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Abstract
An important problem in systems neuroscience is
to identify the latent dynamics underlying neural
population activity. Here we address this prob-
lem by introducing a low-dimensional nonlinear
model for latent neural population dynamics us-
ing neural ordinary differential equations (neural
ODEs), with noisy sensory inputs and Poisson
spike train outputs. We refer to this as the Poisson
Latent Neural Differential Equations (PLNDE)
model. We apply the PLNDE framework to a
variety of synthetic datasets, and show that it ac-
curately infers the phase portraits and fixed points
of nonlinear systems augmented to produce spike
train data, including the FitzHugh-Nagumo os-
cillator, a 3-dimensional nonlinear spiral, and a
nonlinear sensory decision-making model with
attractor dynamics. Our model significantly out-
performs existing methods at inferring single-trial
neural firing rates and the corresponding latent
trajectories that generated them, especially in
the regime where the spike counts and number
of trials are low. We then apply our model to
multi-region neural population recordings from
medial frontal cortex of rats performing an audi-
tory decision-making task. Our model provides a
general, interpretable framework for investigating
the neural mechanisms of decision-making and
other cognitive computations through the lens of
dynamical systems.

1. Introduction
The language of dynamical systems has long been used
to describe neural population activity—for example, how
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a neural population can coordinate movement, or how it
can retain working memory or integrate evidence useful
for decision-making (Hopfield, 1982; Fetz, 1992; Seung,
1996; Brody et al., 2003; Machens et al., 2005; Wong &
Wang, 2006; Chaudhuri & Fiete, 2016). Recent experiments
showed that neural population activities across a surprisingly
large number of brain regions and species can be described
by a low-dimensional dynamical system (Churchland et al.,
2012; Harvey et al., 2012; Mante et al., 2013; Kaufman
et al., 2014; Nieh et al., 2021). This was accompanied by a
growing interest in modeling neural population activity in
terms of the generic dynamical system:

ż(t) = f(z(t),u(t), t) (1)

where the latent variable z 2 RL evolves in a low-
dimensional space with dimension L. The dynamics can be
perturbed by external input stimuli u 2 RK . Spike times of
neural activities observed on a single trial can be modeled
as inhomogeneous Poisson processes:

�(t) = exp(Cz(t) + d)

t
(n)
x,1, t

(n)
x,2, ..., t

(n)
x,↵(n) ⇠ PoissonProcess(�n(t)) (2)

n = 1, 2, ..., N

where C and d are the loading matrix and bias, t(n)x,· are the
spike times and � 2 RN are the firing rates of the observed
neurons n = 1, 2, ..., N . ↵(n) is the total number of spike
counts of the n-th neuron.

Recent studies show that a recurrent neural network (RNN)
can be trained to approximate nonlinear latent dynamics (1)
in a variety of brain areas, including motor and premotor
cortices during reaching and other motor tasks (Pandarinath
et al., 2018; Flint et al., 2020; Suresh et al., 2020). This ap-
proach marked a huge influence in thinking towards neural
computation through dynamical systems (Vyas et al., 2020).
However, there are a few drawbacks to this approach.

1) RNN and its dynamics are generally high-dimensional,
making it difficult to interpret and gain insight into the puta-
tively low-dimensional dynamics underlying neural activity.
2) It often requires a large number of trials to avoid overfit-
ting and reach competitive performance against other latent
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variable models. 3) Unlike a typical latent variable model in-
troduced to neuroscience that has stochasticity in the latent
dynamics, the initial state of the RNN and the external input
stimuli, if any, completely determine the state trajectory.
While deterministic latent dynamics may be justified for
neural activity in motor areas that show characteristics of au-
tonomous dynamics, such as the supplementary motor area
during cycling (Russo et al., 2020), this is not desirable in
some applications including perceptual decision-making, as
the exact same input stimulus may still give rise to different
choices of the animal.

Here we address these three problems by introducing a low-
dimensional nonlinear model for neural population dynam-
ics based on neural ordinary differential equations (neural
ODEs; E 2017; Chen et al. 2018). First, Section 2 reviews
the background and related work. Section 3 then describes
our model. We show in Section 4 that: 1) our model is
interpretable. By interpretable, we mean that we can obtain
the phase portrait and analyze the Jacobian around the fixed
points of the system. This can give useful insights into how
the dynamical system does the desired computation (Sus-
sillo & Barack, 2013; Duncker et al., 2019); 2) our model
outperforms existing methods in inferring single-trial neural
firing rates and the corresponding latent trajectories that
generated them, even when the number of trials and the
spike counts within each trial are low; 3) our model latent
trajectories are not deterministic. It may take discrete noisy
sensory inputs, making them suitable for applications such
as decision-making. Finally, in Section 4.4, we demonstrate
that our model gives interpretable phase portraits of neural
dynamics when applied to the medial frontal cortex (mFC)
of rats performing an auditory decision-making task.

2. Background
We review existing state-space models in neuroscience, neu-
ral ODE, and the context of our application.

2.1. Poisson Linear Dynamical System

Poisson linear dynamical system (PLDS) model approxi-
mates the latent dynamical system in (1) as a discrete-time
linear dynamical system:

z0 ⇠ N (µ
z0
,Q

z0
)

zk+1 = Azk +Buk + ⌘
k

(3)
⌘
k
⇠ N (0,Q)

and uses the Poisson distribution to model spike counts that
fall in each of the bins k of width �t:

�k = exp(Czk + d)

xn,k ⇠ Poisson(�t�n,k)
(4)

We typically apply Laplace approximation to the log-
posterior of this model and optimize via Expectation-

Maximization (Macke et al., 2011).

2.2. Latent Factor Analysis via Dynamical Systems

Latent factor analysis via dynamical systems (LFADS; Sus-
sillo et al. 2016; Pandarinath et al. 2018) approximates (1)
with an RNN, where h 2 RH is the hidden state of the gated
recurrent unit (GRU; Cho et al. 2014) of dimension H:

h0 ⇠ N (µ
h0
,Q

h0
)

hk+1 = GRU(hk,uk) (5)
zk = Whk + b

(5) is called the generator. The low-dimensional latent fac-
tors z are mapped to neural observations in the same way
as (4). LFADS also has a black box recognition model
called the encoder that serves to amortize inference, where
it gets a sequence of spike counts x1:K as an input and out-
puts parameters µ

h0
and Q

h0
. Typically, the encoder is a

bidirectional GRU that runs forward and backward in time:

[µ
h0
,Q

h0
] = Encoder(x1:K) (6)

When u is not directly observed, we may replace it with
outputs from an extra RNN called the controller that gets
outputs from the encoder as its input. Recently, AutoL-
FADS, which optimizes hyperparameters of LFADS via
population-based training, has been developed to increase
the performance of LFADS (Keshtkaran et al., 2021).

2.3. Neural Ordinary Differential Equations

An alternative to approximating (1) with an RNN is to ap-
proximate f with a feedforward neural network (FNN) and
use an ODE solver to obtain the latent trajectory. Broadly,
there are two ways to obtain the gradient of the loss with
respect to the parameters  of the FNN. First, we can per-
form reverse-mode differentiation through the solver (called
discrete adjoint sensitivity). Some find that, under certain
conditions, this may be more performant than the second
approach, continuous adjoint sensitivity (Rackauckas et al.,
2018). Continuous adjoint sensitivity computes the gradient
by realizing that the gradient of the loss follows another
ODE (Pontryagin et al., 1962), and solving this ODE back-
wards in time (Serban & Hindmarsh, 2005; Chen et al.,
2018). If we define the adjoint states

a(t) =
dL

dz(t)
, a (t) =

dL

d 
(7)

then they follow the ODEs

da(t)

dt
= �a(t)

@f
 
(z(t), t)

@z(t)

da (t)

dt
= �a(t)

@f
 
(z(t), t)

@ 

(8)
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Figure 1. Generative processes of PLNDE in different scenarios. (A) An animal may perform motor tasks such as reaching or cycling that
do not have explicit external input stimulus. The phase portrait of the dynamical system is inferred by f

✓
. Each trial of the task is a single

trajectory in this phase portrait, which starts from an initial value z(t0), indicated by the dark blue circle. The magenta circle indicates an
unstable fixed point of the dynamics. Each trajectory is mapped to the rates of Poisson processes that generate spike times of the neurons
observed during the task. Monkey illustration adapted from Russo et al. 2020. (B) Neural dynamics may be affected by external sensory
stimuli in tasks such as perceptual decision-making. The dynamics of the animal doing such tasks may involve two stable fixed points
(cyan circles), and one unstable fixed point (magenta circle). When inputs are discrete, these inputs may affect the latent trajectories as
discrete jumps at the input times. Rat illustration adapted from Brunton et al. 2013.

In Chen et al. 2018, a continuous adjoint sensitivity method
that takes O(1) memory is discussed. This is possible via
augmenting the ODE we want to solve with the ODEs in
(8) and integrating the augmented ODE backwards. The
backward solution of the ODE we want to solve can diverge
from the forward solution with this approach if the solver is
not time-reversible and uses adaptive time steps. However,
time-reversibility of the solver may not be necessary for
convergence under certain conditions.

Latent neural ODE models have been explored in Chen et al.
2018 and Rubanova et al. 2019 where they were applied
to a wide variety of datasets with irregularly-sampled ob-
servations, for example, medical results from patients in
ICU.

2.4. Handling Discrete Jumps in the Continuous
Adjoint Sensitivity Method

Suppose that at a discrete event time tu,j , our latent state is
perturbed by the event such that:

z
�
t
+
u,j

�
= z (tu,j) + gu

�
(z (tu,j) , tu,j) (9)

where gu

�
is some function of parameters � that determines

the update in our state z. Then, the adjoint states satisfy:

a (tu,j) = a
�
t
+
u,j

�
+ a

�
t
+
u,j

� @gu

�
(z (tu,j) , tu,j)

@z(tu,j)

a⇥ (tu,j) = a⇥

�
t
+
u,j

�
+ a

�
t
+
u,j

� @gu

�
(z (tu,j) , tu,j)

@⇥
(10)

where { ,�} ⇢ ⇥. (10) are due to Equation (13) from Jia
& Benson 2019 and Remark 2 from Corner et al. 2018.

2.5. Pulsatile Evidence Accumulation in Perceptual
Decision-Making

When perceptual evidence is discrete, one can discern dif-
ferent kinds of noise that may be at play during decision-
making (e.g., noise in the latent variable versus noise in
the perceived evidence) (Brunton et al., 2013). To achieve
this, an experimental setup was devised where an animal
(typically a rodent) is presented with randomly-timed au-
ditory pulses to its left and right sides and is rewarded for
correctly reporting which side had the greater total number
of “clicks”. This paradigm is often used to study perceptual
decision-making (Scott et al., 2015; Pinto et al., 2018; Nieh
et al., 2021).

Decision dynamics in this paradigm can be modeled as an
Ornstein–Uhlenbeck process with jumps (Brunton et al.,
2013; Piet et al., 2018; DePasquale et al., 2019):

dz = �zdt+�tR
�
C

R + ⌘R

�
dt

+�tL
�
C

L + ⌘L

�
dt+ �zdW

(11)

Here, ⌘R, ⌘L ⇠ N (0,�s). CR and C
L represent how much
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on average the latent variable z should be updated at each
click event coming from the right and left sides, respectively.

3. Poisson Latent Neural Differential
Equations for Spiking Neural Data

We develop Poisson Latent Neural Differential Equations
(PLNDE), which infers the underlying nonlinear dynamics
of neural population spike trains. This framework can be
applied to scenarios where there are no external inputs to
the dynamics and dynamics are autonomous (Figure 1A).

Our model can also be applied to scenarios where there
are external inputs to the dynamics and dynamics are non-
autonomous. While our model can take sensory input stim-
uli u that are either continuous or discrete, our model can
take sensory noise into account only when the stimuli are
discrete, as in Section 2.5 and Figure 1B, or when the con-
tinuous stimuli permit noise only at finite time points.

The marginal log-likelihood, or evidence, log p⇥(tx|u) can
be maximized by computing the variational lower bound L

of log p⇥(tx|u), where tx are the spike times of N observed
neurons, u is the input, and the parameters of our model
are ⇥ = {✓,�}. If spike times are generated as in (2),
✓ = { ,C,d} are the generative parameters and � are the
variational parameters.

L = Eq[log p✓(tx|z,u)]�DKL(q�(z|tx,u)||p(z|u))
(12)

Let the discrete input event times be tu. In such a case, we
may model (1) as:

ż = f
 
(z, t) + �tu(g

u

�
+ ⌘

u
)

⌘
u
⇠ N (0,⌃u

�
)

(13)

where f
 

is a generic function that may be approximated
with a feedforward neural network (FNN). f

 
characterizes

the phase portrait, with its zeros representing the fixed points.
gu

�
is the mean update in the latent state at each event time

tu,j , and the diagonal matrix ⌃u

�
represents sensory noise in

the update. ⌘
u

models noise in the sensory input perceived
by the animal, similar to Brunton et al. 2013.

If the mapping from z(t) to �(t) is defined by (2),

Eq[log p✓(tx|z,u)] = Eq[log p✓(tx|�)]

=
NX

n=1

Eq[log p✓(t
(n)
x

|�n)]

where

log p(t(n)
x

|�n) = �

Z

T
�n(t)dt+

↵(n)X

i=1

log �n(t
(n)
x,i

) (14)

We Monte Carlo estimate Eq[log p✓(t
(n)
x |�n)]. While it is

possible to compute (14) via an ODE solver (Rubanova et al.,
2019), we find that approximating (14) via (4) works well
in practice—binning the spike times into k bins of width
�t and inferring the mean �k of the Poisson distribution
works well in the synthetic datasets we test, and may be
more efficient for our application as the number of neurons
N can get large.

We find parameters ⇥ that maximize L via a first-order
method such as ADAM.

3.1. Computing the Adjoints with Stochastic Jumps

We compute @L/@⇥ by using the reparametrization trick,
storing ✏ ⇠ N (0, I) instantiated in the forward pass, and
using the same noise instances during the backward pass. A
similar approach has been used in fitting circuit models in
neuroscience (Duan et al., 2021).

z
�
t
+
u,j

�
= z (tu,j) + gu

�
+ ✏�

q
⌃u

�
(15)

The adjoints for (15) then are

a (tu,j) = a
�
t
+
u,j

�
+ a

�
t
+
u,j

� @gu

�

@z (tu,j)

+ ✏� a
�
t
+
u,j

� @

q
⌃u

�

@z (tu,j)

a⇥ (tu,j) = a⇥

�
t
+
u,j

�
+ a

�
t
+
u,j

� @gu

�

@⇥

+ ✏� a
�
t
+
u,j

� @
q

⌃u

�

@⇥
(16)

Computing the adjoints take O(M) memory and O(M̃)
time, similar to continuous adjoint sensitivity methods that
utilize checkpointing (Serban & Hindmarsh, 2005; Rack-
auckas et al., 2020). M is the number of jump events and
M̃ is the number of function evaluations.

3.2. Computing the Kullback-Leibler Divergence

The posterior q�(z|tx, tu) is given by

q�(z|tx, tu) = q�(z(t0), z(tu,1), ..., z(tu,M )|tx) (17)

= q�(z(t0)|tx)
MY

j=1

q�(z(tu,j)|z(tu,j�1), tx)

q�(z(t0)|tx) = N (µ0
�
,⌃0

�
) (18)

q�(z(tu,j)|z(tu,j�1), tx) = N (µ,⌃u

�
) (19)

µ = gu

�
+ z(tu,j�1) +

Z
tu,j

tu,j�1

f✓(z(t), t)dt (20)
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Figure 2. PLNDE accurately infers phase portrait and fixed point. PLNDE outperforms LFADS and PLDS in inferring single-trial latent
trajectories and individual neural firing rates for nonlinear spiral dynamics. (A) Top: True phase portrait of the spiral. Black line indicates
a trajectory in an example test trial. Bottom: Inferred phase portrait of the spiral affine-transformed to match the true phase portrait.
Blue line indicates the inferred trajectory. Cyan circles indicate the true and inferred stable fixed points. (B) Condition where the mean
population firing rate is high. The example test trajectories in A are shown unrolled in time, along with the corresponding firing rate of an
example neuron. The first 10 example neurons’ spike times are also shown. Each circle indicates the median R2 of the latent trajectories.
The error bar indicates the first and third quartiles. (C) Same as B for low mean population firing rates. (D) Summary for high firing rates,
including all numbers of trials in B, and computing PLNDE R2 � LFADS/PLDS R2 (abscissa). The vertical dashed lines represent the
medians. (E) Same as D for low firing rates.

where M is the total number of jump events, t0 is the start
of the trial, and tu,j is the timing of the j-th event. (18)
determines the distribution of initial values. Similarly, the
prior is given by

p(z|tu) = p(z(t0), z(tu,1), ..., z(tu,M ))

= p(z(t0))
MY

j=1

p(z(tu,j)|z(tu,j�1))
(21)

p(z(t0)) = N (µ0
prior,⌃

0
prior) (22)

p(z(tu,j)|z(tu,j�1)) = N (µ,⌃u

prior) (23)

µ = gu

prior + z(tu,j�1) +

Z
tu,j

tu,j�1

f✓(z(t), t)dt (24)

where µ in Equation (24) is similar to (20), with gu

�
replaced

by gu

prior.

The Kullback-Leibler (KL) divergence then becomes

DKL(q�(z|tx, tu)||p(z|tu)) =
1

2

h
log

|⌃0
prior|

|⌃0
�
|

� d

+ tr{⌃0�1

prior⌃
0
�
}+ (µ0

�
� µ0

prior)
>⌃0�1

prior(µ
0
�
� µ0

prior)
i

+
MX

j=1

1

2

h
log

|⌃u

prior|

|⌃u

�
|

� d+ tr{⌃u
�1

prior⌃
u

�
}

+ (gu

�
� gu

prior)
>⌃u

�1

prior(g
u

�
� gu

prior)
i

(25)

When M = 0, we have a model for scenarios as in Fig-
ure 1A, and when M > 0, scenarios as in Figure 1B. See
Section A of Supplementary Material for detailed deriva-
tions.
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4. Experiments
We fit PLNDE (ours), PLDS1 (Section 2.1) and LFADS2

(Section 2.2) to synthetic datasets with three different nonlin-
ear dynamical systems. We generated each latent trajectory
(i.e., a trial) from a different initial value of the dynamical
systems. We split the data into training and test, where test
trajectories were generated from initial values not seen in
training. For LFADS and PLDS, we used the default initial-
izations, hyperparameters and termination criteria given in
their original repositories. We initialized the parameters of
PLNDE with Glorot normal and trained for ⇡ 5000 itera-
tions. See Section B of Supplementary Material for details
on how the data were generated, and the specifics of model
architectures, initializations and hyperparameters. We also
fit PLNDE to multiple areas within the mFC of a rat per-
forming the decision-making task in Section 2.5 (Figure 1B;
Brunton et al. 2013).

4.1. Spiral Dynamics

Figure 2 shows the results of fitting PLNDE, PLDS and
LFADS to a nonlinear dynamical system that generates
spirals similar to the example in Brunton et al. 2016.

Specifically, spike times of 150 neurons were generated
from a system following the equations:

ż1 = �4z31 � 4z1 � 80z32 � 80z2

ż2 = 80z31 + 80z1 � 4z32 � 4z2

ż3 = �12z33 � 12z3

(26)

The nonlinear spiral has one stable fixed point at the ori-
gin (see Figure 2A for phase portrait and fixed point).
While we cannot plot the inferred nonlinear phase por-
trait with LFADS or PLDS, PLNDE can plot the phase
portrait, providing an interpretable representation of the la-
tent trajectories. We found that PLNDE accurately infers
the phase portrait and the stable fixed point of the spiral
with a sufficient number of trials (Figure 2A–C). The sta-
ble fixed point was found by finding the zeros of our FNN
f
 

with Newton’s method and using automatic differen-
tiation to find the Jacobian around the fixed point. The
computed eigenvalues of the Jacobian around the fixed
point inferred by PLNDE in one example session were
[�8.14,�2.91� 79.33i,�2.91 + 79.33i], while the true
eigenvalues were [�12,�4� 80i,�4 + 80i].

We considered how the mean population firing rates and the
number of training trials affect the models’ performance in
recovering the true single-trial firing rates and the latent tra-

1Code from: https://bitbucket.org/mackelab/
pop_spike_dyn/src/master/

2Code from: https://github.com/tensorflow/
models/tree/master/research/lfads

jectories (Figure 2B–C). R2 between the ground truth latent
trajectory and the inferred latent trajectory were computed
separately for each trial and each latent dimension. When
the mean population firing rate is high (⇡ 6.62 spikes/s),
PLNDE was able to reconstruct the individual test latent
trajectories with the median R

2 of 0.93 with as low as 8
training trials, while for LFADS and PLDS, median R

2 were
0.41 and 0.05, respectively (Figure 2B). As the number of
training trials increased, the median R

2 increased for all
models. PLNDE outperformed LFADS and PLDS in all of
the different numbers of training trials that we considered.
The median R

2 of PLNDE was significantly higher than
the median R

2 of LFADS and PLDS with p < 0.0001 for
all numbers of training trials (two-sided Mann-Whitney U
tests; Figure 2B, D). We found similar trends as a function
of the number of training trials when we computed each
neuron’s firing rate reconstruction accuracy (Figure 2B). R2

was computed between the ground truth firing rate and the
inferred firing rate for each trial and neuron. These results
were more striking when the mean population firing rate
was low (⇡ 1.12 spikes/s). Even when LFADS and PLDS
could not recover the latent trajectories and infer the fir-
ing rates of the neurons, with a sufficient number of trials,
PLNDE was able to recover the latent trajectories and firing
rates (Figure 2C). Generally, PLNDE outperformed LFADS
and PLDS when the mean population firing rates were both
high and low, and across different numbers of training trials
(Figure 2D–E).

In these experiments, we did not optimize or train the latent
dimensionality; we chose the latent dimensionality of all
models we tested to be equal to the ground truth. How-
ever, we often do not know the true latent dimensionality
of the system we observe. In such a case, the optimal di-
mensionality may be recovered by comparing the test loss
(ELBO) and the test log-likelihood (LL) of each neuron
across models that assume different latent dimensions. We
demonstrate that recovering the optimal dimensionality with
this approach is possible for the nonlinear spiral dataset in
Figure 2 (Section B of Supplementary Material).

4.2. FitzHugh-Nagumo

Spike trains of 50 neurons were generated from a system
governed by the FitzHugh-Nagumo dynamics:

ż1 = ⇢⌧

✓
z1 �

1

3
z
3
1 � z2

◆
+ Iinput

ż2 =
⌧

⇢
(z1 + a� bz2)

(27)

where a = b = 0, ⇢ = 2 and ⌧ = 15. We found that PLNDE
can accurately infer the phase portrait of FitzHugh-Nagumo,
capturing the limit cycle and the unstable fixed point. We
trained PLNDE, PLDS and LFADS on different numbers of

https://bitbucket.org/mackelab/pop_spike_dyn/src/master/
https://bitbucket.org/mackelab/pop_spike_dyn/src/master/
https://github.com/tensorflow/models/tree/master/research/lfads
https://github.com/tensorflow/models/tree/master/research/lfads
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training trials and found that, similar to Figure 2, PLNDE
outperformed LFADS and PLDS in all numbers of train-
ing trials we considered. See Section B of Supplementary
Material for details.

4.3. Mutual Inhibition with External Input Stimuli

Spike trains of 150 neurons were generated from a system
with the following attractor dynamics (Wong & Wang, 2006;
Piet et al., 2017):

ż1 = ⌧

✓
�z1 +

1

1 + exp (k (z2 � �))

◆

+
�
�tR

�
C

R

1 + ⌘R,1

�
+ �tL

�
C

L

1 + ⌘L,1

��

ż2 = ⌧

✓
�z2 +

1

1 + exp (k (z1 � �))

◆

+
�
�tR

�
C

R

2 + ⌘R,2

�
+ �tL

�
C

L

2 + ⌘L,2

��

(28)

where ⌧ = 10, k = 16, and � = 0.5. 30 Hz input pulses
of dimension K = 2 affect the system. A pulse in the first
dimension induces a jump in the latent dynamics with the
mean being CR, while a pulse in the second dimension
induces a jump with the mean being CL, where

CR =


0.05
�0.05

�
, CL =


�0.05
0.05

�
. (29)

Each pulse had sensory noise, where ⌘L, ⌘R ⇠ N (0,I)
with  = 0.001.

We found that, similar to the spiral (Section 4.1; Figure 2)
and FitzHugh-Nagumo (Section 4.2), PLNDE can infer the
phase portrait of the mutual inhibition dynamics, correctly
identifying the two stable and one unstable fixed points
(Figure 3A). We found that PLNDE outperformed LFADS
and PLDS in inferring neural firing rates and latent trajec-
tories (Section B of Supplementary Material). Even when
the sensory input is noisy, the posterior means of the latent
trajectories and the firing rates matched the ground truth
well (Figure 3B–D). The PLNDE-inferred magnitudes of
the noisy jumps induced by the pulses were similar to the
true magnitudes (Pearson’s r = 0.714), and the standard
deviation of the posterior means was comparable to that
of the true magnitudes (0.057 versus 0.059, respectively;
Figure 3D).

4.4. Dynamics of the Medial Frontal Cortex During
Perceptual Decision-Making

We fit PLNDE to a single session of recordings from the sec-
ondary motor cortex (M2), cingulate cortex (Cg1), prelimbic
cortex (PrL) and medial orbital cortex (MO) in the mFC of a
rat performing the decision-making task in Section 2.5 (see
Figure 1B for this task; see Figure 4A for location of the

Figure 3. PLNDE can take discrete noisy sensory input stimuli. (A)
Same as Figure 2A, but for mutual inhibition. (B) Black lines show
a true example latent trajectory and firing rate while blue lines
show the posterior means with ±1.96 standard deviation tubes
estimated from posterior samples. Red and green ticks indicate
stimulus event times from the right and left sides, respectively. (C)
Histogram of R2 between the true test trajectories and the posterior
mean (median=0.954). (D) Each grey circle represents the true
magnitude of update in the latent state after a sensory event versus
the posterior mean magnitude of update. The black arrow indicates
±1.96 standard deviations around the true mean jump magnitudes
and the blue arrow indicates ±1.96 standard deviations around
mean of the PLNDE posterior mean jump magnitudes.

probe). Only spikes that occurred during the stimulus period
were used and the spike times were aligned to the onset of
the stimulus. Spike times and click times from the total of
166 trials were used for fitting our model, and the model as-
sumed that a pulse on either the left or the right side induces
a jump in the latent dynamics exactly at the time when the
pulse occurs. The configuration of the model was set to be
the same as that in Section 4.3 (see Section B of Supple-
mentary Material for details). We find that Cg1 contains
the most information about choice and evidence compared
to the other areas in the mFC, while PrL contains the least
information about choice and evidence (Figure 4B–C). This
was confirmed qualitatively (Figure 4B) and by performing
linear regression to predict the difference in the total num-
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Figure 4. (A) Location of the Neuropixels probe in mFC. In total 497 neurons were recorded during the session with 101 M2 neurons, 99
Cg1 neurons, 249 PrL neurons, and 47 MO neurons. (B) Phase portraits of each area in mFC. Each trajectory is a single correct trial,
color-coded such that green represents a trial with more clicks on the left side and red represents a trial with more clicks on the right side.
Where each trajectory ends is marked with a triangle, oriented differently according to the rat’s choice. Light green line is the trajectory
that ends closest to the mean of the correct left choice trajectory final states, indicated by the light green triangle. Pink line is the trajectory
that ends closest to the mean of the correct right choice trajectory final states, indicated by the pink triangle. Cyan and magenta circles
indicate stable and unstable fixed points found by our model, respectively. (C) 12-fold cross-validated linear regressions for evidence
decoding and linear SVMs for choice decoding. Each gray line indicates 1-fold. Black line is the mean. (D) Fraction of right choices is
computed as a function of differences in the number of right and left clicks. Error bars indicate 95% binomial proportion confidence
intervals.

Table 1. Summary of properties of latent variable models for spiking neural data

MODEL PHASE PORTRAIT INPUT STIMULI SCALABLE3 CONTINUOUS-TIME ASSUMPTIONS ON LATENTS

PLDS
p p p

LINEAR, STOCHASTIC
VLGP

p p
NO DYNAMICS, STOCHASTIC

GP-SDE
p p

POSTERIOR IS LTV4, STOCHASTIC
LFADS5 p p

NONLINEAR, DETERMINISTIC
PLNDE

p p p p
NONLINEAR, STOCHASTIC6

bers of right and left clicks in each correct trial based on
the final state of the latent trajectory (Figure 4C, top). The
decoding RMSE of PrL was significantly higher than all
other areas (p < 0.005; two-sided Mann-Whitney U tests).
We also trained a regularized linear support vector machine
(SVM) to predict the rat’s choice on each trial based on
the final state of the latent trajectory (Figure 4C, bottom).
Choice decoding accuracy of PrL was significantly lower
than all other areas (p < 0.01; two-sided Mann-Whitney
U tests), while decoding accuracy of Cg1 was significantly
higher than all other areas (p < 0.005; two-sided Mann-
Whitney U tests).

This result is consistent with our other work which showed
that the dorsomedial frontal cortex (dmFC; area covering
M2 and Cg1) contains more information about perceptual
evidence than the medial prefrontal cortex (mPFC; area
covering PrL and MO) (Luo et al., 2021).

Critically, PLNDE captures those results while also provid-
ing interpretable phase portraits of the latent space dynamics
(Figure 4B). These portraits, including that of Cg1, which
contains the most information about perceptual evidence
and choice, suggest that at finite timescales per trial, a point
that is stable to infinite time is not necessary to implement
the animal’s choice, in contrast to the view taken in Wong
& Wang 2006.

5. Discussion
We introduced a general, interpretable framework that can
be practically applied to neural population activities in a
variety of tasks and species. In contrast to Gaussian process

3Check-marked if the model can deal with L � 3.
4Linear time-varying
5Can obtain fixed points and phase portraits in RH , but not RL.
6PLNDE latents are stochastic only at finite time points.
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stochastic differential equation (Duncker et al. 2019; GP-
SDE) or variational latent Gaussian process model (Zhao
& Park 2017; vLGP), our model can take sensory inputs
that are potentially noisy and discrete. Also, in contrast to
LFADS or PLDS, our model can infer the nonlinear phase
portraits, as demonstrated in synthetic neural population
activities (Table 1). We believe that being able to plot the
nonlinear phase portraits and being able to take sensory
inputs are important because these will allow direct compar-
isons between phase portraits inferred from real neurophysi-
ological data (e.g., Figure 4B) and traditional model phase
portraits (e.g., Figure 5 in Wong & Wang 2006).

However, one should keep in mind that PLNDE does not
provide a measure of confidence in its estimate of the phase
portrait, and must be cautious when interpreting phase por-
trait far from the traversed trajectories. While PLNDE
is a general framework, the phase portraits inferred from
PLNDE may depend on specific model assumptions, includ-
ing whether the dynamics are stationary or non-stationary,
and how the sensory stimuli are represented in neural dy-
namics (Levi & Huk, 2020)—any interpretation we make
from the inferred portraits is bound to reflect those assump-
tions. Therefore, before applying the model to the brain area
of interest, one must consider the area’s functional roles,
and what form of sensory representation it gets.

We demonstrated in synthetic datasets that our model outper-
forms other models especially when there are fewer numbers
of trials and spike counts. While LFADS has previously
been applied mainly to data from monkeys, our approach
may be advantageous for rodent data, as firing rates are
often lower in rodents than monkeys for the analogous brain
areas and in similar behaviors (see, for example, the rat
posterior parietal cortex (PPC) mean firing rates in Hanks
et al. 2015, and the monkey PPC mean firing rates in Roit-
man & Shadlen 2002). The number of trials available for
analyses is often not large in a typical experimental session.
LFADS proposes training with data from multiple sessions
to increase inference power, and while this is also possible
with our framework, our model can work session-by-session
without overfitting even when the number of trials in each
session is not large. One reason why our model performed
well with small numbers of trials may be that the number
of parameters of our model required to perform competi-
tively against other models was relatively small (Section
C of Supplementary Material). A large chunk of the pa-
rameters in LFADS goes to its recognition model. If we
do have a sufficiently large number of trials, we may also
consider amortizing posterior inference of our model by
having, for example, an RNN encoder like (6), ODE-RNN
encoder (Rubanova et al., 2019) or a NeuralCDE encoder
(Kidger et al., 2020).

The network architecture for PLNDE was set to be the same

throughout this paper. While this architecture gives reason-
ably good fits to our datasets, this may not be the best set
of PLNDE hyperparameters. Similarly, all comparisons be-
tween PLNDE (with the architecture specified in Section B
of Supplementary Material) and other models were carried
out using the default hyperparameters given in their respec-
tive original repositories. Indeed, standardized routines that
optimize the hyperparameters of these models will improve
their performances in recovering the latent dynamics, espe-
cially in the regime where there are fewer numbers of trials
and the models are more prone to overfitting. We suspect
that hyperparameter optimization will be the most effective
for LFADS as the number of parameters for LFADS is the
largest and more than 100 times the numbers of parame-
ters of the other models we compared with (Section C of
Supplementary Material). Recent results suggest that the
performance of LFADS increases with coordinated dropout
(Keshtkaran & Pandarinath, 2019) and hyperparameter op-
timization (Keshtkaran et al., 2021), especially when there
are small numbers of trials. Continued efforts to develop
flexible and interpretable models of neural dynamics, and
efforts to develop methods to discourage overfitting in these
models so that they work out-of-the-box, will be valuable
for systems neuroscience.
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A. Details of Section 3

We develop Poisson Latent Neural Differential Equations (PLNDE), which infers the underlying nonlinear dynamics of
neural population spike trains.

We maximize the marginal log-likelihood log p⇥(tx|u) by computing the variational lower bound, where tx are the spike
times of N observed neurons and u is the external stimulus given by the experimenter that affects z:

log p⇥(tx|u) = log

Z
p✓(tx|z,u)p(z|u)dz

= log

Z
q�(z|tx,u)

q�(z|tx,u)
p✓(tx|z,u)p(z|u)dz

� Eq


log

p✓(tx|z,u)p(z|u)

q�(z|tx,u)

�

= Eq [log p✓(tx|z,u)]�DKL(q�(z|tx,u)||p(z|u))

Since the mapping from z(t) to �(t) is defined by Equation (2) in the main text,

log p⇥(tx|u) � Eq [log p✓(tx|z,u)]�DKL(q�(z|tx,u)||p(z|u))

= Eq [log p✓(tx|�)]�DKL(q�(z|tx,u)||p(z|u)) = L

where

Eq[log p✓(tx|�)] =
NX

n=1

Eq[log p✓(t
(n)
x |�n)].

Here, ⇥ = {✓,�} are the parameters of our model, where ✓ are the generative parameters and � are the variational
parameters. The Poisson process likelihood log p✓(tx|�) (Palm, 1943; Duncker et al., 2019) is

log p✓(t
(n)
x |�n) = �

Z

T
�n(t)dt+

↵(n)X

i=1

log �n(t
(n)
x,i )

where t(n)x,· are the spike times and � 2 RN are the firing rates of the observed neurons n = 1, 2, ..., N . ↵(n) is the total
number of spike counts of the n-th neuron.
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A.1. Eq [log p✓(tx|�)]

While it is possible to compute the Poisson process likelihood log p✓(tx|�) via an ODE solver (Rubanova et al., 2019), we
find that binning the spike times into k bins of width �t and inferring the mean �k of the Poisson distribution works well in
the synthetic datasets we test, and may be more efficient for our application as the number of neurons N can get large:

�k = exp(Czk + d)

xn,k ⇠ Poisson(�t�n,k)

Then,

log p✓(tx|�) ⇡
X

k

log p✓(xk|�k) =
X

k

X

n

[xn,k log(�t�n,k)��t�n,k]

We estimate Eq [log p✓(tx|�)] by

Eq [log p✓(tx|�)] ⇡
X

k

Eq [log p✓(xk|�k)]

Eq [log p✓(xk|�k)] ⇡ log p✓(xk|�̂k)

�̂k = exp (Cẑk + d)

ẑk ⇠ q�(z|tx,u)

A.2. DKL(q�(z|tx,u)||p(z|u))

Suppose external stimulus u is discrete, where the discrete stimulus event times are tu. Then, the posterior process
q�(z|tx, tu) can be described as:

ż = f (z, t) + �tu(g
u
�(z, t) + ⌘u)

⌘u ⇠ N (0,⌃u
�(z(t), t))

where f is a generic function that may be approximated with a feedforward neural network (FNN). f characterizes the
phase portrait, with its zeros representing the fixed points. gu

� is the mean update in the latent state at each event time tu,j ,
and the diagonal matrix ⌃u

� represents sensory noise in the update. ⌘u models noise in the sensory input perceived by the
animal, similar to Brunton et al. 2013. Because noise ⌘u is added only at stimulus event times,

q�(z|tx, tu) = q�(z(t0), z(tu,1), ..., z(tu,M )|tx) = q�(z(t0)|tx)
MY

j=1

q�(z(tu,j)|z(tu,j�1), tx)

q�(z(t0)|tx) = N (µ0
�,⌃

0
�)

q�(z(tu,j)|z(tu,j�1), tx) = N (µ(tu,j),⌃
u
�)

µ(tu,j) = gu
�(z(tu,j), tu,j) + z(tu,j�1) +

Z tu,j

tu,j�1

f (z(t), t)dt

where M is the total number of jump events, t0 is the start of the trial, and tu,j is the timing of the j-th event. Similarly, the
prior is given by

p(z|tu) = p(z(t0), z(tu,1), ..., z(tu,M )) = p(z(t0))
MY

j=1

p(z(tu,j)|z(tu,j�1))

p(z(t0)) = N (µ0
prior,⌃

0
prior)

p(z(tu,j)|z(tu,j�1)) = N (µ(tu,j),⌃
u
prior)

µ(tu,j) = gu
prior(z(tu,j), tu,j) + z(tu,j�1) +

Z tu,j

tu,j�1

f (z(t), t)dt
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The Kullback-Leibler (KL) divergence then becomes

DKL(q�(z|tx, tu)||p(z|tu)) = DKL(q�(z(t0)|tx)||p(z(t0))) +
MX

j=1

DKL(q�(z(tu,j)|z(tu,j�1), tx)||p(z(tu,j)|z(tu,j�1)))
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+
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i

where ẑ is a single trajectory sampled from the posterior process. If gu
prior and gu

� are not functions of z, we have an
equivalence as in the main text. Therefore, we have an estimate of L = Eq [log p✓(tx|�)] �DKL(q�(z|tx,u)||p(z|u)).
We find parameters ⇥ that maximize L via a first-order method such as ADAM.

A.3. Computing the Adjoints with Stochastic Jumps

We compute the gradient @L/@⇥ by using the reparametrization trick (Kingma & Welling, 2014), storing ✏ ⇠ N (0, I)
instantiated in the forward pass, and using the same noise instances during the backward pass. Similar approaches have also
been used in fitting circuit models in neuroscience (Duan et al., 2021) and in calibrating market models in finance (Giles &
Glasserman, 2006).

z
�
t+u,j
�
= z (tu,j) + gu

� (z (tu,j) , tu,j) + ✏�
q

⌃u
� (z (tu,j) , tu,j), ✏ ⇠ N (0, I)

Due to Jia & Benson 2019 and Corner et al. 2018, the adjoint is
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=

@L

@z
�
t+u,j
�
@z
�
t+u,j
�

@z (tu,j)
= a

�
t+u,j
�
 
@z
�
t+u,j
�

@z (tu,j)

!

Then,

a (tu,j) = a
�
t+u,j
�
0

@I +
@gu

� (z (tu,j) , tu,j)

@z (tu,j)
+ ✏�

@
q
⌃u
� (z (tu,j) , tu,j)

@z (tu,j)

1

A

= a
�
t+u,j
�
+ a

�
t+u,j
� @
h
gu
� (z (tu,j) , tu,j)

i

@z (tu,j)
+ ✏� a

�
t+u,j
� @
hq

⌃u
� (z (tu,j) , tu,j)

i

@z (tu,j)
.
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Therefore, the adjoints are
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where ✏ is the same ✏ ⇠ N (0, I) instantiated during the forward pass. Computing the adjoints take O(M) memory and
O(M̃) time, similar to continuous adjoint sensitivity methods that utilize checkpointing (Serban & Hindmarsh, 2005;
Rackauckas et al., 2020). M is the number of jump events and M̃ is the number of function evaluations.


