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Abstract

Neural datasets often contain measurements of neural activity across multiple
trials of a repeated stimulus or behavior. An important problem in the analysis
of such datasets is to characterize systematic aspects of neural activity that carry
information about the repeated stimulus or behavior of interest, which can be
considered “signal”, and to separate them from the trial-to-trial fluctuations in
activity that are not time-locked to the stimulus, which for purposes of such
analyses can be considered “noise”. Gaussian Process factor models provide a
powerful tool for identifying shared structure in high-dimensional neural data.
However, they have not yet been adapted to the problem of characterizing signal
and noise in multi-trial datasets. Here we address this shortcoming by proposing
“signal-noise” Poisson-spiking Gaussian Process Factor Analysis (SNP-GPFA), a
flexible latent variable model that resolves signal and noise latent structure in neural
population spiking activity. To learn the parameters of our model, we introduce
a Fourier-domain black box variational inference method that quickly identifies
smooth latent structure. The resulting model reliably uncovers latent signal and
trial-to-trial noise-related fluctuations in large-scale recordings. We use this model
to show that in monkey V1, noise fluctuations perturb neural activity within a
subspace orthogonal to signal activity, suggesting that trial-by-trial noise does
not interfere with signal representations. Finally, we extend the model to capture
statistical dependencies across brain regions in multi-region data. We show that in
mouse visual cortex, models with shared noise across brain regions out-perform
models with independent per-region noise.
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1 Introduction

Recent advances in electrophysiological and calcium fluorescence imaging technologies have enabled
the collection of increasingly high-dimensional neural datasets. Making sense of such datasets will
rely on the development of flexible statistical methods for extracting relevant structure. Gaussian
process factor models provide one powerful tool for identifying low-dimensional latent structure
from high-dimensional neural response data. These models seek to characterize neural time-series
data in terms of a small number of smoothly evolving latent variables, and have been successfully
used to characterize neural representations in a variety of contexts [1, 2, 3, 4, 5, 6].

Standard Gaussian Process factor analysis (GPFA) uses a Gaussian process prior to impose smooth-
ness on inferred latent variables, but do not explicitly consider stimulus or task conditions. However,
neural data often exist in the form of repeated trials, whereby the same condition is presented to an
animal multiple times. These repeated presentations give rise to neural activity that varies across trials
around some time-varying “signal” component that is typically estimated using the peri-stimulus
time histogram (PSTH). Understanding this signal, and its relationship to trial-to-trial variability, is
of central importance to the models of coding in the nervous system [7, 8], yet latent factor models
have not been developed to explicitly study this question. Here we address this shortcoming by
developing an extension to Gaussian process factor analysis with Poisson spiking (P-GPFA) which
we call signal and noise P-GPFA (SNP-GPFA). This model incorporates both signal and independent
per-trial components that vary across trials. We refer to these latter components as “noise”, in the
sense that they are not time-locked to the repeated stimulus, though they may well reflect other signals
unrelated to the experimental stimulus of interest.

In both P-GPFA and SNP-GPFA models, because the Gaussian process is not a conjugate prior for a
Poisson observation model, posterior inference is intractable in closed form. Variational inference
methods have become increasingly common for applications of Gaussian processes [9, 10, 5].
They achieve tractability by approximating the posterior distribution p�(xjy)with a well-behaved
variational distribution q�(xjy) [11]. For P-GPFA and SNP-GPFA, because the calculation of the
expectation under q�(xjy) of the joint distribution p�(x;y) is also intractable, we use a ‘black-box’
approach, which works via sampling of the joint distribution [12].

However, black-box variational inference approaches for Gaussian Process Factor models with long
time-series can be computationally cumbersome. Therefore, we introduce a variant of black-box
variational inference which uses a Fourier-transformed latent representation that factorizes across
Fourier modes. This procedure diagonalizes the Gaussian Process (GP) covariance, avoiding a large
matrix inversion during inference, thereby providing speed and computational improvements. We
demonstrate the inference technique is fast and flexible in a simpler P-GPFA framework, and then
use it to learn the SNP-GPFA model quickly and efficiently.

The SNP-GPFA model recovers separate signal and noise subspaces, which allows us to answer a
number of scientific questions regarding these facets of neural activity. Here, we address two scientific
questions with SNP-GPFA. 1) We characterize the overlap between signal and noise subspaces in
monkey V1 data, and 2) We characterize the extent to which noise is shared across cortical region
using multi-region neural recordings from rodent V1 and a higher cortical visual region.

For the first, the alignment of subspaces that reflect different aspects of neural activity has been
explored in other contexts [6, 13], as well as the characterization of the subspace of neural noise [14].
Previous work suggests that signal and noise subspaces may be orthogonal [14], and such orthogonal
representations may preserve neural information [15]. Our model directly addresses this question.
Using SNP-GPFA on primate data we find that there is indeed more noise activity orthogonal to
the signal subspace than in the signal subspace, particularly when a visual stimulus is present. This
suggests that in monkey V1 trial-by-trial variability does not interfere with stimulus encoding.

To address the second scientific question, we include SNP-GPFA analyses on simultaneously recorded
visual regions in rodent cortex to ask if trial-varying activity is shared or independent across cortical
regions. We compare performance of SNP-GPFA models that varying in their number of shared and
independent noise latents across cortical regions. We find that the model that has shared noise latents
performs best on cross-validation measures, suggesting trial-by-trial variability has shared structure
across cortical regions in the rodent visual system.
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Figure 1: Efficient representation of GP covariance. (A) Standard GP covariance matrix for 1D
vectorization of 200 timepoints, with length scale ‘ = 15, and its Fourier representation, pruned. (B)
Time to maximization of the ELBO in the time-domain inference and in the Fourier domain with and
without a minimum frequency.

2 Poisson Gaussian Process Factor Analysis (P-GPFA)

We begin by introducing the Poisson-GPFA model, which has been used previously to identify
continuous latent states from population spike train recordings [10, 16, 6]. The observations of our
model are spike-train data, represented by the neurons-by-time matrix Y 2 NN�T .

We seek to learn a P-dimensional latent variable x(t) 2 IRP that linearly maps to the data via a
loadings matrix W 2 IRN�P , followed by some nonlinear function f and Poisson observations.

Y = Poiss(f(W>X)) (1)

Our choice of non-linear function f is the softplus f(x) = log(1 + exp(x)).

Each latent xj(t) (j 2 f1 : : : Pg; t 2 f1; 2 : : : Tg) evolves according to a Gaussian process, xj(t) �
GP(0;K(�j)), with covariance matrix K(�) defined by a squared exponential kernel [K(�)]tt′ =
� exp(�jz(t)� z(t0)j2=2‘2), where hyperparameters � = f‘; �g include a length scale ‘ controlling
smoothness and a marginal variance � controlling magnitude.

Given that the marginal likelihood of this model, p(YjW) =
R
p(YjW;X)p(Xj�)dX is not

available in closed-form, it is common to use a variational inference approach to learn the parameters
of such models [16, 10]. Recall that variational inference seeks to maximize an evidence lower
bound (ELBO) using a variational distribution [11]. Here, because the expectation term in the ELBO,
Eqφ [log(p(yjx;w))], cannot be calculated analytically, we employ a ’black box approach’ which
uses Monte-Carlo samples to estimate the expectation term [17]. This inference method is called
black-box variational inference (BBVI).

2.1 Fourier-domain black-box variational inference

BBVI can be computationally cumbersome. Therefore, to learn the P-GPFA and SNP-GPFA models,
we introduce a novel inference method which performs BBVI over a Fourier-represented latent space,
which increases both inference tractability and speed. Factorizing and learning the time series in the
Fourier domain, rather than the time domain, allows us to take advantage of computational savings
conferred by a diagonal covariance matrix while overcoming problems of uncorrelated timepoints
which is typical when the variational distribution is factorized over time [18].

Our motivation for this approach is that the GP prior over x(t) describes a stationary process, as its
covariance only depends on pairwise distances. This allows us to diagonalize the covariance K by the
Fourier transform (Figure 1A). Here, the covariance matrix K is diagonalized by ~K = BKB> where
B is the orthonormal discrete Fourier transform matrix with [B]!;t = 1p

P
e�i2�!t=m, i �

p
�1. The

diagonalized kernel is represented as ~c(~!) = ~�e�
1
2 ~!2‘2 where ~� =

p
2��‘ is the frequency-domain

variance and ~! = 2�
m ! represents an adjusted frequency of the GP kernel.

3



Inference can be conducted completely in the Fourier domain, precluding the need to invert the prior
covarianceK . The joint likelihood is expressed as

`(Y ; X jW ; � ) = `(Y ; ~X jW ; � ) (2)

�
X

i

log(f (w i
> ~XB )) i +

�
f (w i

> ~XB ) � log(i !)
�

1T

� 1
2

 

Pdlog 2� + P
X

~!

log ~c� (~! ) +
X

p

~xp
> diag( ~W n � ) � 1~xp

!

;
(3)

where ~X represents the Fourier-transformed latents and1T is a length-T vector of ones, and
i 2 f 1; 2: : : N g denotes neuron index. The diagonalized representation demonstrably speeds
up computational time (Figure 1B). Moreover, the inversion of the time-domainK can present
tractability challenges due to computer precision [19], however, the inversion of~K is trivial so long
as the vector along the diagonal,~W � , does not contain values that are too small. When small values
are present, we regularize~W � by adding a small constant value (10� 7).

This Fourier-represented GP has additional computational advantages, including methods to prune
unnecessary Fourier coef�cients that do not substantially contribute to explaining variability inY .
Pruning frequencies constrains the number of coef�cients in the Fourier representation to a much
smaller number than would be necessary in the time-domain. Pruning of the Fourier representation
has the additional consequence of pruning the variational distribution, which shrinks the number of
variational parameters. Finally, because Fourier BBVI uses a diagonal Fourier-domain variational
distribution, time-correlations are preserved (despite BBVI sampling) due to off-diagonal elements in
the time-domain variational distribution.

Fourier methods have been used previously to improve inference for GP models [20, 21, 22], this is to
our knowledge the �rst time this approach has been used with BBVI. Ultimately, this Fourier-domain
BBVI method can be viewed as an alternative to many other methods that work to make Gaussian
processes computationally ef�cient, including inducing points and sparse GP approximations [21, 22,
23, 22, 24].

We use our Fourier-domain BBVI to learn the Fourier latents~X via direct optimization of the
variational distributionq� ( ~X ), factor loading parametersW , and hyperparameters`. (Note there
is an invariance between hyperparameter� , and the loadings matrixW , so we need not directly
learn� in this model.) The speed up from optimization with Fourier domain BBVI can be realized
most starkly in the domain where the time-series is very long. Figure 1B compares Fourier-domain
inference to time-domain inference for a Poisson observation GPFA model with a single latent (i.e.
P = 1 , T = 1500) andN = 10 neurons. Inference is sped up by conversion to the Fourier domain
as the bottleneck in time-domain inference is the inversion of a1500� 1500covariance matrixK .
By additionally specifying a minimum frequency, suf�ciently small frequencies are pruned and the
variational distribution and prior covariance can be cut from 1500 values to 62. This provides an
additional substantial speed advantage of approximately an order of magnitude. It is important to
note that the speed-up of our method depends on the speci�cs of the number of neurons, latents,
latent length, and pruning. For subsequent analyses in this paper, the speed-up of BBVI due to the
Fourier-domain implementation is anywhere from 20-70%.

Figure 2: Learning a P-GPFA latent model using Fourier-domain black box variational inference

We validate our Fourier BBVI inference procedure on simulated and real data. Figure 2A, B andC
demonstrate accurate recovery of latent structure and of �ring rates on simulated P-GPFA data. Here,
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30 neuronal �ring rates are generated from a four-dimensional GP-latent space. Figure 2A shows the
learned and true rates of four simulated neurons. Grey bars indicate spike PSTHs. Figure 2B shows
the four generative latents and learned latents from Fourier BBVI rotated to their optimal mapping
via regression. Figure 2C demonstrates that the ELBO value after inference is maximal when using
the true number of latents.

The non-conjugacy of P-GPFA (and SNP-GPFA), and thus the reason we need to use the sophisticated
inference of Fourier-BBVI, is due to the fact that the observations are Poisson, as opposed to Gaussian.
This is an important choice as Poisson observations better describe neural data. We show, using
data from rodent visual cortex, the cross-validated mean squared error of the inferred spike rate to
smoothed spike rate from held-out trials (Figure 2D). The model with Poisson observations performs
signi�cantly better that the GPFA model with Gaussian observations. Others have noted similar
advantages to Poisson observation factor models for neural data in other settings [10]. For this reason
we wish to use a Poisson observation characterization for our SNP-GPFA model.

3 SNP-GPFA

To isolate noise and signal subspaces in the P-GPFA framework, we introduce a model that includes
separate noise and signal latent structure (SNP-GPFA). We assess the model �rst on simulated data,
and then on two neural data sets. The �rst of the datasets contains multi-neuron spiking activity from
65 neurons recorded in primate V1 during passive viewing of a drifting sinusoidal grating stimulus,
with 72 different orientations forD = 35 repeated trials. The second consists of spiking activity from
67 neurons from two regions of rodent visual cortex, recorded during passive viewing ofD = 20
repeats of a 32-second sinusoidal grating stimulus. Gratings had 8 different orientations which
persisted for 4 seconds each. For more information on the data, see [25, 26] and the supplemental
materials.

The SNP-GPFA model describes neural activity on trialj as

y j = Poiss(f (W s
> X s + W n

> X n
j )) (4)

whereP signal latents are drawn from a “signal” Gaussian process,x s
p � GP (0; K s) with

covarianceK s and concatenated to formX s> = ( x s
1; x s

2; : : : ; x s
P ), which are shared across trials.

On each trial,Q independent noise latents are drawn from a “noise” Gaussian process,xn
q �

GP(0; K n ) with covarianceK n , forming X n > =
�
xn

1 ; xn
2 ; : : : ; xn

Q

�
. Loading weightsW s

> and
W n

> parametrize a mapping from the dimensionality of the signal spaceP or the noise spaceQ
to the full N -dimensional neural response space. Thus,W s is of sizeP � N andW n is Q � N .
Covariance matricesK s andK n are constructed by evaluating a radial basis covariance at all pairs of
time points in a trial. The SNP-GPFA model is outlined schematically in Figure 3A. For clarity, we
visualize the �ring rate of one neuron across trials with only one signal and noise latent dimension.

Figure 3: (A) Schematic of the SNP-GPFA model. (B, C) Recovering signal and noise latent structure
in simulated SNP-GPFA data.

To perform inference for the SNP-GPFA model, we develop a variational approach similar to that
for P-GPFA. We use a variational distributionq� for the latents, parametrized as a fully-independent
multivariate normal distribution of dimension~T(P + QD ) where~T, which corresponds to the number
of Fourier coef�cients needed to represent the signal. We determine~T by assuming a minimum
length scale of 10 (` � 10), which substantially shrinks the number of Fourier coef�cients required to
represent the latent signal and noise processes (from 321 to 44 dimenions for rodent data, and from
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