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Neural computations underlying cognition and behavior rely on

the coordination of neural activity across multiple brain areas.

Understanding how brain areas interact to process information

or generate behavior is thus a central question in neuroscience.

Here we provide an overview of statistical approaches for

characterizing statistical dependencies in multi-region spike

train recordings. We focus on two classes of models in

particular: regression-based models and shared latent variable

models. Regression-based models describe interactions in

terms of a directed transformation of information from one

region to another. Shared latent variable models, on the other

hand, seek to describe interactions in terms of sources that

capture common fluctuations in spiking activity across regions.

We discuss the advantages and limitations of each of these

approaches and future directions for the field. We intend this

review to be an introduction to the statistical methods in multi-

region models for computational neuroscientists and

experimentalists alike.
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Introduction
The idea that distinct areas of the brain support different

cognitive and behavioral functions dates back to the early

19th century [1]. During this time, there was debate as to

whether various cortical regions had specific functionality

or rather participated in all cognitive and psychological

functions [2,3]. These competing ideas remain a topic of

study today [4], and despite significant progress in under-

standing brain function over the past two centuries, the

extent to which different brain areas support distinct
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functions and convey different information to other brain

areas remains largely unknown.

In the past decade, advances in neural recording technol-

ogies have provided exciting new opportunities to study

how distinct brain regions interact. In particular, advances

in wide field calcium imaging [5–7] and high-throughput

neural probes [8] allow for simultaneous recording of

neural activity from hundreds to thousands of neurons

in multiple brain regions (Figure 1a). Recent work has

made substantial progress in characterizing neural popu-

lation codes within single brain regions [9–15]. The

challenge remains to extend these models to study

how populations interact. This necessitates both adding

to existing statistical tools and developing new tools to

extract accurate and interpretable descriptions of inter-

actions from multi-region neural recordings.

A simple approach to analyzing multi-region datasets is to

compute descriptive statistics that summarize the statistical

relationships between regions. For example, an extensive

literaturehas focusedonusingthecross-correlogramorcross-

covariance between spike trains to make inferences about

connectivity [16–19]. In recent work, covariance-based mea-

sures have been used to identify functional subnetworks

across visualareas in rodent visual cortex [5,20,15]. However,

moment-based methods are typically limited by the lack of

an explicit statistical model for neural responses, and may

lack statistical power for identifying weak interactions

between areas. In this review, we therefore focus on

model-based approaches, which provide explicit descrip-

tions of the dependencies within and between brain areas.

Here we provide an overview of two modern approaches

for characterizing dependencies in multi-region

electrophysiological recordings. We begin by discussing

regression-based approaches, which seek to build predic-

tive models for neural activity in one region using neural

activity in other regions (Figure 1b). We then discuss

latent variable models, which characterize the structure of

multi-region data in terms of shared low-dimensional

time series (Figure 1c). We conclude by proposing future

directions and ways of extending existing models to help

further uncover the ways distinct brain regions interact.

Regression-based approaches

Regression models provide one framework for character-

izing statistical dependencies between brain areas using
www.sciencedirect.com
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Figure 1
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Approaches to characterizing neural activity from simultaneously recorded brain regions. (a) Schematic for simultaneous electrophysiological

recording from two separate brain regions (adapted from [22]). (b) Regression models are directional statistical descriptions that seek to

characterize the firing of one brain region using the activity of the other region. (c) Latent variable models characterize shared structure underlying

response fluctuations in multiple brain regions.
data from multi-area recordings. The basic idea is to fit a

model that predicts activity in one brain area using the

activity from one or more other brain areas (Figure 1b).

Models of this form contain a set of linear weights that

specify how spikes from a group of input neurons modu-

late the firing rate of an output neuron, with Gaussian

[21��] or Poisson observation noise and time-lag between

regions [22�,23�]. The inferred regression weights in this

class of models provide a measure of statistical depen-

dency, often referred to as functional connectivity, between

areas [22�,24]. When the regression model in question is a

time-lagged linear-Gaussian ‘least-squares’ regression,

the resulting dependency measure is known as Granger
causality [25,26]. When the model consists of a linear-

mapping following by a point-wise non-linearity and

Poisson observations, the method is known as the Poisson

generalized linear model (GLM). Recent work has

extended this framework to allow for non-linear depen-

dencies between neurons using deep neural networks

[27]).

For this review, we focus on the Poisson GLM, which

provides a simple yet powerful regression modeling

framework for spike train data. The single-neuron Pois-

son GLM describes how the spike rate of a single neuron

depends on external covariates such as visual stimuli,

spatial position, or theta oscillation phase [28–32]. So

called ‘auto-regressive’ Poisson GLMs include weights

on spike history from one or more neurons, which allow

them to characterize dependencies between neurons in

multi-region recordings [22�,23�,24,33–39].

Formally, a Poisson GLM describes each neuron by an

instantaneous firing rate, also known as the conditional
intensity, denoted lt , which defines the probability of

observing a spike in a small time bin at time t. This firing
www.sciencedirect.com 
rate is given by the projection of an input vector xt onto
the linear weights w, transformed by a rectifying nonlin-

ear function f :

lt ¼ f ðw>xt þ bÞ; ð1Þ

where b is a constant offset or bias term. Common choices

of nonlinearity f include exponential and the soft-recti-

fied or ‘softplus’ function, f ðxÞ ¼ log ð1 þ exÞ,
both of which ensure that firing rates are non-negative.

The spike count yt in a time bin of size D has a condi-

tionally Poisson distribution:

yt jxt � PoissonðDltÞ; ð2Þ

although other count distributions (e.g. Bernoulli, bino-

mial, negative binomial) have also been considered [40–

43].

To model statistical dependencies between neurons, the

spike history of other neurons can be included as a

regressor. In this case the firing rate of neuron j can be

re-written as:

l
ðjÞ
t ¼ f ðw>

j xt þ h>
j y

ðjÞ
histt

þ
X
i 6¼j

c>ij y
ðiÞ
histt

þ bjÞ ð3Þ

where wj and bj are stimulus weights and offset for neuron

j, hj denotes the ‘self-coupling’ spike-history filter for

neuron j, cij denotes a ‘coupling’ filter from neuron i to

neuron j, and y
ðiÞ
histt

denotes a vector representing the spike

history of neuron i at time t. This is typically defined to be

a vector of binned spike counts from time bins
Current Opinion in Neurobiology 2020, 65:194–202
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Figure 2
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The coupled Poisson GLM is a regression model for capturing

dependencies in multi-region spike train recordings. To predict spike

trains in region B using spike trains from region A, the model contains

‘coupling’ filters cij that capture statistical dependencies between

previous spikes from neuron i and the spike rate of neuron j at time

t. It may also contain filters capturing dependencies on external

stimuli, and on the spike history of other neurons in region B (not

shown). The full Poisson GLM for a single brain region contains an

independent set of filters for every spike train, meaning that it is really

a collection of independent models, one for every neuron in

downstream population B. One can similarly construct a Poisson GLM

to predict spike trains in region A from the spikes in region B.
ðt � t; . . . ; t � 1Þ, for some number of time lags t before

the current time bin.

When defined this way, it can be seen that the coupled

Poisson GLM is actually a collection of single-neuron

models, one for each neuron in the population (schema-

tized for a single neuron in Figure 2). Each neuron is

characterized by the set of filters that determine its inputs.

Fitting the coupled Poisson GLM to multi-neuron data

therefore involves fitting a separate GLM to each neuron in

the population, which can be carried out in parallel.

One way to characterize statistical dependencies with the

Poisson GLM is to analyze the coupling filters between

neurons in different brain regions. The strength of depen-

dencies between regions can be assessed by computing

the predictive performance of models fit with and without

coupling filters between regions [22�]. A simple metric is

the difference in cross-validated log-likelihood, given by

log PðY test jucoupledÞ � log PðY test juuncoupledÞ, where Y test
Current Opinion in Neurobiology 2020, 65:194–202 
represents held-out test data not used for fitting, and

ucoupled and uuncoupled represent fitted parameters of the

coupled and uncoupled models, respectively. This quan-

tity has units of bits when taking log base 2, and can be

divided by the number of seconds or number of samples

to get units of bits/s or bits/sample [31,42]. Another way to

use GLMs to characterize dependencies between brain

regions is to directly analyze the shape and amplitude of

fitted coupling filters. The peak amplitude of each cou-

pling filter provides a summary of coupling strength,

while the sign of the peak indicates whether the effective

dependencies are excitatory or suppressive [38�].

One general advantage of regression-based approaches is

the ability to characterize directed dependencies between

brain regions. Because we regress the activity in each brain

area against the time-lagged activity from other areas, we

can identify asymmetric relationships between areas. For

example, we might identify that spikes in area A predict

increased spiking area B, whereas spikes in area B predict

decreased firing in area A. However, it is important to

emphasize that the statistical dependencies identified by

GLMs are statistical and not causal, and are susceptible to

omitted variable bias [44]. Thus, for example, the depen-

dencies between two brain regions identified by GLM

analysis may in fact reflect shared input with different time

lags from a third, unobserved brain region [45,46].

Another advantage of GLMs is the ability to parallelize

over neurons when fitting, since the full model is simply a

collection of single-neuron models. This confers compu-

tational advantages over latent variable models (see next

section), which must be fit jointly to all neurons at once.

However, the total number of coupling filters in a GLM

grows quadratically with the number of neurons, which

can lead to overfitting and problems of interpretation in

large neural populations. Sparsity-inducing priors, which

drive some coupling filters to zero, can help mitigate both

problems; these priors reduce the number of model

parameters while preserving the most significant connec-

tions between neurons [47,35,38�].

Latent variable modeling approaches
An alternative to regression-based approaches is to model

dependencies between brain regions using shared latent

variables. Here, the standard approach is to model the

response fluctuations in a large population of neurons as

arising from a small number of hidden or ‘latent’ sources.

These models are typically not directed, meaning that

they seek to describe dependencies between brain

regions in terms of shared modulation by a small number

of hidden or unobserved sources, as opposed to seeking to

describe dependencies in terms of separate feedforward

and feedback components.

In recent years, latent variable models have become a

popular approach for analyzing structure in single-region
www.sciencedirect.com
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Figure 3
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The multi-region Poisson GPFA (Gaussian-Process Factor Analysis) model contains a block-structured loadings matrix, with latent variables local

to each region, and ‘shared’ latents that capture shared variability across regions. Latent firing rates are passed through a rectifying nonlinearity f
to obtain firing rates, which drive spiking via a Poisson process.
datasets. Typically, the time-course of the latent variable

is either assumed to follow a linear dynamical system

(LDS) [48,45,49–53], or is simply assumed to be smooth

in time using a Gaussian process (GP) prior [54–58

,43,59,60]. Both LDS and GP latent variable models have

been augmented and modified for different purposes, and

here we will highlight how each form can be extended to

understand multi-region data.

The key distinction between LDS and GP latent variable

models lies in the assumed prior over the latent variable.

In LDS models, the latent vector xt evolves according to

linear dynamics with Gaussian noise:

xt ¼ Axt�1 þ et ; et � N 0; Qð Þ ð4Þ

where A describes the discrete-time linear dynamics.

Although the assumption of linear dynamics is almost

certainly too restrictive for real neural circuits, the noise

component et , often referred to as ‘innovations’ noise, can

be viewed as accounting for both the true noise as well

model mismatch. One notable extension of this model,

the switching Linear Dynamical System (sLDS), allows

for discrete switching between different linear dynamics

matrices, which can approximate nonlinear dynamics in

the same way that a series of line segments can approxi-

mate a curve [61–65].

An alternate approach to LDS models is to model the

latent variable with a Gaussian process (GP), which
www.sciencedirect.com 
makes no assumption about the dynamics beyond

smoothness in time. A GP defines a joint Gaussian

distribution over the latent xt (an element of the latent

vector xt) at all time points t 2 ½0; T �. The covariance of

this latent process is specified by a kernel function:

covðxt ; xt 0 Þ ¼ kðt; t 0Þ ð5Þ

which determines the a priori correlation between the

latent variable at any pair of times t and t 0. A common

choice of kernel function is the ‘Gaussian’ or ‘radial basis

function’ (RBF) covariance:

kðt; t 0Þ ¼ e�
ðt�t0 Þ2
2‘2 ð6Þ

which is governed by a single hyperparameter ‘ known as

the ‘length scale’ that determines the degree of smooth-

ness. In a classic model known as Gaussian process factor

analysis (GPFA), each element of the latent vector xt is
assumed to have an independent zero-mean GP prior,

each with its own length scale [54].

In both LDS and GP latent variable models, the proba-

bility distribution over neural data is defined in terms of a

noisy projection of the low-dimensional latent variable to

the space of high-dimensional neural activity. The sim-

plest case is to assume a linear mapping, as found in a class

of so-called ‘factor models’. If we assume Gaussian addi-

tive noise with covariance R, we obtain [54]:
Current Opinion in Neurobiology 2020, 65:194–202
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yt ¼ Wxt þ et ; e � Nð0; RÞ ð7Þ

where yt is the set of n neurons’ spike counts at time t, xt is
the p-element latent vector at time t, and W is a ðn � pÞ
matrix of loading weights. Each column of W describes how

a single latent affects the population spiking activity, and

each row describes how a single neuron’s activity depends

on the different latents contained in xt .

A more appropriate model for spike count data is to

assume Poisson noise after transformation by a fixed

nonlinearity. In this case, the factor model can be written:

yt jxt � PoissðD f ðWxÞÞ; ð8Þ

whereas before D denotes time bin width and f ð�Þ is a

fixed non-negative output function [64,57,43]. Gaussian

models are tractable and simple to fit because the log-

likelihood can be evaluated in closed form. Poisson

models, by contrast, may be more accurate for spike count

data, particularly when spike rates are low, but require

approximate inference methods to fit [66,67,57,64,43].

Recent work has introduced latent variable models with

flexible nonlinear mappings between latent variables and

observations [66–68,60,69], but for the purposes of this

review we focus on models with linear mappings.

To extend the two latent variable modeling approaches

described above to multi-region data, we will first con-

sider recording from two brain regions, denoted A and

B. We can perform inference on an LDS or GP factor

model by concatenating data from two regions, and then

examine the inferred loadings matrix, W . In the standard

inference case, the model will uncover latent structure

agnostic to the multi-region nature of the data. The latent

factors will reflect the dimensions of shared variability,

across time, for the entire population. A way to isolate per-

region latent structure is to constrain the loadings matrix,

W , to have block structure, with a subset of latents

mapping only to region A, and another subset mapping

only to region B [81]. The model, shown for the Poisson

observation case, takes the following form:

yA
yB

" #
¼ Poiss f

WA 0

0 WB

" #
xA

xB

" #  !  !
; ð9Þ

where xA and xB reflect the latents corresponding to

regions A and B and WA;B the respective loadings for

each region, and for simplicity we have dropped indexing

on time.

If the latent variables xA and xB have independent noise

and dynamics, this model is equivalent to fitting two
Current Opinion in Neurobiology 2020, 65:194–202 
entirely separate models, one for region A and another

for region B, with no shared structure between them. We

wish to contrast the above model with one that includes

both shared and independent latent variables:

yA
yB

� �
¼ Poiss f

WA WSA 0

0 WSB WB

� � xA
xS
xB

2
4

3
5

0
@

1
A

0
@

1
A: ð10Þ

Here xS refers to latent variables that are shared between

regions, while xA and xB denote region-specific latent

variables. This block structure in the loadings matrix

W allows us to extract shared and independent sources

of variability using either GP [70��,71�] or LDS [65] priors

over the latent variables. We show a schematic for this

model in Figure 3. Here, a loadings matrix with indepen-

dent components and shared components map indepen-

dent and shared latents to a set of firing rates. These firing

rates describe Poisson spiking from populations of neu-

rons in each brain region.

These shared latent variable models for multi-region data

are structurally related to canonical correlation analysis

(CCA) [72], which has been used in neuroscience settings

for multi-region data before [4]. In particular, the LVMs

outlined above relate closely to statistical variants of CCA

known in the machine learning community as probabilis-

tic CCA [73,81] and Bayesian CCA (BCCA) [74]. Though

probabilistic CCA and BCCA do not typically include

neuroscience-specific model features such as point-wise

nonlinearities, Poisson observations, and GP priors, they

are factor analytic models which identify shared low-

dimensional subspaces that map to distinct upstream

observations [73,81]. In the case of BCCA, these statisti-

cal models, like the LVMs described above, assert region-

specific and shared factors through a block-structured

loadings matrix [74,75]. The ongoing work in the machine

learning community on probabilistic CCA and Bayesian

CCA may have useful implications to the neuroscience

community. In particular, recent developments of incor-

porating sparsity priors over the block loadings matrix

may be well suited to neuroscience contexts [75].

Implementing LVMs with block loadings structure is an

exciting future for multi-region analysis. Some prelimi-

nary results suggest that models of this sort can incorpo-

rate time-delays to identify latents that represent feed-

forward and feedback communication between brain

regions [71�]. Other work has isolated trial-varying latent

structure that is shared across regions during repeated

presentations of a visual stimulus [70��]. However, a

technical challenge here remains in properly identifying

the dimensionality of the shared a independent sub-

spaces, as an exhaustive search over all possibilities in

computationally cumbersome. Greedy methods, which

add dimensions one-by-one if it improves cross-validation

performance, are a sensible initial approach [70��]. An
www.sciencedirect.com
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exciting possibility would be to impose an explicit regu-

larization over the loadings matrix, similar to the

approaches used in [75], such as an automatic relevance

determination prior, or nuclear norm regularization.

These more sophisticated statistical methods would iso-

late within and across region subspaces without the need

directly specify the nature of the block structured load-

ings structure.

Hybrid approaches: low-dimensional regression models

So far we have considered regression models, which seek

to explain activity in one brain area as a function of

activity in another, and latent variable models, which

seek to explain activity in multiple brain areas using a

small number of components or factors. It is of course

natural to seek to combine the strengths of these two

approaches: models that can explain activity in one brain

area in terms of a small number of components arising

from another brain area. Dimensionality-reduction meth-

ods have had great success in extracting interpretable

features from high-dimensional neural recordings [9,82].

Combining dimensionality reduction with regression thus

provides a powerful approach for extracting more inter-

pretable statistical interactions between brain regions

[21,81]. Although we have emphasized models with

Poisson noise up to now, this section will focus primarily

on models with Gaussian noise.

A simple approach to low-dimensional regression for multi-

region data is to work in two stages: first perform dimension-

ality reduction on the upstream region, and then use regres-

sion on this low dimensional representation to predict

downstream activity. When using principal components

analysis (PCA) for dimensionality reduction followed by

ordinary least squares regression, this technique is known as

principal components regression (PCR). Kaufman et al. [76]

used PCR to analyze the relationship between neural

activity in pre-motor (PMd) and primary motor cortex

(M1) during movement preparation, arguing that PMd

activity falls primarily in the null space of the linearmapping

to M1. Semedo et al. [21��] used a similar approach, substi-

tuting factor analysis for PCA, to analyze dependencies in

neural activity between V1 and V2, concluding that princi-

pal axes of V1 variability were not the dimensions that best

predicted activity in downstream area V2.

An alternate approach to low-dimensional regression

modeling is reduced rank regression (RRR), which unifies

dimensonality reduction and regression into a single

model. The RRR model explicitly imposes a rank con-

straint on the parameters of a regression model that govern

the mapping from one brain region to another. For linear

regression with Gaussian noise, the RRR objective is

min
W2Rm�n

jjYB � YAW jj22; such that rankðWÞ � r ð11Þ
www.sciencedirect.com 
where YA denotes a T � m matrix of responses from m
area-A neurons over T time bins, YB denotes a T � n
matrix of responses from n area-B downstream neurons,

and W is a m � n matrix of regression weights of rank at

most r .

Remarkably, there is a closed-form solution to this optimi-

zation problem. This solution can be obtained using the top r
right singular vectors of YAŴOLS, where ŴOLS is the

matrix of ordinary least squares regression weights,

ŴOLS ¼ ðYA
>YAÞ�1Y>

A YB. If we assemble these singular

vectors into a matrix V , the RRR solution is simply

ŴRRR ¼ ŴOLSVV
>. The reduced-rank regression model

can of course be extended to the setting of Poisson

GLMs, although in this case fitting requires numerical

optimization of the log-likelihood, as there is no longer an

eigenvector solution.

The rank constraint in the reduced-rank regression model

can be seen as imposing a bottleneck for information trans-

mission between brain areas. For example, if we use a rank-2

RRR model, the interactions  between brain areas are con-

fined to a 2-dimensional subspace, regardless of the total

number of latent dimensions in each area. Recent work from

Semedo et al. [21��] coined the term ‘communication sub-

space’ to refer to this phenomenon, and showed that the

dependencies between neural activity in visual areas V1 and

V2 are indeed low-dimensional relative to the dimensional-

ity of activity in each brain region.

The rank constraint in RRR also provides a form of

regularization by reducing the number of parameters

and allowing for parameter-sharing across neurons. The

RRR model may therefore achieve better generalization

performance than a (full-rank) GLM with all-to-all cou-

pling due to reduced overfitting. More importantly, RRR

allows for direct estimation of the communication sub-

space from one population to another, without requiring

separate steps for dimensionality-reduction and regres-

sion. In addition to being more accurate, the RRR model

is also more interpretable due to the fact that it provides a

concise summary of the statistical dependencies between

areas.

Challenges and opportunities

Recent advances in technology have ushered in a new era

for multi-region optical and electrophysiological record-

ing. These techniques hold great potential for decipher-

ing the complex flow of information within neural circuits.

However, the challenges posed by analyzing such data-

sets highlight the need for innovative new statistical tools

and approaches. As we move forward with the develop-

ment of such tools, we propose that future work be guided

by the principles of interpretable structure, scalability,

and statistical efficiency.
Current Opinion in Neurobiology 2020, 65:194–202
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Thinking carefully about interpretable statistical struc-

ture is important due to the large number of possible

modelling options for multi-region data. When develop-

ing a model for multi-region data, scientists should con-

sider what the model fits might tell us in the context of a

particular hypothesis or set of hypotheses of interest.

Successful examples include multi-region models built

to understand signal and noise representations [70��,21��],
feedforward and feedback signals [71�], or functional

coupling properties across and within regions [23�]. In

each of these cases, a particular neuroscience question or

network property motivates the development of the

model, and the resultant fits provide insight into the

network property of interest. Developing or using a

multi-region model without first thinking about how to

interpret it may be a useful mathematical exercise, but a

good fit to neural data will not on its own provide any

insight into multi-region neural activity.

The scalability of statistical methods for analyzing multi-

region data is vital for future work. High-throughput

imaging and electrophysiology preparations will soon

be routinely recording from thousands of neurons simul-

taneously. The estimation procedures used to fit the

models described here must be able to contend not only

with an expanding volume of data, but with the exploding

degrees of freedom that accompany it. Fitting regression

models in the large-scale setting, including parameters

characterizing the coupling between cells, results in geo-

metric growth in the number of parameters with the

number of cells. One promising solution is to rely on

approximate modeling methods [38�]. Hybrid approaches

like those described in the previous section also serve to

solve the scalability problem by reducing the degrees of

freedom of the model.

We are especially excited about possibilities for combin-

ing latent variable models and regression models, and the

potential for such combined models to reveal new insights

into the flow of information between and within brain

regions. Model-based targeted dimensionality reduction

[77,78] represents one recent method that combines a

regression model with explicit low-dimensional con-

straints on population activity. Bayesian latent structure

discovery [79] is another approach that merges regression

and latent variable models. Both of these approaches

model population-level activity by sharing degrees of

freedom among cells but leave enough flexibility to

identify functionally significant, low dimensional latent

structure. These approaches have yet to be used in the

multi-region setting but we expect their applicability to

the multi-region setting to be straight forward.

Conclusion
The development of statistical analysis tools for multi-

region data is in its infancy. We believe that a conceptual

understanding of information processing in the brain
Current Opinion in Neurobiology 2020, 65:194–202 
depends on appropriate characterization of population-

level activity [80]. As multi-region datasets become

increasingly common, there will be greater need for

analytical tools and appropriate statistical summaries

for each region as well as inter-region interactions. Here,

we have described two general methodological

approaches for understanding multi-region spike train

data, which represents an important avenue for current

and future research..
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