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Abstract

Neural datasets often contain measurements of neural activity across multiple
trials of a repeated stimulus or behavior. An important problem in the analysis
of such datasets is to characterize systematic aspects of neural activity that carry
information about the repeated stimulus or behavior of interest, which can be
considered “signal”, and to separate them from the trial-to-trial fluctuations in
activity that are not time-locked to the stimulus, which for purposes of such
analyses can be considered “noise”. Gaussian Process factor models provide a
powerful tool for identifying shared structure in high-dimensional neural data.
However, they have not yet been adapted to the problem of characterizing signal
and noise in multi-trial datasets. Here we address this shortcoming by proposing
“signal-noise” Poisson-spiking Gaussian Process Factor Analysis (SNP-GPFA), a
flexible latent variable model that resolves signal and noise latent structure in neural
population spiking activity. To learn the parameters of our model, we introduce
a Fourier-domain black box variational inference method that quickly identifies
smooth latent structure. The resulting model reliably uncovers latent signal and
trial-to-trial noise-related fluctuations in large-scale recordings. We use this model
to show that in monkey V1, noise fluctuations perturb neural activity within a
subspace orthogonal to signal activity, suggesting that trial-by-trial noise does
not interfere with signal representations. Finally, we extend the model to capture
statistical dependencies across brain regions in multi-region data. We show that in
mouse visual cortex, models with shared noise across brain regions out-perform
models with independent per-region noise.
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1 Introduction

Recent advances in electrophysiological and calcium fluorescence imaging technologies have enabled
the collection of increasingly high-dimensional neural datasets. Making sense of such datasets will
rely on the development of flexible statistical methods for extracting relevant structure. Gaussian
process factor models provide one powerful tool for identifying low-dimensional latent structure
from high-dimensional neural response data. These models seek to characterize neural time-series
data in terms of a small number of smoothly evolving latent variables, and have been successfully
used to characterize neural representations in a variety of contexts [1, 2, 3, 4, 5, 6].

Standard Gaussian Process factor analysis (GPFA) uses a Gaussian process prior to impose smooth-
ness on inferred latent variables, but do not explicitly consider stimulus or task conditions. However,
neural data often exist in the form of repeated trials, whereby the same condition is presented to an
animal multiple times. These repeated presentations give rise to neural activity that varies across trials
around some time-varying “signal” component that is typically estimated using the peri-stimulus
time histogram (PSTH). Understanding this signal, and its relationship to trial-to-trial variability, is
of central importance to the models of coding in the nervous system [7, 8], yet latent factor models
have not been developed to explicitly study this question. Here we address this shortcoming by
developing an extension to Gaussian process factor analysis with Poisson spiking (P-GPFA) which
we call signal and noise P-GPFA (SNP-GPFA). This model incorporates both signal and independent
per-trial components that vary across trials. We refer to these latter components as “noise”, in the
sense that they are not time-locked to the repeated stimulus, though they may well reflect other signals
unrelated to the experimental stimulus of interest.

In both P-GPFA and SNP-GPFA models, because the Gaussian process is not a conjugate prior for a
Poisson observation model, posterior inference is intractable in closed form. Variational inference
methods have become increasingly common for applications of Gaussian processes [9, 10, 5].
They achieve tractability by approximating the posterior distribution pθ(x|y)with a well-behaved
variational distribution qφ(x|y) [11]. For P-GPFA and SNP-GPFA, because the calculation of the
expectation under qφ(x|y) of the joint distribution pθ(x,y) is also intractable, we use a ‘black-box’
approach, which works via sampling of the joint distribution [12].

However, black-box variational inference approaches for Gaussian Process Factor models with long
time-series can be computationally cumbersome. Therefore, we introduce a variant of black-box
variational inference which uses a Fourier-transformed latent representation that factorizes across
Fourier modes. This procedure diagonalizes the Gaussian Process (GP) covariance, avoiding a large
matrix inversion during inference, thereby providing speed and computational improvements. We
demonstrate the inference technique is fast and flexible in a simpler P-GPFA framework, and then
use it to learn the SNP-GPFA model quickly and efficiently.

The SNP-GPFA model recovers separate signal and noise subspaces, which allows us to answer a
number of scientific questions regarding these facets of neural activity. Here, we address two scientific
questions with SNP-GPFA. 1) We characterize the overlap between signal and noise subspaces in
monkey V1 data, and 2) We characterize the extent to which noise is shared across cortical region
using multi-region neural recordings from rodent V1 and a higher cortical visual region.

For the first, the alignment of subspaces that reflect different aspects of neural activity has been
explored in other contexts [6, 13], as well as the characterization of the subspace of neural noise [14].
Previous work suggests that signal and noise subspaces may be orthogonal [14], and such orthogonal
representations may preserve neural information [15]. Our model directly addresses this question.
Using SNP-GPFA on primate data we find that there is indeed more noise activity orthogonal to
the signal subspace than in the signal subspace, particularly when a visual stimulus is present. This
suggests that in monkey V1 trial-by-trial variability does not interfere with stimulus encoding.

To address the second scientific question, we include SNP-GPFA analyses on simultaneously recorded
visual regions in rodent cortex to ask if trial-varying activity is shared or independent across cortical
regions. We compare performance of SNP-GPFA models that varying in their number of shared and
independent noise latents across cortical regions. We find that the model that has shared noise latents
performs best on cross-validation measures, suggesting trial-by-trial variability has shared structure
across cortical regions in the rodent visual system.
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Figure 1: Efficient representation of GP covariance. (A) Standard GP covariance matrix for 1D
vectorization of 200 timepoints, with length scale ` = 15, and its Fourier representation, pruned. (B)
Time to maximization of the ELBO in the time-domain inference and in the Fourier domain with and
without a minimum frequency.

2 Poisson Gaussian Process Factor Analysis (P-GPFA)

We begin by introducing the Poisson-GPFA model, which has been used previously to identify
continuous latent states from population spike train recordings [10, 16, 6]. The observations of our
model are spike-train data, represented by the neurons-by-time matrix Y ∈ NN×T .

We seek to learn a P-dimensional latent variable x(t) ∈ IRP that linearly maps to the data via a
loadings matrix W ∈ IRN×P , followed by some nonlinear function f and Poisson observations.

Y = Poiss(f(W>X)) (1)

Our choice of non-linear function f is the softplus f(x) = log(1 + exp(x)).

Each latent xj(t) (j ∈ {1 . . . P}, t ∈ {1, 2 . . . T}) evolves according to a Gaussian process, xj(t) ∼
GP(0,K(θj)), with covariance matrix K(θ) defined by a squared exponential kernel [K(θ)]tt′ =
ρ exp(−|z(t)− z(t′)|2/2`2), where hyperparameters θ = {`, ρ} include a length scale ` controlling
smoothness and a marginal variance ρ controlling magnitude.

Given that the marginal likelihood of this model, p(Y|W) =
∫
p(Y|W,X)p(X|θ)dX is not

available in closed-form, it is common to use a variational inference approach to learn the parameters
of such models [16, 10]. Recall that variational inference seeks to maximize an evidence lower
bound (ELBO) using a variational distribution [11]. Here, because the expectation term in the ELBO,
Eqφ [log(p(y|x,w))], cannot be calculated analytically, we employ a ’black box approach’ which
uses Monte-Carlo samples to estimate the expectation term [17]. This inference method is called
black-box variational inference (BBVI).

2.1 Fourier-domain black-box variational inference

BBVI can be computationally cumbersome. Therefore, to learn the P-GPFA and SNP-GPFA models,
we introduce a novel inference method which performs BBVI over a Fourier-represented latent space,
which increases both inference tractability and speed. Factorizing and learning the time series in the
Fourier domain, rather than the time domain, allows us to take advantage of computational savings
conferred by a diagonal covariance matrix while overcoming problems of uncorrelated timepoints
which is typical when the variational distribution is factorized over time [18].

Our motivation for this approach is that the GP prior over x(t) describes a stationary process, as its
covariance only depends on pairwise distances. This allows us to diagonalize the covariance K by the
Fourier transform (Figure 1A). Here, the covariance matrix K is diagonalized by K̃ = BKB> where
B is the orthonormal discrete Fourier transform matrix with [B]ω,t =

1√
P
e−i2πωt/m, i ≡

√
−1. The

diagonalized kernel is represented as c̃(ω̃) = ρ̃e−
1
2 ω̃

2`2 where ρ̃ =
√
2πρ` is the frequency-domain

variance and ω̃ = 2π
m ω represents an adjusted frequency of the GP kernel.
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Inference can be conducted completely in the Fourier domain, precluding the need to invert the prior
covariance K. The joint likelihood is expressed as

`(Y,X|W, θ) = `(Y, X̃|W, θ) (2)

≈
∑
i

log(f(wi
>X̃B))i +

(
f(wi

>X̃B)− log(i!)
)
1T

− 1
2

(
Pd log 2π + P

∑
ω̃

log c̃θ(ω̃) +
∑
p

x̃p
>diag(W̃nθ)

−1x̃p

)
,

(3)

where X̃ represents the Fourier-transformed latents and 1T is a length-T vector of ones, and
i ∈ {1, 2 . . . N} denotes neuron index. The diagonalized representation demonstrably speeds
up computational time (Figure 1B). Moreover, the inversion of the time-domain K can present
tractability challenges due to computer precision [19], however, the inversion of K̃ is trivial so long
as the vector along the diagonal, W̃θ, does not contain values that are too small. When small values
are present, we regularize W̃θ by adding a small constant value (10−7).

This Fourier-represented GP has additional computational advantages, including methods to prune
unnecessary Fourier coefficients that do not substantially contribute to explaining variability in Y.
Pruning frequencies constrains the number of coefficients in the Fourier representation to a much
smaller number than would be necessary in the time-domain. Pruning of the Fourier representation
has the additional consequence of pruning the variational distribution, which shrinks the number of
variational parameters. Finally, because Fourier BBVI uses a diagonal Fourier-domain variational
distribution, time-correlations are preserved (despite BBVI sampling) due to off-diagonal elements in
the time-domain variational distribution.

Fourier methods have been used previously to improve inference for GP models [20, 21, 22], this is to
our knowledge the first time this approach has been used with BBVI. Ultimately, this Fourier-domain
BBVI method can be viewed as an alternative to many other methods that work to make Gaussian
processes computationally efficient, including inducing points and sparse GP approximations [21, 22,
23, 22, 24].

We use our Fourier-domain BBVI to learn the Fourier latents X̃ via direct optimization of the
variational distribution qφ(X̃), factor loading parameters W, and hyperparameters `. (Note there
is an invariance between hyperparameter ρ, and the loadings matrix W, so we need not directly
learn ρ in this model.) The speed up from optimization with Fourier domain BBVI can be realized
most starkly in the domain where the time-series is very long. Figure 1B compares Fourier-domain
inference to time-domain inference for a Poisson observation GPFA model with a single latent (i.e.
P = 1, T = 1500) and N = 10 neurons. Inference is sped up by conversion to the Fourier domain
as the bottleneck in time-domain inference is the inversion of a 1500× 1500 covariance matrix K.
By additionally specifying a minimum frequency, sufficiently small frequencies are pruned and the
variational distribution and prior covariance can be cut from 1500 values to 62. This provides an
additional substantial speed advantage of approximately an order of magnitude. It is important to
note that the speed-up of our method depends on the specifics of the number of neurons, latents,
latent length, and pruning. For subsequent analyses in this paper, the speed-up of BBVI due to the
Fourier-domain implementation is anywhere from 20-70%.
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Figure 2: Learning a P-GPFA latent model using Fourier-domain black box variational inference

We validate our Fourier BBVI inference procedure on simulated and real data. Figure 2A, B and C
demonstrate accurate recovery of latent structure and of firing rates on simulated P-GPFA data. Here,
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30 neuronal firing rates are generated from a four-dimensional GP-latent space. Figure 2A shows the
learned and true rates of four simulated neurons. Grey bars indicate spike PSTHs. Figure 2B shows
the four generative latents and learned latents from Fourier BBVI rotated to their optimal mapping
via regression. Figure 2C demonstrates that the ELBO value after inference is maximal when using
the true number of latents.

The non-conjugacy of P-GPFA (and SNP-GPFA), and thus the reason we need to use the sophisticated
inference of Fourier-BBVI, is due to the fact that the observations are Poisson, as opposed to Gaussian.
This is an important choice as Poisson observations better describe neural data. We show, using
data from rodent visual cortex, the cross-validated mean squared error of the inferred spike rate to
smoothed spike rate from held-out trials (Figure 2D). The model with Poisson observations performs
significantly better that the GPFA model with Gaussian observations. Others have noted similar
advantages to Poisson observation factor models for neural data in other settings [10]. For this reason
we wish to use a Poisson observation characterization for our SNP-GPFA model.

3 SNP-GPFA

To isolate noise and signal subspaces in the P-GPFA framework, we introduce a model that includes
separate noise and signal latent structure (SNP-GPFA). We assess the model first on simulated data,
and then on two neural data sets. The first of the datasets contains multi-neuron spiking activity from
65 neurons recorded in primate V1 during passive viewing of a drifting sinusoidal grating stimulus,
with 72 different orientations for D = 35 repeated trials. The second consists of spiking activity from
67 neurons from two regions of rodent visual cortex, recorded during passive viewing of D = 20
repeats of a 32-second sinusoidal grating stimulus. Gratings had 8 different orientations which
persisted for 4 seconds each. For more information on the data, see [25, 26] and the supplemental
materials.

The SNP-GPFA model describes neural activity on trial j as

yj = Poiss(f(Ws
>Xs +Wn

>Xn
j )) (4)

where P signal latents are drawn from a “signal” Gaussian process, xsp ∼ GP(0,Ks) with
covariance Ks and concatenated to form Xs> = (xs1,x

s
2, . . . ,x

s
P ), which are shared across trials.

On each trial, Q independent noise latents are drawn from a “noise” Gaussian process, xnq ∼
GP(0,Kn) with covariance Kn, forming Xn> =

(
xn1 ,x

n
2 , . . . ,x

n
Q

)
. Loading weights Ws

> and
Wn

> parametrize a mapping from the dimensionality of the signal space P or the noise space Q
to the full N -dimensional neural response space. Thus,Ws is of size P × N and Wn is Q × N .
Covariance matrices Ks and Kn are constructed by evaluating a radial basis covariance at all pairs of
time points in a trial. The SNP-GPFA model is outlined schematically in Figure 3A. For clarity, we
visualize the firing rate of one neuron across trials with only one signal and noise latent dimension.
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Figure 3: (A) Schematic of the SNP-GPFA model. (B, C) Recovering signal and noise latent structure
in simulated SNP-GPFA data.

To perform inference for the SNP-GPFA model, we develop a variational approach similar to that
for P-GPFA. We use a variational distribution qφ for the latents, parametrized as a fully-independent
multivariate normal distribution of dimension T̃ (P+QD) where T̃ , which corresponds to the number
of Fourier coefficients needed to represent the signal. We determine T̃ by assuming a minimum
length scale of 10 (` ≥ 10), which substantially shrinks the number of Fourier coefficients required to
represent the latent signal and noise processes (from 321 to 44 dimenions for rodent data, and from
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511 to 108 dimensions for primate data). This choice is appropriate, as we typically we do not learn
length scales smaller than this value.

To validate the model fit, we show that the Fourier BBVI procedure on the SNP-GPFA model by
showing accurate recovery of signal and noise latent structure from simulated SNP-GPFA data. Here,
these simulated data consisted of 20 trials of 30 simulated Poisson neurons and were generated from
a two dimensional signal and two dimensional noise subspace. Figure 3 shows that our inference
procedure accurately recovers the signal (B) and noise (C) subspace from these simulated data. Only
a single trial of the noise subspace is shown for clarity.

To show that our model achieves good performance on real neural data, we fit the SNP-GPFA model
to an example recording from the rodent dataset. We found that the the signal component successfully
captures the PSTH, or mean response across trials (Figure 4A). Importantly, the model also identifies
a noise component that accurately predicts trial-by-trial spiking variability. Figure 4B shows 3
example trials for the top neuron in A. The per-trial rate deviations, given by a wn,i

>Xn, where wn,i

is an isolated row of Wn, accurately capture per-trial spiking deviations. This can be easily seen in
trial three, where a sharp burst at the end of the trial is captured by the noise component of the model.
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Figure 4: (A) Reconstructed PSTHs for three example rodent V1 neurons given by signal model
component. (B) Trial-by-trial variability explained by noise component for three trials for the top
example neuron in A.

3.1 Learning dimensionality

To identify the dimensionality of signal and noise latents, we used a cross-validation procedure known
as co-smoothing [27]. We first train on a subset of randomly selected trials (10 for rodent data, 20
for primate data) and used Fourier-BBVI to learn Ws

>, Wn
>, Xs, and `s (`s here refers to the

length scales associated with the signal latents). To test the accuracy of these learned parameters,
we withhold a small random selection of neurons and then learn the noise latents Xn and noise
length scales `n over the held-out trials. We evaluate the cross-validated log-likelihood of the held
out neurons using these new noise latents and the inferred structure from the initial trials. We
perfomed five-fold cross validation and averaged over folds. For additional information about the
data preprocessing and cross-validation, see supplemental materials.

We find the signal dimensionality by first leaving out the noise component, and increasing the number
of signal dimensions until there is a decrease in CV performance. We then incrementally increase
the number of noise dimensions until CV performance decreases. Interestingly, noise components
increased CV performance suggesting population-level structure in trial-to-trial variability. For the
primate data, this procedure identified 5 signal dimensions and 6 noise dimensions. (See section 3.3
for details of dimensionality for the multi-region rodent data.)
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subspaces for 20 trials of a single stimulus presentation. (C) The first PC of the noise latents for three
random example trials. (D) Total L2 norm of noise activity projected into signal subspace (red) and
orthogonal to signal subspace (black) for an example trial. (E) Same as D but normalized to show
percentage of noise activity variance. (F) Fraction of noise variance orthogonal to signal subspace
averaged over all trials for a single orientation (black) and all trials and orientations (grey).

4 Results

4.1 Visualizing signal and noise subspaces

We use the SNP-GPFA model to visualize the resulting signal and noise subspaces for neural
population data recorded from primates. For this experiment, a drifting gratings stimulus was present
for the first half of the of a 2.5 second trial (see [25] and the supplemental materials for more
details). For a particular stimulus orientation (0◦), we show the first 3 PCs of the five dimensional
signal subspace. Here, we only show three PC dimensions for clarity. Note that during the stimulus
presentation, there is a strong sinusoidal component to the latent neural activity. However, after the
stimulus presentation period, this structure is no longer present. This latent signal structure in our
SNP-GPFA model is nearly identical to the results of P-GPFA run on the PSTH (see Supplemental
Figure 1 and [10]). However, unlike P-GPFA, SNP-GPFA additionally extracts a noise subspace
(Figure 5B). This subspace has no obvious structure and does not include the same sinusoidal
component in the first half of the trial. As expected, plotting the first noise latent PC across three
example trials, there is no obvious pattern to the noise deviations, reflecting idiosyncratic variations
in population firing rates across trials (Figure 5C).

An important question that arises with this model is whether or not the noise subspace overlaps with
the signal subspace. Overlap of these subspaces implies that trial-to-trial variability in the noise
components can corrupt the population response along the signal dimensions, thereby interfering with
representation of the signal. Previous work [15] suggests that noise only interferes with the signal
reprsentation if it lies in a direction defined by the derivatives of neural tuning curves, and recent work
suggests that noise and signal subspaces may indeed be nearly orthogonal [14, 28, 29]. Because our
model contains separate latent components for signal and noise, we can explicitly compare the relative
angle between these subspaces. More specifically, we look to assess how strongly the pure-noise
component of neural activity projects into the signal subspace. Under the SNP-GPFA model, the
noise-subspace component of neural activity is Zn = Wn

>Xn. To assess overlap with the signal
subspace, we compute the singular value decomposition of the signal-component loading weights,
Ws = USV>, which provides a basis for the signal subspace via the columns of V. The portion of

7



variance of the noise within the signal subspace for each time point is then given by ||VV>Zn,t||22,
where Zn,t is the tth column of Zn, or the L2 norm along the six noise dimensions. The portion of
variance orthogonal to the signal subspace is thus simply ||Zn,t −VV>Zn,t||22.

Figure 5D shows the resulting L2-norm time-series both within and orthogonal to the signal subspace.
This is for a single example trial for the same single stimulus as in A-C (orientation of 0◦). To
visualize the fractional variance into and out of the signal subspace, we normalize each trace by the
total variance at each time point, ||Zn,t||22 (Figure 5E). For this trial, the noise activity tends to mostly
lie in the subspace orthogonal to the stimulus activity. However, this is not true when the overall
noise variance is high. At these moments, the noise exists mostly in the signal subspace. Figure
5F shows the fractional noise variance orthogonal to the signal subspace averaged over all trials for
the orientation of 0◦ (black line) and all trials and orientations (grey line). It is primarily during the
stimulus presentation time that the noise activity is preferentially orthogonal to the stimulus subspace.
When there is no stimulus, after the halfway point of the trial, there is a slight preference for the noise
activity to lie in the signal subspace.

4.2 Shared and independent noise in multi-region data

The rodent dataset we examined contained data from two simultaneously-recorded visual cortical
regions, an upstream area “V1” and a downstream area “AL”. The SNP-GFPA model can therefore
be extended to allow for a characterization of shared variability across these regions. For simplicity,
let’s consider two versions of the model: (1) a “shared-noise” model, which is the SNP-GPFA
model applied to both regions simultaneously (see eq 4); or (2) an independent noise model, which
includes a block-diagonalization of Wn into a V1 component Wn

V 1 and AL component Wn
AL.

The independent noise model describing neural activity for trial j is thus:[
yV 1
j

yALj

]
= Poiss

(
f(Ws

>Xs +

[
Wn

V 1 0
0 Wn

AL

][
Xn,V 1
j

Xn,AL
j

]
)

)
(5)

where Xn,V 1
j are noise latents that map exclusively to V1 activity, and Xn,AL

j are noise latents
that map exclusively to AL activity. By contrast, departures from a block-diagonal structure in the
loadings matrix reflects the degree to which latent variability is shared across brain regions.
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Figure 6: Two-region SNP-GPFA model. (A and B) Validation of our cross-valdiation (CV) approach
on simulated data. (C) CV results on real neural data with varied block-diagonal structure for Wn.
Bars indicate standard error over 5 fold CV.

We first validate the approach on simulated data. We generate two datasets, one with a full Wn

matrix, and this other with block-diagonal structure. We perform inference on each of these datasets,
one using the original model outlined in eq 4, and the other using the block diagonal structure in eq
5. We show that the model with its corresponding generated data exhibits higher CV performance
(Figure 6 A,B). For additional details see supplement.

On the multi-region rodent data, we compare the SNP-GPFA model with a block-diagonal Wn to
models where Wn has an increasing number of shared noise latents. We determine a six dimensional
signal component. For the noise dimensionality, we start with a complete block representation (eq 5)
of 5 V1 dimensions and 4 AL dimensions, which contain no shared components. We then compare
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CV performance of this model to ones where increasing numbers of noise latents are shared between
the regions (Figure 6C). For information regarding how we select the proper number of noise and
signal dimensions in this framework, see supplemental materials. We find that models with at least
two shared noise dimensions perform better than models with one or fewer shared noise dimensions.
Means and standard error shown over five-fold CV (Figure 6). This suggests that there is trial-varying
structure in neural population activity that is shared across cortical regions.

5 Conclusion

We have introduced a Gaussian process factor analytic model for spike train data that extracts separate
signal and noise latent structure from trial-structured data. To learn this model we employ a novel
inference method based on black-box variational inference in the Fourier domain, which allows for
faster and more stable inference by diagonalizing the posterior covariance and pruning unnecessary
frequencies. The resulting SNP-GPFA model is able to extract signal latents that characterize
population PSTHs in real neural data, and noise latents that capture trial-to-trial variability that is
shared across neurons. We would like to mention that this is not the first model to include a trial
varying GP latent with a stimulus fixed component [30, 16]. However, this is the first model we
are aware of explicitly designed to uncover separate signal and noise latent subspaces with varying
dimensionality. We go on to use the results of the model fit to suggest answers to scientific questions
about trial-based neural data. We find that in monkey V1, noise activity tends to project primarily in
a subspace orthogonal to signal activity, especially when a gratings stimulus is present, suggesting
an optimal type of neural encoding [15]. We additionally use our model on multi-region rodent
data and compare performance where noise is shared between cortical regions as opposed to being
independent to each region. We find that, for these rodent data, noise models with shared structure
better predict held-out spike trains, suggesting variability in the spiking activity is shared across
cortical regions. Overall, the model is a promising method for understanding the relationship between
stimulus-locked and trial-varying neural activity at the population level. We believe there is a great
number of additional scientific questions that the SNP-GPFA model can help answer, including
determining how signal and noise representations relate to behavior, and further exploring how
block-diagonal loadings matrices may partition signal and noise latent representations in multi-region
data. We provide downloadable code for the community to use the SNP-GPFA model on their own
trial-based neural data.

Broader Impact

Here, we propose a new model for neuroscientists to uncover latent structure in trial-based neural
population data. Trial-based neural recordings with identical stimuli are ubiquitous in neuroscience
research. However, trial-by-trial variability in neural activity is not well understood. More broadly,
it is unclear in general what the function of neural noise is in the brain. Our model works on
neural population data to separate out neural noise latent representations from stimulus-locked
representations. It additionally uses a novel inference technique that is rapid and stable. Here, we
provide a general, easy-to-use tool for neuroscientists, and we hope others are encouraged to employ
it to understand trial-based neural information in their own experimental set-up. We provide code
for download here: https://github.com/skeeley/SNP_GPFA. We do not foresee any negative
consequences to society resulting from this work.
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