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Abstract

The brain uses population codes to form distributed, noise-tolerant representa-
tions of sensory and motor variables. Recent work has examined the theoretical
optimality of such codes in order to gain insight into the principles governing
population codes found in the brain. However, the majority of the population
coding literature considers either conditionally independent neurons or neurons
with noise governed by a stimulus-independent covariance matrix. Here we an-
alyze population coding under a simple alternative model in which latent “input
noise” corrupts the stimulus before it is encoded by the population. This provides
a convenient and tractable description for irreducible uncertainty that cannot be
overcome by adding neurons, and induces stimulus-dependent correlations that
mimic certain aspects of the correlations observed in real populations. We ex-
amine prior-dependent, Bayesian optimal coding in such populations using exact
analyses of cases in which the posterior is approximately Gaussian. These anal-
yses extend previous results on independent Poisson population codes and yield
an analytic expression for squared loss and a tight upper bound for mutual infor-
mation. We show that, for homogeneous populations that tile the input domain,
optimal tuning curve width depends on the prior, the loss function, the resource
constraint, and the amount of input noise. This framework provides a practical
testbed for examining issues of optimality, tuning width, noise, and correlations
in realistic neural populations.

1 Introduction

A substantial body of work has examined the optimality of neural population codes [1–18]. How-
ever, the classical literature has focused predominantly on codes with independent Poisson neurons
and on analyses of unbiased decoders using Fisher information. Real neurons, by contrast, ex-
hibit noise correlations (dependencies not introduced by the stimulus), and Fisher information does
not accurately quantify information when performance is biased or close to threshold [6, 14, 17].
Moreover, the classical population codes with independent Poisson noise predict unreasonably good
performance with even a small number of neurons. A variety of studies have shown cases where
a small number of independent neurons can outperform an entire animal [19, 20]. For example,
a population of only 220 Poisson neurons with tuning width of 60 deg (full width at half height)
and tuning amplitude of 10 spikes can match the human orientation discrimination threshold of ≈ 1
deg. (See Supplement S1 for derivation.) Even fewer neurons would be required if tuning curve
amplitude were higher.

The mismatch between this predicted efficiency and animals’ actual behaviour has been attributed
to the presence of information-limiting correlations between neurons [21, 22]. However, deviation
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Figure 1: Bayesian formulation of neural population coding with input noise.

from independence renders most analytical treatments infeasible, necessitating the use of numerical
methods (Monte Carlo simulations) for quantifying the performance of such codes [6, 14].

Here we examine a family of population codes for which the posterior is approximately Gaussian,
which makes it feasible to perform a variety of analytical treatments. In particular, we consider a
population with Gaussian tuning curves that “tile” the input domain, and Gaussian stimulus priors.
This yields a Gaussian-shaped likelihood and a Gaussian posterior with variance that depends only
on the total spike count [2, 15]. We use this formulation to derive tractable expressions for neuro-
metric functions such as mean squared error (MSE) and mutual information (MI), and to analyze
optimality without resorting to Fisher information, which can be inaccurate for short time windows
or small spike counts [6, 14, 17]. Secondly, we extend this framework to incorporate shared “input
noise” in the stimulus variable of interest (See Fig. 1). This form of noise differs from many existing
models, which assume noise to arise from shared connectivity, but with no direct relationship to the
stimulus coding [5, 14, 17, 23]. (See [15, 24] for related approaches).

This paper is organised as follows. In Sec. 2, we describe an idealized Poisson population code with
tractable posteriors, and review classical results based on Fisher Information. In Sec. 3, we provide
a Bayesian treatment of these codes, deriving expressions for mean squared error (MSE) and mutual
information (MI). In Sec. 4, we extend these analyses to a population with input noise. Finally, in
Sec. 5, we examine the patterns of pairwise dependencies introduced by input noise.

2 Independent Poisson population codes

Consider an idealized population of Poisson neurons that encode a scalar stimulus s with Gaussian-
shaped tuning curves. Under this (classical) model, the response vector r = (r1, . . . rN )> is condi-
tionally Poisson distributed:

ri|s ∼ Poiss(fi(s)), p(r|s) =
N∏
i=1

1
ri!
fi(s)

rie−fi(s), (Poisson encoding) (1)

where tuning curves fi(s) take the form

fi(s) = τA exp
(
− 1

2σ2
t
(s− ?

s i)
2
)
, (tuning curves) (2)

with equally-spaced centers or “preferred stimuli” ?
s = (

?
s1, . . .

?
sN ), tuning width σt, amplitude

A, and time window for counting spikes τ . We assume that the tuning curves “tile”, i.e., sum to a
constant over the relevant stimulus range:

N∑
i=1

fi(s) ≈ λ. (tiling property) (3)

We can determine λ by integrating the summed tuning curves (eq. 3) over the stimulus space, giving∫
ds
∑N
i=1 fi(s) = NA

√
2πσt = Sλ, which gives:

λ = aσt/∆, (expected total spike count) (4)

where ∆ = S/N is the spacing between tuning curve centers, and a =
√

2πAτ is an “amplitude
constant” that depends on true tuning curve amplitude and the time window for integrating spikes.
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Note, that tiling holds almost perfectly if tuning curves are broad compared to their spacing (e.g.
σt > ∆). However, our results hold for a much broader range of σt (see Supplementary Figs S3 and
S4 for a numerical analysis.)

Let R =
∑
ri denote the total spike count from the entire population. Due to tiling, R is a Poisson

random variable with rate λ, regardless of the stimulus: p(R|s) = 1
R!λ

Re−λ.

For simplicity, we will consider stimuli drawn from a zero-mean Gaussian prior with variance σ2
s :

s ∼ N (0, σ2
s), p(s) = 1√

2πσs
e
− s2

2σ2
s . (stimulus prior) (5)

Since
∏
i e
−fi(s) = e−λ due to the tiling assumption, the likelihood (eq. 1 as a function of s) and

posterior both take Gaussian forms:

p(r|s) ∝
∏
i

fi(s)
ri ∝ N

(
1
Rr
> ?
s , 1

Rσ
2
t

)
(likelihood) (6)

p(s|r) = N
( r>

?
s

R+ ρ
,
σ2
t

R+ ρ

)
, (posterior) (7)

where ρ = σ2
t /σ

2
s denotes the ratio of the tuning curve variance to prior variance. The maximum of

the likelihood (eq. 6) is the so-called center-of-mass estimator estimator, 1
Rr
> ?
s , while the mean of

the posteror (eq. 7) is biased toward zero by an amount that depends on ρ. Note that the posterior
variance does not depend on which neurons emitted spikes, only the total spike count R, a fact that
will be important for our analyses below.

2.1 Capacity constraints for defining optimality

Defining optimality for a population code requires some form of constraint on the capacity of the
neural population, since clearly we can achieve arbitrarily narrow posteriors if we allow arbitrarily
large total spike count R. In the following, we will consider two different biologically plausible
constraints:

• An amplitude constraint, in which we constrain the tuning curve amplitude. Under this
constraint, expected spike count λ will grow as the tuning width σt increases (see eq. 4),
since more neurons will respond to any stimulus when tuning is broader.

• An energy constraint, in which we fix λ while allowing σt and amplitude A to vary. Here,
we can make tuning curves wider so that more neurons respond, but must reduce the am-
plitude so that total expected spike count remains fixed.

We will show that the optimal tuning depends strongly on which kind of constraint we apply.

2.2 Analyses based on Fisher Information

The Fisher information provides a popular, tractable metric for quantifying the efficiency of a neural
code, given by E[− ∂2

∂s2 log p(r|s)], where expectation is taken with respect to encoding distribution
p(r|s). For our idealized Poisson population, the total Fisher information is:

IF (s) =

N∑
i=1

f ′i(s)
2

fi(s)
=

N∑
i=1

A
(s− ?

s i)
2

σ4
t

exp
(
− (s− ?

s i)
2

2σ2
t

)
=

a

σt∆
=

λ

σ2
t

, (Fisher info) (8)

which we can derive, as before, using the tiling property (eq. 3). (See Supplemental Sec. S2 for
derivation.) The first of the two expressions at right reflects IF for the amplitude constraint, where
λ varies implicitly as we vary σt. The second expresses IF under the energy constraint, where λ is
constant so that the amplitude constant a varies implicitly with σt. For both constraints, IF increases
with decreasing σt [5].

Fisher information provides a well-known bound on the variance of an unbiased estimator ŝ(r)
known as the Cramér-Rao (CR) bound, namely var(ŝ|s) ≥ 1/IF (s). Since FI is constant over s in
our idealized setting, this leads to a bound on the mean squared error ([6, 11]):

MSE , E
[
(ŝ(r)− s)2

]
p(r,s)

≥ E
[

1

IF (s)

]
p(s)

=
σt∆

a
=
σ2
t

λ
, (9)
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Figure 2: Mean squared error as a function of the tuning width σt, under amplitude constraint (top
row) and energy constraint (bottom row), for spacing ∆ = 1 and amplitude A = 20 sp/s. and
Top left: MSE for different prior widths σs (with τ = 100ms), showing that optimal σt increases
with larger prior variance. Cramér-Rao bound (gray solid) is minimized at σt = 0, whereas bound
(eq. 12, gray dashed) accurately captures shape and location of the minimum. Top right: Similar
curves for different time windows τ for counting spikes (with σs=32), showing that optimal σt in-
creases for lower spike counts. Bottom row: Similar traces under energy constraint (whereA scales
inversely with σt so that λ =

√
2πτAσt is constant). Although the CR bound grossly understates

the true MSE for small counting windows (right), the optimal tuning is maximally narrow in this
configuration, consistent with the CR curve.

which is simply the inverse of Fisher Information (eq. 8).

Fisher information also provides a (quasi) lower bound on the mutual information, since an efficient
estimator (i.e., one that achieves the CR bound) has entropy upper-bounded by that of a Gaussian
with variance 1/IF (see [3]). In our setting this leads to the lower bound:

MI(s, r) , H(s)−H(s|r) ≥ 1
2 log

(
σ2
s

a

σt∆

)
= 1

2 log
(
σ2
s

λ

σ2
t

)
. (10)

Note that neither of these FI-based bounds apply exactly to the Bayesian setting we consider here,
since Bayesian estimators are generally biased, and are inefficient in the regime of low spike counts
[6]. We examine them here nonetheless (gray traces in Figs. 2 and 3) due to their prominence in the
prior literature ([5, 11, 13]), and to emphasize their limitations for characterizing optimal codes.

2.3 Exact Bayesian analyses

In our idealized population, the total spike countR is a Poisson random variable with mean λ, which
allows us to compute the MSE and MI by taking expectations w.r.t. this distribution.

Mean Squared Error (MSE)

The mean squared error, which equals the average posterior variance (eq. 7), can be computed
analytically for this model:

MSE = E
[

σ2
t

R+ ρ

]
p(R)

=

∞∑
R=0

(
σ2
t

R+ ρ

)
λR

R!
e−λ = σ2

t e
−λ Γ(ρ) γ∗ (ρ,−λ) , (11)

where ρ = σ2
t /σ

2
s and γ∗(a, z) = z−a 1

Γ(a)

∫ z
0
ta−1e−tdt is the holomorphic extension of the lower

incomplete gamma function [25] (see SI for derivation). When the tuning curve is narrower than the
prior (i.e., σ2

t ≤ σ2
s ), we can obtain a relatively tight lower bound:

MSE ≥ σ2
t

λ

(
1− e−λ

)
+ (σ2

s − σ2
t )e−λ. (12)
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Figure 3: Mutual information as a function of tuning width σt, directly analogous to plots in Fig. 2.
Note the problems with the lower bound on MI derived from Fisher information (top, gray traces)
and the close match of the derived bound (eq. 14, dashed gray traces). The effects are similar
to Fig. 2, except that MI-optimal tuning widths are slightly smaller (upper left and right) than for
MSE-optimal codes. For both loss functions, optimal width is minimal under an energy constraint.

Figure 2 shows the MSE (and derived bound) as a function of the tuning width σt over the range
where tiling approximately holds. Note the high accuracy of the approximate formula (12, dashed
gray traces) and that the FI-based bound does not actually lower-bound the MSE in the case of
narrow priors (darker traces).

For the amplitude-constrained setting (top row, obtained by substituting λ = aσt/∆ in eqs. 11 and
12), we observe substantial discrepancies between the true MSE and FI-based analysis. While FI
suggests that optimal tuning width is near zero (down to the limits of tiling), analyses reveal that the
optimal σt grows with prior variance (left) and decreasing time window (right). These observations
agree well with the existing literature (e.g. [14, 15]). However, if we restrict the average population
firing rate (energy constraint, bottom plots), the optimal tuning curves once again approach zero. In
this case, FI provides correct intuitions and better approximation of the true MSE.

Mutual Information (MI)

For a tiling population and Gaussian prior, mutual information between stimulus and response is:

MI(s, r) = 1
2E
[
log
(

1 +R
σ2
s

σ2
t

)]
p(R)

, (13)

which has no closed-form solution, but can be calculated efficiently with a discrete sum overR from
0 to some large integer (e.g., R = λ + n

√
λ to capture n standard deviations above the mean). We

can derive an upper bound using the Taylor expansion to log while preserving the exact zeroth order
term:

MI(s, r) ≤ 1−e−λ
2 log

(
1 + ( λ

1−e−λ )
σ2
s

σ2
t

)
= 1−e−aσt/∆

2 log
(

1 + a
1−e−aσt/∆

σ2
s

σt∆

)
(14)

Once again, we investigate the efficiency of population coding, but in terms of the maximal MI.
Figure 3 shows MI as a function of the neural tuning width σt. We observe a similar effect as for the
MSE: the optimal tuning widths are now different from zero, but only for the amplitude constraint.
Under the energy constraint (as with FI) the optimum is maximally narrow tuning.
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3 Poisson population coding with input noise

We can obtain a more general family of correlated population codes by considering “input noise”,
where the stimulus s is corrupted by an additive noise n (see Fig. 1):

s ∼ N (0, σ2
s) (prior) (15)

n ∼ N (0, σ2
n) (input noise) (16)

ri|s, n ∼ Poiss(fi(s+ n)) (population response) (17)

The use of Gaussians allows us to marginalise over n analytically, resulting in a Gaussian form for
the likelihood and Gaussian posterior:

p(r|s) ∝ N
(

1
Rr
> ?
s , 1

Rσ
2
t + σ2

n

)
(likelihood) (18)

p(s|r) = N
(

r>
?
s

σ2
t /σ

2
s +R(σ2

n/σ
2
s + 1)

,
(σ2
t +Rσ2

n)σ2
s

σ2
t +R(σ2

n + σ2
s)

)
(posterior) (19)

Note that even in the limit of many neurons and large spike counts, the posterior variance is non-zero,
converging to σ2

nσ
2
s/(σ

2
n + σ2

s), a limit defined by the prior and input noise variance. [22].

3.1 Population coding characteristics: FI, MSE, & MI

Fisher information for a population with input noise can be computed using the fact that the likeli-
hood (eq. 18) is Gaussian:

IF (s) = E
[

R

σ2
t +Rσ2

n

]
p(R)

=
λe−λ

σ2
n

Γ(1 + ρ)γ∗(1 + ρ,−λ) (20)

where ρ = σ2
t /σ

2
n and γ∗(·, ·) once again denotes holomorphic extension of lower incomplete

gamma function. Note that for σn = 0, this reduces to (eq. 8).

It is straightforward to employ the results from Sec. 2.3 for the exact Bayes analyses of a Gaussian
posterior (19):

MSE = σ2
sE
[

σ2
t +Rσ2

n

σ2
t +R(σ2

n + σ2
s)

]
p(R)

= σ2
sφE

[
1

φ+R

]
p(R)

+
σ2
sσ

2
n

σ2
s+σ2

n
E
[

R

φ+R

]
p(R)

=
[
φΓ(φ)γ∗(φ,−λ) +

σ2
n

σ2
s+σ2

n
λΓ(1 + φ)γ∗(1 + φ,−λ)

]
σ2
se
−λ, and (21)

MI = 1
2E
[
log

(
1 +

Rσ2
s

σ2
t +Rσ2

n

)]
p(R)

, (22)

where φ = σ2
t /(σ

2
s + σ2

n). Although we could not determine closed-form analytical expressions
for MI, it can be computed efficiently by summing over a range of integers [0, . . . Rmax] for which
P (R) has sufficient support. This is still a much faster procedure than estimating these values from
Monte Carlo simulations.

3.2 Optimal tuning width under input noise

Fig. 4 shows the optimal tuning width under the amplitude constraint, that is, the value of σt that
achieves minimal MSE (left) or maximal MI (right) as a function of the prior width σs, for several
different time windows τ . Blue traces show results for a Poisson population, while green traces
correspond to a population with input noise (σn = 1).

For both MSE and MI loss functions, optimal tuning width decreases for narrower priors. However,
under input noise (green traces), the optimal tuning width saturates at the value that depends on
the available number of spikes. As the prior grows wider, the growth of the optimal tuning width
depends strongly on the choice of loss function: optimal σt grows approximately logarithmically
with σs for minimizing MSE (left), but it grows much slower for maximizing MI (right). Note that
for realistic prior widths (i.e. for σs>σn), the effects of input noise on optimal tuning width are far
more substantial under MI than under MSE.
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Figure 4: Optimal tuning width σt (under amplitude constraint only) as a function of prior width σs,
for classic Poisson populations (blue) and populations with input-noise (green, σ2

n = 1). Different
traces correspond to different time windows of integration, for ∆ = 1 and A = 20 sp/s. As σn
increases, the optimal tuning width increases under MI, and under MSE when σs <σn (traces not
shown). For MSE, predictions of the Poisson and input-noise model converge for priors σs>σn.

We have not shown plots for energy-constrained population codes because the optimal tuning width
sits at the minimum of the range over which tiling can be said to hold, regardless of prior width,
input noise level, time window, or choice of loss function. This can be seen easily in the expressions
for MI (eqs. 13 and 22), in which each term in the expectation is a decreasing function of σt for
all R > 0. This suggests that, contrary to some recent arguments (e.g., [14, 15]), narrow tuning (at
least down to the limit of tiling) really is best if the brain has a fixed energetic budget for spiking, as
opposed to a mere constraint on the number of neurons.

4 Correlations induced by input noise

Input noise alters the mean, variance, and pairwise correlations of population responses in a system-
atic manner that we can compute directly (see Supplement for derivations). In Fig. 5 we show the
effects of input noise with standard deviation σn = 0.5∆, for neurons with the tuning amplitude of
A = 10. The tuning curve (mean response) becomes slightly flatter (Fig. 5A), while the variance in-
creases, especially at the flanks (Fig. 5B). Fig. 5C shows correlations between the two neurons with
tuning curves and variance are shown in panels A-B: one pair with the same preferred orientation at
zero (red) and a second with a 4 degree difference in preferred orientation (blue). From these plots,
it is clear that the correlation structure depends on both the tuning as well as the stimulus. Thus, in
order to describe such correlations one needs to consider the entire stimulus range, not simply the
average correlation marginalized over stimuli.

Figure 5D shows the pairwise correlations across an entire population of 21 neurons given a stim-
ulus at s = 0. Although we assumed Gaussian tuning curves here, one can obtain similar plots
for arbitrary unimodal tuning curves (see Supplement), which should make it feasible to test our
predictions in real data. However, the time scale of the input noise and basic neural computations
is about 10 ms. At such short spike count windows, available number of spikes is low, and so are
correlations induced by input noise. With other sources of second order statistics, such as common
input gains (e.g. by contrast or adaptation), these correlations might be too subtle to recover [22].

5 Discussion

We derived exact expressions for mean squared error and mutual information in a Bayesian analysis
of: (1) an idealized Poisson population coding model; and (2) a correlated, conditionally Poisson
population coding model with shared input noise. These expressions allowed us to examine the
optimal tuning curve width under both loss functions, under two kinds of resource constraints. We
have confirmed that optimal σt diverges from predictions based on Fisher information, if the overall
spike count is allowed to grow with tuning width (i.e., because more neurons respond to the stim-
ulus when tuning curves become broader). We refer to this as an “amplitude constraint”, because
the amplitude is fixed independently of tuning width. This differs from an “energy constraint”, in
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Figure 5: Response statistics of neural population with input noise, for standard deviation σn = 0.5.
(A) Expected spike responses of two neurons: ?

s1 = 0 (red) and ?
s2 = −4 (blue). The common

noise effectively smooths blurs the tuning curves with a Gaussian kernel of width σn. (B) Variance
of neuron 1, its tuning curve replotted in black for reference. Input noise has largest influence on
variance at the steepest parts of the tuning curve. (C) Cross-correlation of the neuron 1 with two
others: one sharing the same preference (red), and one with ?

s = −4 (blue). Note that correlation
of two identically tuned neurons is largest at the steepest part of the tuning curve. (D) Spike count
correlations for entire population of 21 neurons given a fixed stimulus s = 0, illustrating that the
pattern of correlations is signal dependent.

which tuning curve amplitude scales with tuning width so that average total spike count is constant.
Under an energy constraint, predictions from Fisher information match those of an exact Bayesian
analysis, and we find that optimal tuning width should be narrow (down to the limit at which the
tiling assumption applies), regardless of the duration, prior width, or input noise level.

We also derived explicit expressions for the response correlations induced by the input noise. These
correlations depend on the shape and amplitude of tuning curves, and on the amount of input noise
(σn). However, for a reasonable assumption that noise distribution is much narrower than the width
of the prior (and tuning curves), under which the mean firing rate changes little, we can derive pre-
dictions for the covariances directly from the measured tuning curves. An important direction for
future work will be to examine the detailed structure of correlations measured in large populations.
We feel that the input noise model — which describes exactly those correlations that are most harm-
ful for decoding — has the potential to shed light on the factors affecting the coding capacity in
optimal neural populations [22].

Finally, we can return to the introductory example involving orientation discrimination, to ask
how the number of neurons necessary to reach the human discrimination threshold of δs=1 de-
gree changes in the presence of input noise. As σn approaches δs, the number of neurons required
goes rapidly to infinity (See Supp. Fig. S1).
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S1 Humans vs. Poisson population codes

Here we unpack the rough comparison of decoding performance in humans and ideal (conditionally indepen-
dent) Poisson population codes provided in the Introduction.

Burr & Wijesundra 1991 [26] reports orientation discrimination thresholds (δs) as low as 0.5 deg in human
observers, where threshold is defined as the angular difference at which observes achieve 81.6% correct perfor-
mance in a 2AFC task.

We can relate this threshold to sensitivity (d’) and Fisher information using the formula (eq. 4.4 in [27]):

(δs) ≥ d′ρ
1√
IF

(23)

where IF is the Fisher information and d′ρ is the sensitivity (d′) for two stimuli that can be correctly discrimi-
nated with an error probability of ρ, given by

d′ρ =
√

2 Φ−1(1− ρ), (24)

where Φ−1(·) is the inverse normal cumulative density function (cdf). For probability of correct 1−ρ = 0.816,
this gives d′ρ ≈ 1.27. Plugging this value into (Eq. 23), it’s clear that to obtain human-level discrimination
performance, we need FI of at least:

If ≥ (d′ρ)
2/(ds)2 ≈ (1.27/0.5)2 = 6.45. (25)

Now, consider a population of 500 V1 neurons with tuning curves spaced evenly around the circle (∆ = 0.72
deg), with a maximum spike rate of 50 spikes/sec, and a full bandwidth at half-height of 60 degrees (near the
upper end of the range reported in monkeys [28] ). This corresponds to a Gaussian tuning width of σt =

30
√
−1/(2 ∗ log .5) ≈ 25 deg. This population (which clearly tiles) achieves Fisher Information (eq. 8)

of approximately IF =
√

2π × 50/(0.72 × 25) = 7, for all stimuli, so it is sufficient to reproduce human
performance. For a population of 2000 neurons with identical characteristics, an efficient decoder could achieve
a discrimination threshold twice as low as a human observer, or (δs) = d′ρ/

√
IF ≈ 0.25 deg.
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Figure S1: Number of neurons necessary to discriminate δs = 1 degree with 80% probability correct
as a function of noise σn. We optimised Eq. 20 to match IF of the noiseless case.

S2 Derivation of Fisher information for tiling Poisson neurons

Fisher information for Poisson neurons and Gaussian tuning curves:

IF (s) =

N∑
i=1

f ′i(s)
2

fi(s)
=

N∑
i=1

A
(s− ?

s i)
2

σ4
t

exp
(
− (s− ?

s i)
2

2σ2
t

)

i



The average IF per neuron equals,

IiF =
1

S

∫ S/2

−S/2
IiF (s)ds =

A

Sσ4
t

∫ S/2

−S/2
ds(s− ?

s i)
2 exp

(
− (s− ?

s i)
2

2σ2
t

)
Assuming S � σt (i.e. for neurons well away from the ends of the s-domain), we get

IiF =
A

Sσ4
t

√
2πσ3

t =
A
√

2π

Sσt

Thus, each neuron contributes a similar average IF , summing to:

IF = N
A
√

2π

Sσt
=
A
√

2π

∆σt

S3 Derivation of MSE for Poisson population code

The formula for mean squared error (MSE) in a standard Poisson population code (eq. 11) can be derived using
the following series representation of the holomorphic extension of the lower incomplete Gamma function
([25], equation 8.7.1):

γ∗(a, z) =
1

Γ(a)

∞∑
k=0

(−z)k

k!(k + a)
. (26)

If we substitute ρ = (σ2
t /σ

2
s) and −λ for a and z, respectively, then (beginning from the r.h.s. of eq. 11), we

have:

σ2
t e
−λ Γ(ρ) γ∗ (ρ,−λ) = σ2

t e
−λ

∞∑
R=0

λR

R!(R+ ρ)
= σ2

tE
[

1

R+ ρ

]
p(R)

= MSE, (27)

as stated in the main text, where p(R) is the Poisson distribution with mean λ.

S4 Derivation of IF for the input noise

IF = E
[

R

σ2
t +Rσ2

n
2

]
p(R)

(28)

=

∞∑
R=0

R

σ2
t +Rσ2

n

λR

R!
e−λ (29)

= e−λ
∞∑
R=1

1

σ2
t +Rσ2

n

λR

(R− 1)!
(30)

= e−λ
∞∑
R=1

1

σ2
t + σ2

n + (R− 1)σ2
n

λR

(R− 1)!
(31)

= λe−λ
∞∑
R=0

1

σ2
t + σ2

n +Rσ2
n

λR

R!
(32)

=
1

σ2
n

λe−λ
∞∑
R=0

1

σ2
t /σ

2
n + 1 +R

λR

R!
(33)

=
1

σ2
n

λe−λΓ(1 + ρ)γ∗(1 + ρ,−λ) (34)

where ρ = σ2
t /σ

2
n. Combining this derivation with the above derivation for MSE (Supplement section S3)

yields the terms necessary for the exact MSE under input noise (eq. 21).

S5 Optimal tuning widths for very broad priors.

The effect of the prior width on optimal tuning width is much stronger for MSE than for MI. Empirically, we
have noticed that for broad priors, the shared input noise model yields similar optimal tuning widths as the
noiseless input model. From the approximation introduced in (eq. 12), we can see that the main contribution to
the MSE for broad priors is σ2

se
−λ. Thus, by setting λ ∝ 2 log σs, we reduce the contribution of that factor to

a constant. See results in Fig. S2.
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Figure S2: Optimal tuning widths. Different shades of color correspond to increasing tuning am-
plitude, A. Blue depicts the optimal σt for the noise-less case (as in Figs 2–3), whereas green
corresponds to the input noise σn = 1. As we increase σn (not shown here), the optimal tuning
curves increase systematically for MI, and for MSE when σs<σn. However, for MSE, predictions
of the noise-free and full model still converge for priors σs>σn. The dashed gray lines are optimal
tuning curves obtained from the approximate lower bounds for the noiseless case (eq. 12 and 14).
∆=1 degree.

S6 Effects of imperfect tuning curve tiling

One of our main assumptions was that the tuning curves should ”tile”. However, the cases we considered often
ventured into a range σt ∼ ∆, for which the tiling is not supposed to hold. We thus estimated the effect of
the uneven tiling for our neuromorphic functions. We conclude that our estimates are true on average for a
broad range of σt, reaching well below ∆. That is, despite the local dependence on s, our metrics hold true on
average.

We performed Monte Carlo simulations, whereby per each true stimulus s (x-axis in Fig. 3), we simulated 1000
network responses. We estimated posteriors per each response, their MSE and entropy. In Fig. 3, 3rd and
4th column, we report the mean of these estimates as a function of s. One can see that even for σt = ∆/2,
both MSE and MI are relatively constant in s. However, even for the most drastic cases of σt = ∆/4 and
σt = ∆/10, where fluctuations around the mean are clearly distinguishable, the average still matches our
analytical predictions (depicted with red line in Fig. 3).

We compare the numerical and analytical predictions directly in Fig. 4. We see a robust match between the two,
with small discrepancies showing only for the lowest values of σt/∆ in MI (top). In fact, discrepancies in MI
most likely result from a finite sample of responses. At A=1, only neurons very close to the stimulus are likely
to fire, with a big range of stimuli in between the peaks of tuning curves which have a much lower firing rate,
and a much higher MI gain, for any of neurons that spikes for such ”non-preferred” stimuli.

S7 Correlations induced by input noise

We start by expressing changes induced by the noise in the most generic way (i.e. independent of the likelihood
function). By writing response as composed of the deterministic and the noisy part: ri = fi + η, where by
definition E [η] = 0, we can write:

E [ri|s] =

∫
1√

2πσn
e
− n2

2σ2
n fi(s+ n) dn (35a)

E
[
r2i |s

]
=

∫
1√

2πσn
e
− n2

2σ2
n

(
fi(s+ n)2 + E

[
η2i
])
dn (35b)

E [rirj |s] =

∫
1√

2πσn
e
− n2

2σ2
n

(
fi(s+ n)fj(s+ n) + E [ηiηj ]

)
dn (35c)

As we see, the mean will change in the same way regardless of the neurons’ noise distribution, let us call it
f̃i ≡ E [ri|s]. The higher order statistics however, will depend on the noise model. For independent Poisson
neurons:

var[ri|s] =

∫
fi(s+ n)2 1√

2πσn
e
− n2

2σ2
n dn+ f̃i(s)− f̃i(s)2 (36)

cov[ri, rj |s] =

∫
fi(s+ n)fj(s+ n) 1√

2πσn
e
− n2

2σ2
n dn− f̃i(s)f̃j(s) (37)
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Figure S3: Analyses of imperfect tuning curve tiling. Each row shows a different value of tuning
width σt; A=1. Only neurons from the middle of the coding range are shown. Average MSE (3rd
column) and mutual information MI (4th column) were estimated from 1000 sample responses. The
red lines in the MSE and MI columns depict our analytical predictions. Dashed lines in the fourth
column demarcate mean±std (for the MSE, the standard deviation is too large to fit on the plots).

For Gaussian tuning curves, these statistics are easy to compute, using

f̃(s) = Aσt√
σ2
n+σ

2
t

e
−

(s− ?
s i)

2

2(σ2
n+σ2

t )

and ∫
fi(s+ n)fj(s+ n) 1√

2πσn
e
− n2

2σ2
n dn = (A)2σt√

2σ2
n+σ

2
t

e
−

(
?
s i−

?
s j)2

4σ2
t

−
(s−(

?
s i+

?
s j)/2)2

2(σ2
n+σ2

t /2) .

In Fig. 5, we illustrate how neural statistics change due to input noise. For σt = 2 and a strong input noise of
σn = 1

4
σs, the effects on the mean and variance are barely visible if the expected spike count is 1 (top plot).

The covariance between identically tuned neurons (top right) also doesn’t exceed 2% of the variance, leading
to correlations not exceeding 0.05. Only for higher firing rates, the effects of noise become more visible, with
covariance of identically tuned neurons reaching 20% of variance (ρ ∼ 0.4) for A = 10. However, the time
scale of the input noise and basic neural computations (i.e. excluding temporal integration) is about 10 ms. At
such short spike count windows, available number of spikes is low.
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Figure S4: Comparison of exact performance measures (computed numerically by Monte Carlo
simulations, 1000 samples, black pluses) with formulas derived under the assumption of a perfectly
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