at different start times of analysis. (right) The
model comparison metric for each cell is given for all start times.

rate, which holds true for any inhomogeneous renewal process (including the conditionally Poisson
stepping and ramping models we have considered here). The second component is the VarCE, which
is the quantity of interest in this analysis, since it corresponds to the variability of the latent process that
drives spiking. The VarCE is calculated within a single time bin as

V arCE = σ2
N − φσ2

N |x (100)

where σ2
N is the total spike count variance (PSTV), and φσ2

N |x is an estimate of the point-process
variance, obtained by multiplying the mean spike count σ2

N |x (i.e., the PSTH for that time bin) by a scale
factor φ. This scale factor is estimated by setting it to the cell’s minimum observed Fano factor.

The basic intuition for this approach is that the shape of the VarCE over time should provide insight into
the latent dynamics that underlie spiking. The VarCE of a continuous diffusion process should grow
linearly, because noise accumulates linearly over time. A discrete stepping process, on the other hand,
should have low VarCE at the beginning and end of a trial (assuming it always steps to the same final
state), and high variance during the portion of the interval when steps are most likely.

Churchland et al. compared the shape of the VarCE curve estimated from neural data to that of a
simulated stepping model, and concluded that LIP responses were inconsistent with stepping dynamics.
However, the stepping simulations used to make this argument were restricted to “in”-RF choice, 0%
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Fig. S21: VarCE from Churchland et al. 2011 (11) calculated from simulated spike trains and our data.
The VarCE from the simulations was calculated in a 400 ms window beginning 200 ms after motion
onset, and the VarCE from the data was calculated starting at motion onset. Spike count statistics were
computed within a 60 ms time bin. (A) VarCE for the 0% coherence trials of an LIP cell (black). We
simulated from ramping (red) and stepping fits to the cell (blue). Simulations included 50000 trials per
cell– many more than can be collected in a real experiment. Cell parameters are given in Tables S1- S2.
(B) Same as A for another cell. (C) VarCE for our LIP population (black) and from simulations of model
fits to the population for 0% coherence trials.

coherence trials, and assumed that the mean response reflected a mixture of two response levels, one
from early in the trial and one preceding the saccade. This produced a VarCE time course that was
larger overall, and increased more steeply, than the VarCE from the data.

However, if a neuron’s latent state is allowed to step up, step down, or to not step on some trials (which
is analogous to a drift-diffusion path that does not hit the bound, or wanders downward on some “in”
trials), then a stepping model (like ours) can produce a more flexible range of VarCE timecourses. We
therefore decided to explore whether VarCE could definitively distinguish between the ramping and
stepping dynamics implemented in our models.

Figure S21A shows the VarCE calculated for 0% coherence trials for an example cell (black traces),
along with the VarCE of spike trains simulated from the two fitted models (red traces for ramping,
blue traces for stepping). The ramping and stepping models produce nearly identical linear VarCE
traces (r2 = 0.991 and r2 = 0.992 between a true linear ramp and the ramping and stepping model
VarCEs respectively). Figure S21B shows an example cell for which the VarCE traces predicted by
the two model fits show distinct nonlinear trends (r2 < 0.01 and r2 = 0.83 compared to a linear
ramp for the ramping and stepping models respectively). However, estimates of VarCE are noisy for
individual cells and the visual adequacy or superiority of either model is not particularly definitive. We
therefore calculated the cell-averaged VarCE on the 0% coherence trials from the data and our model
fits (Fig. S21C). We found that the VarCE of the stepping model fits (blue curve) matched the data more
closely than ramping fits (red curve) (mean squared error ramping = 0.031, stepping = 0.026).
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3.5.2 Bollimunta et al. (2012): a single-trial, spike train approach

Another recent study, Bollimunta et al. (19), reported a statistical analysis of LIP spike trains similar
in spirit to our own. This paper examined specifically whether LIP spike trains were better fit by a
ramping model or a discrete stepping model. It concluded that ramping model provided a better fit to
LIP responses, in contradiction to the findings we have reported here. However, there are substantial
differences in modeling and statistical methodology that may explain this discrepancy.

First, the Bollimunta et al. ramping model had a linearly increasing spike rate, without a diffusion compo-
nent or a bound, which represents a significant departure from standard noisy accumulation-to-bound
dynamics. Second, the Bollimunta et al. stepping model assumed a uniform distribution of step times
and identical step directions for all trials being analyzed. However, we do not in general expect step
times (like reaction times) to be uniformly distributed, nor to correlate perfectly with choice (see Fig.
2A).

There are also differences in statistical power. The model fitting techniques used in (19)had computa-
tional costs that made it infeasible to analyze more than 4 trials at a time. By considering only several
trials at a time, the fitting procedure can produce different parameter fits for different trials. Bollimunta et
al. used the Hannan-Quinn information criterion (HQIC) as a metric to compare models, which is similar
to our use of DIC. The distribution of HQIC values computed across model fits of different trials was
tested for being significantly greater than 0, instead of computing a single HQIC for all trials for a single
cell. The magnitude of the median HQIC values reported by Bollimunta et al. are less than 0.01, which
is several orders of magnitude smaller than the model comparison values we report here. Additionally,
Bollimunta et al. used an analysis window consisting of 400ms preceding a saccade instead of the en-
tire integration period. The MCMC methods we used to analyze a large number of trials, along with our
definitions of both types of latent dynamics, increased the statistical power of our study. In summary,
we feel these differences in modeling and methodology might explain the discrepancies in our findings.

3.6 Application to a response-time version of the task

We applied our model comparison to a publicly available dataset from Roitman & Shadlen (17) (down-
loaded from https://www.shadlenlab.columbia.edu/). The task was similar to our own, except the
monkey was not given a “go” signal and instead viewed the dots until it chose to signal a decision with
a saccade. The averaged responses of these choice-selective LIP cells are shown in Figure 7 of (17).

Similar to the analysis of our data, we applied our model fitting to spike trains starting from 200 ms after
motion onset. Following (19), we considered spikes up until 50 ms before the saccade. We selected
only trials that were at least 350 ms long, counting from motion onset until saccade. Therefore, every
trial we analyzed had at least 100 ms of data for our analysis. After weeding out short trials, we se-
lected cells with at least 8 remaining trials per signed coherence level. 16 cells from this dataset met
this criterion, and their motion-aligned and choice-separated PSTHs are shown in Figure S22. The
motion coherence-sorted responses along with the step model fits are shown in Figure S23. Our model
comparison analysis indicated that 12 of these 16 cells were better fit by the stepping model than the
ramping model (Fig. S25). Figure S24 shows the population average firing rate aligned to motion onset
and inferred step times (similar to Fig. 3A in the main text for the fixed-duration task). The similar-
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ity of these results to our model comparison using the larger experimenter-controlled dataset in the
main paper suggests that the dynamics of LIP neurons are not fundamentally different in experimenter-
controlled and reaction-time versions of the task, consistent with previous conclusions (3).

We note that the response time paradigm might allow for decision-related and saccade-related motor
activity to overlap within a single spike train, even though we excluded a brief portion of the pre-saccadic
activity from analysis. The models considered here were only intended to capture decision-related dy-
namics, so further analyses of LIP responses during the response time task will benefit from analyzing
larger datasets with extended models that are explicitly designed to disentangle decision-related dy-
namics from pre-motor activity.
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Fig. S22: PSTHs aligned to motion onset from the cells we analyzed from Roitman & Shadlen (17),
sorted by the monkey’s choice. DIC differences from our model comparison analyses are given for each
cell (positive favoring the stepping model).
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Fig. S23: PSTHs aligned to motion onset from the cells we analyzed from Roitman & Shadlen (17), sorted
by motion coherence (solid lines). The stepping model fits are shown in the dashed lines. These PSTHs
were smoothed using a 50 ms sliding average, rather than a 25 ms window, because the number of trials
in each condition was limited. The average rates included activity up to 50 ms before the saccade. Firing
rates are only shown at time points when at least 8 trials were available.
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Fig. S25: Model comparison results for 16 cells from Roitman & Shadlen (17).
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