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Abstract
Sufficient dimension reduction (SDR) methods
are a family of supervised methods for dimension-
ality reduction that seek to reduce dimensionality
while preserving information about a target vari-
able of interest. However, existing SDR methods
typically require more observations than the num-
ber of dimensions (N > p). To overcome this lim-
itation, we propose Class-conditional Factor Ana-
lytic Dimensions (CFAD), a model-based dimen-
sionality reduction method for high-dimensional,
small-sample data. We show that CFAD substan-
tially outperforms existing SDR methods in the
small-sample regime, and can be extended to in-
corporate prior information such as smoothness
in the projection axes. We demonstrate the ef-
fectiveness of CFAD with an application to func-
tional magnetic resonance imaging (fMRI) mea-
surements during visual object recognition and
working memory tasks, where it outperforms ex-
isting SDR and a variety of other dimensionality-
reduction methods.

1. Introduction
Dimensionality-reduction methods are important tools for
analyzing noisy, high-dimensional data, which operate by
mapping data to a low-dimensional space while preserving
key features of interest. This low-dimensional projection
of the original data allows for easier analysis, visualiza-
tion and compression of data. Dimensionality reduction
methods have been developed to exploit a wide variety of
different data features, such as mean, covariance, class sepa-
ration, and temporal or spatial structure (Cunningham & Yu,
2014; Cunningham & Ghahramani, 2015; Pang et al., 2016;
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Kobak et al., 2016). Another class of dimensionality reduc-
tion methods, known as Sufficient Dimension Reduction
(SDR), reduce dimensions with the aim of preserving the
statistical relationship between high-dimensional data (X)
and an observed output variable (Y ) (Globerson & Tishby,
2003; Cook, 2007; Cook & Forzani, 2009). SDR methods
seek to find a subspace that captures the conditional distri-
bution of X | Y . That is, they discard dimensions of X
that are statistically independent of Y , preserving only the
dimensions in which X depends on Y . So-called “inverse
regression” methods, which seek to model the distribution
of X | Y , provide a framework for estimating the dimen-
sion reduction subspace, leading to the popularity of inverse
regression-based SDR methods (Cook & Ni, 2005).

Regression models for predicting scalar variables or class
labels from high-dimensional data represent a common set-
ting for the application of dimensionality reduction methods.
In neuroscience, for example, such methods are frequently
employed for quantifying the relationship between high-
dimensional neural activity and the stimuli that elicit them
(Cunningham & Yu, 2014; Kobak et al., 2016; Cowley et al.,
2016; Aoi & Pillow, 2018).

However, existing inverse regression-based SDR methods
are not well suited to such problems. Their performance
severely degrades when the sample size N is small relative
to the data-dimensionality p, and they completely collapse
in the N < p regime, as they often depend on the positive-
definiteness of now-rank-deficient sample covariance matri-
ces. As a result of these challenges, Principal Components
Analysis or Independent Components Analysis continue to
be the most commonly used method(s) for dimensionality re-
duction of neural data, despite the fact that they completely
ignore the information provided by target labels. This mo-
tivates the need for a dimensionality reduction method for
high-dimensional small-sample-size data, which preserves
output-relevant information in the low-dimensional input.

In this paper, we introduce a model-based inverse regres-
sion method for high-dimensional data that is robust to
sample size and does not collapse in the N < p regime.
Our method, Class-conditional Factor-Analytic Dimensions
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(CFAD)1, relies on a model of the high-dimensional data
in which the class-dependent variation in mean and covari-
ance is restricted to a common low-dimensional subspace,
specifying the conditional distribution of X | Y with a
form similar to that of factor analysis. To learn the CFAD
subspace, we use Riemannian optimization over a prod-
uct manifold (Stiefel ⇥ Euclidean) to maximize the model
log-likelihood, ensuring that projection matrices obey semi-
orthogonality constraints on the Stiefel manifold and the
unconstrained parameters lie on the Euclidean manifold. We
show the robustness of CFAD to sample-size compared to
other inverse regression-based SDR methods on simulated
data. The factor-analytic structure of CFAD allows for easy
incorporation of known priors on the data. We show that
the addition of smoothness prior, in particular in the small-
sample regime, improves the performance of CFAD. We use
CFAD with a graph Laplacian smoothing prior to reduce the
dimensionality of fMRI activity in a visual object recogni-
tion task as well as a working memory task, and show an
improvement in classification accuracy as compared to ex-
isting inverse regression SDR methods, PCA, Fisher Linear
Discriminant (LDA), Reduced-rank Regression (RRR) and
Linear Optimal Low-rank projection (LOL), a recently intro-
duced method for dimensionality-reduction in classification
settings (Vogelstein et al., 2017).

2. Background
Conventional linear regression of a p�dimensional vector
X onto Y involves evaluating E(Y | X). Inverse regres-
sion, on the other hand, evaluates the curve E(X | Y ) in
Rp, which consists of p one-dimensional regressions. This
reduces the problem to estimating multiple one-dimensional
regressions as opposed to a high-dimensional regression, cir-
cumventing the issues which conventional regression faces
due to high dimensionality (p) of the data. Sufficient dimen-
sion reduction using inverse regression has so far employed
two broad approaches: moment-based methods and para-
metric model-based methods. The goal of both of these
approaches is to estimate a central subspace SY |X such that
↵ 2 Rp⇥d spans SY |X and Y ?? X | ↵>X . In other words,
these methods find a low-dimensional subspace which pre-
serves all information in X relevant to Y .

SIR and SAVE. Sliced Inverse Regression (SIR (Li, 1991))
and Sliced Average Variance Estimation (SAVE (Cook &
Weisberg, 1991)) were the first moment-based inverse re-
gression methods to be introduced, and have since found
widespread application. They work under two mild condi-
tions: (a) E(X | ↵>X) is a linear function of X (Linear-
ity condition); and (b) Var(X | ↵>X) is non-random (Li,
1991). In case of categorical data, each of the N observa-
tions of X is mapped to a label Y 2 {1, 2, 3, ..h}. When the

1Code available at: https://github.com/97aditi/CFAD.git

data is continuous, it is still possible to do this by “slicing”
the range of Y into h equally spaced bins. Both SIR and
SAVE standardise the data such that Z = b⌃�1

X (X�bµ). The
SIR estimate uses the first-order moments bmy = E[Z | Y ],
and then computes the top d eigenvectors of a weighted
covariance matrix:

⌘̂ = eig[1:d](bV ), bV =
hX

y=1

ny bmy bm>
y (1)

where ny refers to the number of samples in class y. It then
transforms ⌘̂ back to the original space, yielding the fol-
lowing estimate of the central subspace: ↵̂SIR = ⌘̂b⌃�1/2

X .
SAVE extends this framework to second-order moments. It
instead computes the top d eigenvectors of the following
weighted combination of covariance matrices:

M =
hX

y=1

ny (Ip � Cov(Z | Y )) (Ip � Cov(Z | Y ))>

(2)
These eigenvectors are then similarly transformed to
obtain the central subspace estimate: ↵̂SAV E =

eig[1:d](M)b⌃�1/2
X . While SIR and SAVE use class-means

and class-covariance matrices, respectively, their inability
to combine information from both moments makes them
complementary, and inspired the introduction of directional
regression.

DR. Directional Regression (DR (Li & Wang, 2007)) com-
bines first-order and second-order moments to estimate the
central subspace. It uses the top d eigenvectors of the fol-
lowing matrix:

M =
Ph

y=1 nyE2[ZZ>
� Ip | Y ] + 2bV 2 + 2

⇣Ph
y=1 ny bm>

y bmy

⌘
bV

(3)
and then transforms them as in SIR and SAVE to obtain the
estimate. An important drawback of the above eigenvector-
based methods is that they work only when N > p since
they require inverting the sample covariance (b⌃X 2 Rp⇥p)
in order to compute ↵̂. They work well when N � p, but
otherwise the covariance estimates in Rp are very noisy and
performance degrades.

LAD. Likelihood acquired directions (LAD (Cook &
Forzani, 2009)) is a model-based approach, which requires
numerical optimization of a likelihood function to obtain
an estimate of the central subspace. LAD assumes that
the class-conditional distribution is a Gaussian such that
X | Y ⇠ N (my,�y), where my and �y denote class-
conditional means and covariances. Using the linearity and
constant-covariance conditions, the LAD model estimates
SY |X such that ↵>X contains all information about X and
the projection of X on the subspaces orthogonal to SY |X
is independent of Y . However, since it models my and �y

in Rp, it requires a large number of samples N relative to

https://github.com/97aditi/CFAD.git
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the number of dimensions p. Formally, the LAD objective
function requires each sample class-covariance matrix to
be positive definite, meaning the method requires at least
N = (p+ 1)h samples, where h is the number of slices or
classes in Y . This substantially limits its application to high-
dimension, small-sample problems. Our method, CFAD, is
motivated by similar modeling assumptions, but adapted to
be tractable for the N < p regime.

3. Class-conditional Factor-Analytic
Dimensions (CFAD)

Motivated by the dearth of inverse regression SDR methods
that are tractable for high-dimensional small-sample-size
data, we develop a new framework for inverse regression
tailored to such data. High-dimensional data often depends
on only a small number of latent factors. For example,
fMRI measurements are recorded at the level of voxels, but
large correlations between nearby voxels reduce the effec-
tive number of data dimensions significantly. We exploit
this assumption in our model-based method, which call
Class-conditional Factor-Analytic Dimensions (CFAD).

The CFAD model describes high-dimensional data as aris-
ing from a generative model in which information about
the target variable Y is contained entirely within a low-
dimensional subspace (See Fig. 1). Specifically, CFAD
models the class-dependent variation in high-dimensional
data X 2 Rp as arising from a mixture-of-Gaussians in Rd

(d < p), projected up to Rp. More precisely, every class or
slice of the output variable Y is associated with a distinct
d-dimensional Gaussian (N (µy,⇤y)), which is projected
using a semi-orthogonal matrix ↵ 2 Rp⇥d to the ambient
space of X , such that

XCS | Y ⇠ N (↵µy,↵⇤y↵
>), (4)

where XCS denotes the (noiseless) central-subspace com-
ponent of X 2 Rp.

Of course, the distribution X | Y may have additional
dependencies that do not depend on Y . To capture this, we
assume a separate q-dimensional Gaussian, N (0,⇤0), with
mean 0 and covariance ⇤0, which is projected through a
different semi-orthogonal matrix ↵0 2 Rp⇥q to Rp. We
require that ↵>↵0 = 0(2 Rd⇥q), meaning the subspaces
spanned by ↵ and ↵0 are orthogonal. This ensures that class-
independent covariance—that is, correlation structure in X
that is independent of Y —lies in a subspace orthogonal
to the central subspace. Finally, we assume independent
additive Gaussian noise along every dimension of X , with
variances contained in the diagonal elements of a diagonal
matrix  ). This leads to the following model:

X | Y ⇠ N (↵µy,↵⇤y↵
> + ↵0⇤0↵

>
0 + ) (5)

This equation represents the CFAD model in its full gener-
ality. Note that when the targets Y are continuous, we can
partition the range of Y into h classes, e.g. with percentiles
or naive clustering, just as with other inverse regression
SDR methods.

If µy = 0 for each class in Y , and q = 0, meaning the
class means are all zero and there are no additional Y -
independent correlations in X , CFAD reduces to factor
analysis on each class, with the added constraint that all sets
of loading weights lie in the subspace spanned by ↵. If we
fix  = �2Ip, CFAD fits probabilistic PCA to each class,
constrained the same way. Further constraining all class-
specific covariances ⇤y to be identical reduces CFAD to a
single instance of factor analysis or probabilistic PCA based
on the choice of  (see Supplement for details). Ghahra-
mani & Hinton (1996) proposed a mixture-of-factor analyz-
ers model, which resembles CFAD but without imposing a
shared low-dimensional subspace or a distinction between
class-dependent and class-independent models of correla-
tions in X . Thus, CFAD can capture the key intuitions of
these other generative methods, but is extended to capture
class-dependent variation in means and covariances.

Further, we can show that CFAD is provably an SDR
method, as defined in Cook & Forzani, 2009; assuming that
the target data, for some d and q, have the low-dimensional
structure in eq. (5). We recall that the CFAD-discovered sub-
space ↵ is a sufficient dimension reduction subspace if and
only if X ?? Y | ↵>X , i.e. if conditioning on the projection
onto that subspace leaves no class-dependent information
in X . For the CFAD model in eq. (5), we can show using
Gaussian identities (see Supplemental Materials) that

↵>X | Y ⇠ N (µy,⇤y + ↵> ↵) (6)

X | (↵>X,Y = y) ⇠ N
�
0,↵0⇤0↵

>
0 + 

�
(7)

So we have that Y ?? X | ↵>X and CFAD is an SDR
method, with the requirement that the noise  is diagonal.

3.1. Optimizing the CFAD likelihood function

We assume that the data X contains N samples and Y has
h classes with ⇡y denoting the fraction of points belonging
to a particular class y. As we are particularly interested
in the scenario where N is small, imposing additional con-
straints on the covariance can be useful. Following this, we
restrict the class-independent and class-dependent covari-
ance (⇤0, ⇤y) to be diagonal. We also assume that the noise
is isotropic and hence set  = �2Ip.

We can easily obtain the MLE estimate of µy as ↵bµy where
bµy is the sample class mean. We define b⌃X|y as the sample
covariance of X | (Y = y). Using these and the trace trick,
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Figure 1. Schematic illustration of the CFAD model. (A) Left: slicing involves partitioning the dataset based on a discrete binning of
the output variable Y . Right: the CFAD model describes class-conditional data X | Y = y, as multivariate normal, such that mean and
covariance differs only within the central subspace (spanned by ↵). Data projected orthogonal to ↵ have a common, class-independent
distribution. (B) Bivariate projections of the CFAD model. Left: in the class-independent space spanned by ↵0, data have a common
Gaussian distribution that captures correlations in X that do not vary across classes. Right: in the central subspace, each class has its own
multi-variate Gaussian distribution with unique mean and covariance. (Not shown: orthogonal to ↵ and ↵0, data have an independent
axis-aligned normal distribution governed by the diagonal elements of  .)

the log likelihood of the model in eq. 5 is

LCFAD =�
Np

2
log(2⇡)�

N

2

hX

y=1

⇡y log |⌃y|

�
N

2

hX

y=1

⇡y Tr
⇣
⌃�1

y

⇣
b⌃X|(Y=y) +By

⌘⌘

where ⌃y = ↵⇤y↵
> + ↵0⇤0↵

>
0 + �2Ip

By = (Ip � ↵↵>)bµybµ>
y (Ip � ↵↵>)

(8)

We note that ↵ and ↵0 have semi-orthogonality constraints
and they are also mutually orthogonal (↵>↵0 = 0). Such
constraints cannot be satisfied in the Euclidean space.
Hence, to optimize the log likelihood, we resort to Rie-
mannian Optimization. We combine ↵ and ↵0 such that
A = [↵ ↵0] and A>A = Id+q . A can then be optimized on
the Stiefel manifold. The Stiefel manifold St(n, d+q) is the
set of matrices in Rn⇥(d+q) whose columns are orthonormal.
The other parameters (⇤y,⇤0,�) can be optimised in the
Euclidean space Rk where k = dh+ q+1. Considering all
parameters jointly, L can be optimised over a product mani-
fold M = St(n, p+q)⇥Rk, which fits p(d+q)+dh+q+1
total parameters. For reference, this is a decrease in parame-
ter count from LAD on the same problem, which would fit
O(p2) parameters.

To perform this optimization over M, we use Riemannian
LBFGS proposed in Hosseini & Sra, 2020 that we imple-
ment using the pymanopt library (Townsend et al., 2016). To
avoid getting stuck in local optima, we initialize the model
parameters separately. ↵ is initialized with the estimate ob-

tained by any other dimensionality reduction method (like
SIR, SAVE, etc). Once an initial guess for ↵ has been ob-
tained, ↵0 and � can be obtained by Probabilistic PCA of X
projected on to the null space of ↵. The top q�dimensions
form ↵0 and the estimated noise variance acts as the initial
guess for �. The covariance matrices ⇤y and ⇤0 can be
initialised as ↵>b⌃X|(Y=y)↵ and ↵>

0
b⌃X↵0 where b⌃X is the

sample covariance of X .

Also, CFAD requires an additional hyperparameter q (the
dimensionality of the class independent subspace) as com-
pared to other dimensionality reduction methods which only
require d. In our experiments, we set d+ q to the number
of components that capture 90% variance in the data, hence,
eliminating the challenge of combinatorially optimizing d
and q.

3.2. Smooth-CFAD

The factor-analytic structure of CFAD easily accommodates
regularization in the form of priors over the model param-
eters. (Note that, due to the specific form of the profile
likelihood it employs, priors are not easily incorporated
into the LAD model (Cook & Forzani, 2009)). Smoothness
is a common property of high-dimensional datasets, and
fMRI data in particular. We, therefore, illustrate the ben-
efits of regularization by adding a smoothness penalty on
the columns of ↵. This encourages the axes defining the
central subspace to be smooth along the natural dimensions
of X . For fMRI data, the raw observations take the form
of a 3D tensor defined by voxel locations in the brain. To
encourage smoothness, we place a prior on ↵ in the form
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of a Gaussian, with inverse variance � on the first-order
differences between adjacent voxels, considered along each
of the three cardinal dimensions of the tensor. This prior
serves as a penalty on ↵ which is constrained to lie on the
Stiefel manifold. The resulting log posterior can be written
as:

LsCFAD =LCFAD �
1
2�Tr(↵>D↵) (9)

where D is the graph Laplacian matrix incorporating that
adjacency such that columns of ↵ vary smoothly across the
p�dimensions. The hyperparameter � can be estimated by
cross-validation over a range of values. We refer to this
model as smooth-CFAD (sCFAD) in the rest of the paper.

4. Performance Evaluation
To test the effectiveness of CFAD as compared to other
inverse regression SDR methods, we simulate observations
from a CFAD model with h = 3 classes, p = 100, d = 2
and q = 3. The class means µy, of the latent mixture of
Gaussians in Rd, are randomly generated such that they
satisfy the following:

cmin max{Tr(⇤i),Tr(⇤j)} � ||µi � µj || � cmax max{Tr(⇤i),Tr(⇤j)}

8i 6= j, where cmin and cmax determine the degree of
separation of the Gaussian mixture (Dasgupta, 1999; Hos-
seini & Sra, 2020). We use three different degrees of sep-
aration: c 2 [0.2, 0.5] (low separation), c = [1, 3] (mid
separation) and c > 3 (high separation). We set the class co-
variance, ⇤y , for y = 1, 2, 3 to (2, 4), (5, 3) and (2, 2), and
the class-independent covariance (⇤0) to (2, 8, 8). Further,
the columns of projection matrix of ↵ are sampled from
N (0, Ip) such that they are orthonormal, and ↵0 is set to
any q�dimensional subspace in the null space of ↵.

Fig. 2 shows the the average principal subspace angle (be-
tween the subspace defined by ↵ and its estimates) by dif-
ferent methods when N is varied from [500, 10000]. We
see that CFAD is better than all the other methods at all
three degrees of separation. The relative performance dif-
ference between CFAD and the other methods is higher at
smaller values of N , hence showing its effectiveness in the
low-sample regime where the performance of other methods
degrades.

With the same parameters as the above experiment, and
additionally smoothed ↵ such that the columns of ↵ are
sampled from N (0, D+) where D+

2 Rp⇥p is the graph
Laplacian prior,we compare the performance of CFAD and
sCFAD with other SDR methods in Fig. 3 at different de-
grees of separation of the latent Gaussian mixture. The
hyperparameter � for sCFAD is chosen by a grid search
over � 2 [10�3, 103]. We find that CFAD and sCFAD are
better than all other methods (Fig. 3); in fact when N  p,

the other methods break but CFAD and sCFAD still yield
reasonably accurate subspaces. The smoothness prior in
sCFAD is especially useful when N is small, leading to the
drastic improvement in performance of sCFAD at small N .

We also illustrate the performance of CFAD in simple re-
gressive relationships (as done by Cook & Forzani (2009))
by creating 4 simple regression models. In each case,
N = 500, X is drawn from N (0, Ip) where p = 8 and
Y is generated according to the following models: (a)Y =
4X1/a+ ✏, (b)Y = X2

1/(20a)+0.1✏, (c)Y = X1/(10a)+
aX2

1/100 + 0.6✏, (d)Y = 0.4a(�>
1 X) + 3 sin(�>

2 X/4) +
0.2✏, where ✏ ⇠ N (0, 1). For models (a), (b) and (c),
↵ = [1, 0, ...]>. For model (d), �1 = [1, 1, 1, 0, ...]> and
�2 = [1, 0, 0...., 1, 3]. Hence, d=1 for the first three models
and d=2 for the last model. The parameter a determines the
strength of linear and quadratic relationships in the models
and is varied over different ranges for each model. Except
for the first model, all the other models are non-linear and
their conditional distribution of X | Y is not normal, an
assumption that CFAD makes. Fig. 2 shows the principal
subspace angle, averaged over 100 replications, between the
estimated and true subspace for SIR, SAVE, DR, LAD and
CFAD (with Y sliced into 5 equally spaced bins, h = 5).
We find that CFAD is competitive with LAD in all the four
models (with q = 7 for CFAD, which means ↵0 is simply
the null space of ↵). In this setting, both CFAD and LAD in-
deed are very similar at sufficiently high N to allow both the
models to fit to the data. This also shows that while CFAD
makes the normality assumption, its performance is robust
to non-normality like that of LAD. (In all our experiments,
we find that random initialization fails < 0.1% times.)

5. Application to fMRI data
To evaluate CFAD on real-world datasets, we used it to clas-
sify functional magnetic resonance imaging (fMRI) activity
in two different tasks.

Visual Object Recognition

We first used CFAD to classify functional magnetic res-
onance imaging (fMRI) activity recorded during a visual
object recognition task (Haxby et al., 2001). The fMRI data
is pre-processed (using the nilearn package (Abraham et al.,
2014)). Stimuli consisted of images from 8 classes: houses,
chairs, bottles, scissors, shoes, faces, cats and nonsense pat-
terns. fMRI activity was recorded in six subjects as they
performed 1-back task; selectively extracting the responses
for the ventral temporal cortex in each subject. More details
about the dataset can be found in Haxby et al. 2001.

We compare sCFAD and CFAD with other inverse regres-
sion SDR methods, reduced-rank regression (RRR;,with an
L2-penalty), Fisher Linear Discriminant (LDA) and PCA in
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Figure 2. Principal Subspace angles between the true subspace and the subspace estimated by SDR methods at varying number of samples
(averaged over 100 runs) when the data is simulated from the CFAD model (p = 100, d = 2, q = 3, h = 3). The latent class means in R2

are sampled at three degrees of separation.
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Figure 3. Principal Subspace angles between the true subspace and the subspace estimated by SDR methods at varying number of samples
(averaged over 100 runs) when the data is simulated from sCFAD (p = 100, d = 2, q = 3, h = 3). The class means in R2 are sampled
at three degrees of separation. (SIR, SAVE and DR require at least p+ 1 samples, while LAD requires every class to have > (p+ 1)
samples)

Figure 4. Principal subspace angles between the true and estimates dimension reduction subspaces for different SDR methods under
varying input-output relationships.

terms of their accuracy in decoding stimuli labels from fMRI
activity in all the six subjects. We also compare with Lin-
ear Optimal Low-rank projection (LOL) (Vogelstein et al.,
2017), a dimensionality reduction method tailored to high-

dimensional small-sample size data. LOL estimates ↵ by
performing a low-rank approximation of the class-centered
covariances and appending mean information to it. We use
the voxel locations in the recordings to form smoothness
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priors for sCFAD, to help capture the smooth activations
common throughout fMRI data.

fMRI recordings from the ventral temporal cortex in every
subject form the data matrix, X 2 Rp⇥N . The number
of voxels in the ventral temporal cortex (p) varies between
(307, 675) across subjects, and the number of observations
N per class (at different time points) is 108; and there are
8 stimuli classes. We perform a 5-fold cross-validation. In
each fold, a dimension reduction method estimates ↵ using
the training set which is then used to project X to a lower-
dimensional subspace. This is followed by classification
on this low-dimensional data using a linear SVM and the
average test accuracy across the folds in reported. For all
methods, except RRR, we vary d in increments of 10 in
(0, p]. In case of RRR, we use one-hot encoded class labels
as the target output and select the optimal rank (r 2 [1, c]
where c = 8 is the number of classes) as well as the L2-
coefficient (2 [10�3, 104]) by cross-validation. Now, since
CFAD and sCFAD require d as well as q (dimensionality of
the class-independent subspace), we fix d+ q to the number
of principal components needed to explain 90% variance
in X . We initialize sCFAD and CFAD with SIR, using the
initialization scheme discussed in Section. 3.1 and choose
the smoothness hyper-parameter � 2 [10�3, 104] by nested
cross-validation within each of the 5 folds.

Table 1 shows the classification accuracy obtained by all
the methods at the optimal d (based on average validation
accuracy across folds) for sCFAD. We find that sCFAD is
better than all other methods for every subject in terms of
classification accuracy. In fact, even in the absence of the
smoothness prior, CFAD performs better than remaining
methods on 4 out of 6 subjects. Table 2 shows the classifica-
tion accuracy for different methods at their respective best
d (when d was varied in [0, p] in increments of 10). We find
that sCFAD performs best for 4 of the six subjects, while DR
performs best for the remaining two subjects but at much
higher d than sCFAD. Also, when we increase d+ q to in-
clude the number of principal components needed to explain
95% variance in X (instead of 90%), we find that sCFAD
yields 89.3% accuracy at d = 20 for subject-1 and 78.4%
at d = 50 for subject-6, surpassing DR (more details along
with comparison to voxel selection in the Supplement).

Human Connectome Project Working Memory Task

Next, we considered the task of decoding stimuli from fMRI
measurements in a working memory task. The dataset con-
tains fMRI images from 10 human subjects performing the
Human Connectome Project (HCP) working memory task,
which is adapted from the classic n-back task (with two
load levels: 0-back and 2-back). Subjects were presented
with stimuli comprising of 4 categories of images: places,
tools, faces and body parts with 132 TRs per category. fMRI

measurements were obtained from a 3D brain volume of
59,412 voxels out of which 3093 voxels were extracted for
analysis of the working memory task. Hence, the full dataset
contains N = 528 samples and d = 3093 features per sub-
ject, falling in the N < p regime that we are interested in.
Further details about the dataset can be found in Barch et al.,
2013; WU - Minn Consortium Human Connectome Project,
2017.

Similar to the visual object recognition task, we compare
a set of dimensionality reduction methods with CFAD and
sCFAD in term of their decoding accuracy in all 10 subjects.
The inverse regression SDR methods cannot be applied in
the N < p regime, due to the non-invertibility of the sample
covariance, hence we excluded them from this analysis.
With each method, we perform a 3-fold cross validation
analysis, using the dimensionality reduction methods to
project the data X and subsequently classify the lower-
dimensional projections using an SVM in each fold. We vary
d in increments of 10 in the range of (0, 500] and report the
average cross-validation accuracy. For CFAD and sCFAD,
we fix d+ q to the number of components that explain 90%
variance in training data. All other hyperparameters (� for
sCFAD, L2-coefficient and rank for RRR) are set using
cross-validation.

Table 3 shows the classification performance obtained by
all methods at their respective optimal d (based on classi-
fication score), where we find that sCFAD outperforms all
other methods for 9 out of 10 subjects while using only
10-20 dimensions. These results strongly suggest that sC-
FAD is highly suited for high-dimension small-sample-size
dimensionality reduction.

6. Discussion
In this paper, we have proposed a linear dimensionality-
reduction method for regression settings with high-
dimensional, small-sample-size datasets. We showed that
our method outperforms existing methods on simulated data
in the N < p regime, and achieves state-of-the-art classifi-
cation performance on real fMRI datasets, proving its utility
in real-world applications.

While dimensionality reduction methods have been exten-
sively studied, methods for the undersampled (N < p)
regime have received comparatively little attention (Candes
& Tao, 2007). Previous work from Yata & Aoshima (2010)
proposed a modified PCA for high-dimensional, small-
sample-size data which uses a noise-reduction methodology
to estimate the eigenvalues of the data covariance matrix.
However, this is an unsupervised method, so it ignores the
output label information that SDR and related supervised
methods seek to capture. Linear-Optimal Low-rank projec-
tion (LOL) is an extension to PCA that incorporates class-
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Table 1. 8-class classification accuracy on fMRI data after dimensionality reduction. d is optimal for sCFAD, 12.5% is chance performance

SUBJECT d SCFAD CFAD LDA SIR SAVE DR LAD PCA LOL RRR

1 10 62.4 57.3 59.3 59.5 10.0 54.1 52.1 21.9 30.1 23.0
2 10 71.8 68.9 58.9 59.9 12.1 62.3 36.5 23.5 31.3 18.7
3 10 66.4 63.0 60.3 62.1 10.2 61.7 44.0 32.8 42.3 16.0
4 20 62.2 61.2 22.0 20.8 11.6 30.3 29.3 24.8 26.8 19.6
5 10 72.8 69.8 60.1 61.8 12.2 63.5 50.8 34.7 41.2 18.1
6 10 73.1 70.9 71.5 70.8 10.7 71.9 65.0 39.7 53.0 21.2

Table 2. 8-class classification accuracy on fMRI data after dimensionality reduction (at optimal d for the respective method)

SUBJECT SCFAD CFAD LDA SIR SAVE DR LAD PCA LOL RRR

d % d % d % d % d % d % d % d % d % %
1 10 62.4 10 57.3 10 59.3 10 59.5 180 12.6 350 75.8 50 56.1 90 57.3 70 46.5 23.0
2 10 71.8 10 68.9 10 58.9 10 59.9 460 20.1 10 62.3 40 40.2 460 46.1 360 41.2 18.7
3 10 66.4 10 63.0 10 60.3 20 62.9 300 17.0 10 61.7 50 49.2 250 55.1 260 51.5 16.0
4 20 62.2 20 61.2 10 22.3 50 21.2 80 12.5 50 58.1 10 29.3 310 32.6 530 30.3 19.6
5 10 72.8 10 69.8 10 60.1 10 61.8 420 35.9 180 69.4 10 50.8 360 54.3 80 51.4 18.1
6 10 73.1 10 70.9 10 70.9 30 71.2 240 14.4 50 74.0 10 65.0 230 67.5 240 63.5 21.2

Table 3. 4-class classification accuracy on HCP working memory dataset after dimensionality reduction (at optimal d for the respective
method; 25% is chance performance)

SUBJECT SCFAD CFAD LDA PCA LOL RRR

d % d % d % d % d % %
1 10 73.9 10 70.9 10 64.7 10 67.4 20 72.7 20.3
2 10 85.5 10 83.3 10 84.8 40 77.3 30 82.7 24.4
3 10 93.2 10 91.8 10 88.6 40 80.1 50 85.0 20.8
4 20 86.2 20 86.0 10 82.2 30 82.6 20 84.8 24.5
5 10 85.1 10 83.5 10 86.3 140 82.2 40 82.0 25.2
6 10 94.1 10 93.0 10 87.1 70 85.2 30 87.5 25.0
7 10 91.2 10 89.9 10 88.4 20 88.2 40 91.0 26.7
8 10 87.1 10 83.3 10 81.6 30 82.6 10 82.7 25.2
9 10 89.9 10 87.3 10 87.8 50 79.2 30 79.9 22.5
10 10 92.8 10 89.8 10 92.6 70 86.6 50 87.9 29.2

label information, introducing a promising approach in this
regime (Vogelstein et al., 2017). Recent work from Tan et al.
(2018) proposed a modification of SIR for high-dimensional
data by incorporating a lasso penalty such that the estimated
subspace is sparse. This work succeeds several other ap-
proaches for high-dimensional data that combine variable
selection with sliced inverse regression (Wang et al., 2018;
Yin & Hilafu, 2015). Deleforge et al. (2015) propose an in-
verse regression framework for mapping high-dimensional
data to a target output using a probabilistic mixture model,
but the objective of this method is purely regression and it
does not find a dimension reduction subspace (see Supple-
ment for details).

However, unlike these existing methods, CFAD provides a
generative model-based approach for estimating the dimen-
sion reduction subspace. Further, unlike the LAD model,
CFAD allows for addition of known priors on data provid-

ing flexibility for incorporating data-specific information.
Our approach thus makes an important contribution to the
limited literature on high-dimensional, small-sample size
dimensionality reduction methods. Finally, it opens a vari-
ety of promising avenues for future work, including the use
of complex priors on the linear projections (incorporating
structure beyond smoothness), automated methods for se-
lecting dimensionality, and generalizations to heavy tailed
and other non-Gaussian noise models.
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Supplementary Materials

A. Derivation of CFAD log-likelihood
Here, we provide a derivation of the CFAD log-likelihood to
the form presented in Eq. S5 of the main text. The generative
structure of the CFAD model, as described in the main text,
is as follows:

X | Y ⇠ N (↵µy,↵⇤y↵
> + ↵0⇤0↵

>
0 + ) (S1)

Here, we assume the high-dimensional data X 2 R
N⇥p

contains N samples and has dimensionality p. The output,
Y 2 R

N⇥1, has h classes with ⇡y denoting the fraction of
points belonging to a particular class y. Other variables are
described in Sec. ??. Let ⌃y = ↵⇤y↵> +↵0⇤0↵>

0 +�2Ip,
eq. S1 trivially leads to the following log-likelihood:

LCFAD =� Np

2
log(2⇡)� N

2
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y

⇡y log |⌃y|

� 1

2

X

y

N⇡yX

i=1

(Xi
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T⌃�1
y (Xi

y � ↵µy)

(S2)

Now, we note that the last term in the above expression
is a scalar and so it is equal to its trace. Let us assume
that bµy is the sample per-class mean and b⌃X|y is the per-
class covariance. Then, we can re-write the scalar term by
introducing the sample per-class means as follows:
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>
⌘⌘

(S3)

Further, it is easy to show that the maximum likelihood
estimate of µy = ↵>bµy . Substituting this in eq. S3 renders
it equivalent to:

N

2

X

y

⇡y Tr
⇣
⌃�1

y

⇣
b⌃X|y + (I � ↵↵>)bµybµ>

y (I � ↵↵>)
⌘⌘

(S4)

Fixing By = (I � ↵↵>)cµycµy
>(I � ↵↵>), we obtain the

CFAD log-likelihood in Eq. S5:

LCFAD =� Np

2
log(2⇡)� N
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hX
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� N
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B. Derivation of Sufficient Dimension
Reduction for CFAD

Here we show that CFAD is formally a sufficient dimension
reduction (SDR) method. The CFAD model assumes X | Y
has the following distribution:

X | (Y = y) ⇠ N (↵⌫y,↵⇤y↵
> + ↵0⇤0↵

>
0 + ) (S6)

Using the CFAD-discovered projection ↵ 2 O
p⇥d, and it’s

null space ↵c 2 O
p⇥(p�d), we can rotate eq. (S18) into the

Gaussian joint distribution


↵>X
↵>
c X
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Note that ↵0 spans only part of the nullspace of ↵, so in
general we would have ↵0 ⇢ ↵c. We’ll use the following
property of Gaussian joint distributions to generate condi-
tional distributions for ↵>

c X:


x
y

�
⇠ N
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b
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It follows that
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�
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(S10)

↵>
c X | (↵>X,Y = y) ⇠ N
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where K = ↵>
c (↵0⇤0↵>
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c  ↵

�
⇤y + ↵> ↵

��1
↵> ↵c

At first glance, it appears that eq. (S11) depends on y. How-
ever, if is diagonal, as we assume in the CFAD model, the
product ↵>

c  ↵ = 0 everywhere, and the y-dependent terms
vanish. The resulting distribution for ↵>

c X | (↵>X,Y = y)
is factored such that we can readily lift it to the distribution
of X | (↵>X,Y = y), from which we see

↵>
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(S13)

and X | ↵>X is independent of Y . We conclude under
these conditions that CFAD is an SDR method.

C. fMRI Classification Results
In Sec.5, we demonstrated the application of CFAD (with
smoothing prior) on fMRI data. Our choice of d relied on
fixing d + q, which was chosen such that d + q principal
components explain 90% of variance in the data. We re-
stricted the variance to 90%, in part to motivate the selection
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of small d since a dimensionality reduction method is useful
only when a substantially low-dimensional space can be
obtained. From Table ??, we know that sCFAD performed
best in all subjects except subject 1 and subject 6, in which
case DR outperformed sCFAD by using a much higher d.
In this section, we show some more classification results on
the visual object recognition fMRI dataset to establish that if
we allow a higher range for d and q, sCFAD can outperform
all existing methods. We also benchmark CFAD against
voxel selection using ANOVA, which is classically used in
fMRI anaysis.

Table S1 shows the 8-classification on all subjects at the
best d for sCFAD. This optimal d is chosen by varying d
in increments of 10 such that d+ q is set to the number of
components required to explain 95% variance in the data.
We find that sCFAD performs better than all other methods
at this d.

We also compare sCFAD with all other methods at their
respective best d in Table S2 (Note that the results for all
methods, except sCFAD, are the same as Table 2). We
see that sCFAD (with d+ q set to the number of principal
components needed to achieve 95% variance) outperforms
the other methods for all subjects, hence establishing the
utility of our method for high-dimensional small-sample
size datasets.

D. Relationship of CFAD to other generative
methods

Under the CFAD model,

X | (Y = y) ⇠ N (↵⌫y,↵⇤y↵
> + ↵0⇤0↵

>
0 + ) (S14)

If the the class means or (⌫y) are 0 and q = 0, i.e., there
is no distinct latent subspace containing Y�independent
correlations in X , CFAD reduces to:

X | (Y = y) ⇠ N (0,↵⇤y↵
> + ) (S15)

Let Ly , ↵⇤1/2
y ,

X | (Y = y) ⇠ N (0, LyL
>
y + ) (S16)

Hence, CFAD reduces to Factor Analysis for each class
with L as the loading matrix which is constrained to be
spanned by ↵ for each class.

Along with the above conditions, if  = �2Ip CFAD re-
duces to Probabilistic PCA:

X | (Y = y) ⇠ N (0, LyL
>
y + �2Ip) (S17)

Further, if all classes are constrained to have the same co-
variance ⇤ , ⇤y , then CFAD reduces to Factor Analysis or

Probabilistic PCA (depending on  ) on the whole dataset
X . Let L , ↵⇤1/2, hence:

X | (Y = y) ⇠ N (0, LL> + ) (S18)

X ⇠ N (0, LL> + ) (S19)

E. Comparison to GLLiM
Deleforge et al. (2015) developed a probabilistic regres-
sion method for mapping high-dimensional data to low-
dimensional targets. However, unlike SDR methods, their
approach does not provide an estimate of the “central
subspace” (capturing the statistical dependencies of X
on Y ). The inverse-regression structure of the GLLiM
model connecting low-dimensional target Y 2 R

L to high-
dimensional input X 2 R

D is as follows:

X =
KX

k=1

I(Z = k) (AkY + bk + Ek) (S20)

Here, matrix Ak 2 R
D⇥L and bk 2 R

D define the trans-
formation to the input variable and Ek is an error term set
to a zero mean Gaussian. The discrete variable Z defines
which of the K mappings to choose from for a particular
input-output pair, hence the name Gaussian “locally-linear”
mapping. They also develop a hybrid extension to their
model which includes an additional unobserved output vari-
able.

We downloaded the GLLiM package and applied it to the
example DR problems used by Cook (2007) (which we also
show in Fig. 2 of our paper). Fig. S1 shows that both CFAD
and LAD outperform GLLiM on all but the first example
(which happens to be the only linear case):

References
Cook, R. D. Fisher lecture: Dimension reduction in regres-

sion. Statistical Science, 22(1):1–26, 2007.

Deleforge, A., Forbes, F., and Horaud, R. High-dimensional
regression with gaussian mixtures and partially-latent
response variables. Statistics and Computing, 25:893–
911, 2015.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Table S1. 8-class classification accuracy on fMRI data after dimensionality reduction. (d is optimal for sCFAD such that d+ q contain
95% variance; 12.5% is chance performance)

SUB. d SCFAD LDA SIR SAVE DR LAD PCA LOL RRR ANOVA

1 20 89.3 59.3 59.4 6.8 54.1 50.4 40.1 42.9 23.0 66.6
2 30 74.7 58.9 59.2 11.3 62.3 38.9 42.3 38.2 18.7 57.7
3 50 66.6 60.3 60.5 8.9 61.7 49.2 51.9 47.9 16.0 54.6
4 30 65.4 21.4 21.1 11.1 32.3 27.8 25.3 29.0 19.6 49.8
5 30 78.5 60.2 61.2 11.8 65.1 47.8 48.5 41.2 18.1 55.4
6 50 78.4 71.3 71.0 9.5 74.0 58.6 61.4 53.0 21.2 63.1

Table S2. 8-class classification accuracy on fMRI data after dimensionality reduction (at optimal d for the respective method)

SUB. SCFAD LDA SIR SAVE DR LAD PCA LOL RRR ANOVA

d % d % d % d % d % d % d % d % % d %
1 20 89.3 10 59.3 10 59.5 180 12.6 350 75.8 50 56.1 90 57.3 70 46.5 23.0 550 73.1
2 30 74.7 10 58.9 10 59.9 460 20.1 10 62.3 40 40.2 460 46.1 360 41.2 18.7 450 67.4
3 50 66.6 10 60.3 20 62.9 300 17.0 10 61.7 50 49.2 250 55.1 260 51.5 16.0 300 62.2
4 30 65.4 10 22.0 50 21.2 80 12.5 50 58.1 10 29.3 310 32.6 530 30.3 19.6 450 61.2
5 30 78.5 10 60.2 10 61.8 420 35.9 180 69.4 10 50.8 360 54.3 80 51.4 18.1 400 67.1
6 50 78.4 10 71.5 30 71.2 240 14.4 50 74.0 10 65.0 230 67.5 240 63.5 21.2 300 72.2

Figure S1. Principal subspace angles between the true and estimated DR subspaces for LAD, CFAD and GLLiM under varying input-
output relationships. For GLLiM, we varied the number of mixtures K 2 {1, . . . , 20} and reported the best results. We also tested the
hybrid GLLiM by varying the latent dimensionality Lw 2 {0, . . . , 8} and found the best results with Lw=0. (Note that GLLiM does not
natively produce a subspace estimate; to obtain it, we took the top d-singular vectors of the inferred {Ak}, the same approach used in the
SIR estimator).


