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Abstract

Imaging neural activity in a behaving animal presents unique challenges in part because

motion from an animal’s movement creates artifacts in fluorescence intensity time-series

that are difficult to distinguish from neural signals of interest. One approach to mitigating

these artifacts is to image two channels simultaneously: one that captures an activity-depen-

dent fluorophore, such as GCaMP, and another that captures an activity-independent fluoro-

phore such as RFP. Because the activity-independent channel contains the same motion

artifacts as the activity-dependent channel, but no neural signals, the two together can be

used to identify and remove the artifacts. However, existing approaches for this correction,

such as taking the ratio of the two channels, do not account for channel-independent noise

in the measured fluorescence. Here, we present Two-channel Motion Artifact Correction

(TMAC), a method which seeks to remove artifacts by specifying a generative model of the

two channel fluorescence that incorporates motion artifact, neural activity, and noise. We

use Bayesian inference to infer latent neural activity under this model, thus reducing the

motion artifact present in the measured fluorescence traces. We further present a novel

method for evaluating ground-truth performance of motion correction algorithms by compar-

ing the decodability of behavior from two types of neural recordings; a recording that had

both an activity-dependent fluorophore and an activity-independent fluorophore (GCaMP

and RFP) and a recording where both fluorophores were activity-independent (GFP and

RFP). A successful motion correction method should decode behavior from the first type of

recording, but not the second. We use this metric to systematically compare five models for

removing motion artifacts from fluorescent time traces. We decode locomotion from a

GCaMP expressing animal 20x more accurately on average than from control when using

TMAC inferred activity and outperforms all other methods of motion correction tested, the

best of which were ~8x more accurate than control.

Author summary

Optical imaging of neural activity using fluorescent indicators is a powerful technique for

studying the brain, yet despite the widespread success of this technique many difficulties
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remain. Imaging moving animals can be challenging, because the animal’s movements

may introduce changes in fluorescence intensity that are unrelated to neural activity,

known as motion artifacts. This work explores computational approaches to correct for

these artifacts. In particular, we focus on the special case of two-channel imaging, where

two indicators are present in the same cell: an activity-dependent indicator and an activ-

ity-independent indicator. We compare prior methods for motion artifact correction and

present a new method, Two-channel Motion Artifact Correction (TMAC) method.

TMAC uses a generative model of the fluorescence to infer the latent neural activity with-

out motion artifacts. We demonstrate that TMAC outperforms alternative methods for

motion correction when applied to experimental data from moving animals.

This is a PLOS Computational Biology Methods paper.

Introduction

Population fluorescent imaging of calcium-sensitive fluorescent indicators is a powerful

approach for recording cellular neural dynamics [1,2]. Calcium imaging’s widespread adop-

tion has benefited from extensive development of computational algorithms to find and seg-

ment neurons of interest [3], to extract and denoise calcium signals [4,5], and to infer their

underlying voltage signals [6]. An important goal of systems neuroscience is to probe the neu-

ral basis of animal behavior [7,8] and calcium imaging has been used to measure neural activ-

ity in awake and behaving animals [9–11]. However, animal motion during calcium imaging

poses unique challenges both for segmenting and tracking neurons and for accurately extract-

ing calcium traces. Many computational approaches have been proposed to register, segment

and track neurons in the presence of motion [9,12–21]. These approaches account for the

gross movement of a neuron relative to its neighbors or within the field of view. By contrast,

there have been relatively few efforts to account and correct for motion-related changes to the

extracted fluorescence intensity time-series itself. Accounting for these latter effects of motion,

however, is particularly important because motion related changes to fluorescence intensity

can appear similar to behavior-related neural signals of interest. Here, we construct a method

called Two-channel Motion Artifact Correction (TMAC) which uses the fluorescence traces

from two-channel imaging to correct for shared motion artifacts between the two channels.

When a neuron deforms or moves relative to an imaging plane, its fluorescence intensity

can change unrelated to neural activity (Fig 1A). While multiple factors could contribute to

these motion induced changes, at least some of them arise from subtleties of image acquisition

and segmentation. Even though the number of fluorescent molecules in a neuron is constant,

the neuron’s shape, orientation and position are not. Accurately measuring fluorescence there-

fore requires carefully accounting for which voxels a neuron occupies, the intensity of each

voxel, and the shape of the imaging hardware’s point-spread function used to calculate the

voxel. For example, as a neuron changes its shape with respect to the point spread function, it

may cover less voxels but be brighter in the voxels that remain. In real-world imaging condi-

tions it can be challenging to detect subtle changes to the boundary of a neuron, especially in

densely labeled neural populations, and similarly the point-spread function is not always suffi-

ciently characterized. These challenges are particularly acute in recordings of moving animals,

such as C. elegans [11,22,23], Hydra [24], Drosophila larvae [25,26], and zebrafish larvae

[27,28] that all exhibit large head deformations during movement.
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Because these artifacts arise from motion, they have the potential to confound interpreta-

tions of the neural correlates of behavior. For example, if a neuron appears to change fluores-

cence intensity during head bending, it may be hard to disambiguate whether that fluorescent
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Fig 1. Behavior induces motion artifacts in optical recordings. A) Diagram of a moving C. elegans undergoing

motion and deformation during simultaneous measurements of GCaMP and RFP fluorescence. Deformations of the

cell can conspire with imperfect segmentation to create motion artifacts. RFP intensity fluctuations reflect motion or

noise. GCaMP intensity fluctuations reflect motion, calcium activity, and noise. B) Top, Animal body curvature.

Bottom fluorescence of a neuron from a whole-brain recording of a moving worm expressing both GFP and RFP. Both

fluorophores are activity-independent, yet we observe large highly correlated fluctuations in the two-channel

fluorescence. C) Top, Body curvature. Bottom, fluorescence of a single neuron taken from a whole-brain recording in a

moving worm expressing both GCaMP and RFP. The two channels still show correlated fluctuations despite the

activity dependence of GCaMP. D) Histogram of the Pearson correlation coefficient squared between the red and the

green channel for a dataset of whole-brain recordings from 10 moving GFP, RFP control worms. E) Same as D but in 9

GCaMP, RFP worms.

https://doi.org/10.1371/journal.pcbi.1010421.g001
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transient reflects calcium activity or motion artifact. Two-channel imaging offers one strategy

to account for motion-induced changes in fluorescence by measuring a calcium indicator like

GCaMP in one channel and a calcium-independent indicator like RFP in another. Any inten-

sity fluctuations of the calcium-independent channel must be either noise or motion artifact.

In principle, this knowledge can be used to account for and correct artifacts in the calcium

imaging channel. Crucially, whatever the source of these artifacts, as long as they affect the red

and green channel equally, two-channel motion correction should be able to account for and

remove them.

Two-channel calcium imaging has its origins in the use of FRET based calcium indicators

that use a donor and receptor and reports calcium signals as the ratio between the two chan-

nels [29]. The ratiometric approach further proved useful in freely moving animals [10],

because the ratio is less sensitive to motion-induced fluorescent changes common to both

channels. Single-channel GCaMP based indicators have now surpassed FRET-based indicators

in terms of popularity because of their speed and brightness [30]. However, the use of two-

channel imaging has persisted in moving animals in part for its ability to remove motion arti-

facts with methods such as taking the ratio of the two channels [22,23,31–33], or by perform-

ing linear regression [11,34]. To date there has not been a systematic comparison of different

mathematical approaches to account for motion induced changes to fluorescent intensity in

two-channel imaging. TMAC explicitly models the statistical distributions of the noise, arti-

fact, and cell activity and uses Bayesian inference to find activity uncontaminated by motion

artifact. We use experimental data to compare TMAC with four other approaches to motion

artifact removal and demonstrate that it outperforms previous methods.

Results

Motion artifacts

We inspected two-channel calcium imaging recordings of neurons in moving C. elegans from

Hallinen et al., 2021 (S1 Table) for signs of motion-related calcium transients. We considered

two types of recordings: those of control animals that express only the calcium-insensitive

fluorophores GFP and RFP and those of calcium-sensitive animals that expressed the calcium

indicator GCaMP in addition to RFP. In each case, GFP or GCaMP was imaged in the green

channel and RFP was imaged in the red channel. In order to account for differences in inten-

sity, we divide each channel by its time average and report fluorescence as fold change from

the mean. In control animals, the green and red fluorescent intensity had large fluctuations rel-

ative to the mean (Fig 1B) and were highly correlated to each other (Fig 1D). Because these

animals contained no neural-related signals and only motion, we conclude that motion arti-

facts contribute substantially to fluctuations in fluorescence. We also note the strong correla-

tion between the GFP and RFP fluorescence, which suggests that the motion artifact is shared

between the two channels. These shared fluctuations are what make motion correction using a

second channel possible.

In GCaMP recordings, we also observed a correlation between the green and red channels

(Fig 1D and 1E), although less so than in control recordings. The presence of activity-related

signal in the green channel likely explains this difference. The correlation that remains

between the red and the green channel suggests that the red channel could be used to correct

for shared motion artifacts in the green channel.

Model

To account for fluctuations in fluorescence induced by motion artifact, we propose a method

called Two-channel Motion Artifact Correction (TMAC) (Fig 2A). This method relies on a
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latent variable model of calcium fluorescence, which we use to infer the latent neural activity

of each neuron. Intuitively, inferring the latent activity from the model amounts to subtracting

the motion signals present in the red channel from the green channel while accounting for

channel independent noise. We first process the fluorescence data by dividing each channel by

its time average, such that the processed data has mean 1 and units of fold change from the

mean. By specifying our model fluorescence as fold change from the mean the parameters do

not depend strongly on experimental conditions such as cell expression, laser intensity, or

image acquisition time, allowing us to compare across different neurons and fluorophores (Fig

1B and 1C).

We define the fluorescence from a neural activity-dependent green channel and a neural

activity-independent red channel as follows. Let r and g denote vectors of the preprocessed red

channel and green channel fluorescence from the same neuron. We assume that r is the sum

of a latent motion artifact time series m and additive Gaussian white noise εr. Similarly, we

assume the green channel measurements g, arise as the sum of the same latent motion artifact

m, a latent time series of neural activity a, and Gaussian white noise εg. To obtain a complete

generative model, we assume Gaussian process priors over m and a, which specify that they

evolve smoothly over time. Formally the model can be written as:

r ¼ 1þmþ ��r ð1Þ

g ¼ aþmþ ��g ð2Þ

m � N ð0;ΣmÞ ð3Þ

a � N ð1;ΣaÞ ð4Þ

��r;g � N ð0; s2

r;gIÞ ð5Þ

Where 1 denotes a vector of 1s, N ð�; �Þ denotes a multivariate Gaussian distribution, and σ2r
and σ2g denote the variance of the additive Gaussian noise in the red and green channels,

respectively. The latent time series of the motion artifact m and neural activity a are both gov-

erned by Gaussian process priors, with prior covariances Sa and Sm. The prior covariances Sa

and Sm are each parameterized by a pair of hyperparameters, (σ2a, τa) and (σ2m, τm), where σ2

denotes the prior variance or amplitude, and τ denotes the temporal length scale, controlling

the degree of smoothness. We use a stationary radial basis function (RBF) covariance function,

such that the covariance between two time points depends only on the temporal separation

between them:

Σmðt;t0 Þ
¼ s2

mexp �
ðt � t0Þ2

2t2
m

� �

ð6Þ

Fig 2. TMAC infers activity and hyperparameters from synthetic data. A) Diagram of the structure of TMAC. The

green channel is modeled as the sum of the calcium activity, motion artifact, and independent gaussian noise. The red

channel is modeled as the sum of the motion artifact and independent gaussian noise. The motion artifact is shared

between the two channels. B) Top: fluorescence from a synthetic green and red channel. Middle and bottom: inferred

activity and motion compared with the true activity and motion. C) Correlation squared between estimated activity

from TMAC and true activity over many synthetic datasets. D) Violin plot of inferred and true parameter values when

fitting TMAC.

https://doi.org/10.1371/journal.pcbi.1010421.g002
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Σaðt;t0 Þ
¼ s2

aexp �
ðt � t0Þ2

2t2
a

� �

ð7Þ

Given this model structure, data r and g, parameters a and m, and hyperparameters θ (σ2a,
τa, σ2m, τm, σ2r, σ2g), we fit the model in two steps. We first optimize the hyperparameters θ by

maximizing the marginal likelihood p(r, g|θ). We then compute the maximum a posteriori
(MAP) estimates for a and m given the optimized hyperparameters ŷ by maximizing the pos-

terior p(a,m|r,g, ŷ).

The marginal likelihood is obtained by integrating the joint distribution of data and latents

over a and m, which can be computed in closed form:

pðr; gjyÞ ¼
R
pðr; g; a;mjyÞda dm

¼ N
1

1

2

4

3

5;

Σm þ s
2
r I Σm

Σm Σa þ Σm þ s
2
gI

2

4

3

5

0

@

1

A
ð8Þ

This quantity is the likelihood function for the hyperparameters, which can be optimized

numerically to provide a maximum (marginal) likelihood estimate:

ŷ ¼ argmaxy pðr; gjyÞ: ð9Þ

By Bayes Rule the posterior pða;mjr; g; ŷÞ is proportional to the product of the likelihood

function for a and m pðr; gja;m; ŷÞ and the prior pða;mjŷÞ:

pða;mjr; g; ŷÞ / pðr; gja;m; ŷÞpða;mjŷÞ ¼ N
1þm

aþm

" #

;
s2
r I 0

0 s2
gI

" # !

N
1

0

" #

;
Σa 0

0 Σm

" # !

: ð10Þ

For this model, where prior and likelihood are both Gaussian, the posterior distribution is also

Gaussian, with mean and covariance that can be expressed in closed form:

pða;mjr; g; ŷÞ ¼ N
â

m̂

" #

;Λ

 !

; ð11Þ

where the covariance Λ and mean
â

m̂

" #

, which corresponds to the MAP estimates for â and

m̂ are given by:

Λ ¼ ðB⊺C� 1n Bþ C� 1x Þ
� 1
; ð12Þ

â

m̂

" #

¼ ΛB⊺C� 1n

r � 1

g � 1

" #

þ
1

0

" #

; ð13Þ

with B ¼
0 I

I I

" #

;Cn ¼
s2
r I 0

0 s2
gI

" #

;Cx ¼
Σa 0

0 Σm

" #

: ð14Þ

Note that our software implementation of TMAC relies on a Fourier-domain representation

which diagonalizes the prior covariances, substantially reducing computation time [35].

PLOS COMPUTATIONAL BIOLOGY Correcting motion induced fluorescence artifacts in two-channel neural imaging

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010421 September 28, 2022 7 / 14

https://doi.org/10.1371/journal.pcbi.1010421


Model validation

In order to demonstrate that our model correctly infers ground truth activity and variances,

we used TMAC to generate a synthetic dataset (Fig 2B top) with 5000 time points and a corre-

lation time scale which roughly matches experimental datasets from Fig 1, such that 6 time

points approximately corresponds to one second. We then used TMAC to infer both the activ-

ity and motion artifact from this synthetic dataset (Fig 2B middle and bottom). We find a

good correspondence between the inferred activity from TMAC and the true activity (Fig 2C).

The model also accurately infers the hyperparameters of the model (Fig 2D).

Decoding Behavior

We next sought to evaluate TMAC on experimentally acquired neural population calcium

imaging recordings in moving worms from [11]. As in [11] the data was preprocessed to

remove missing values by linearly interpolating over time, and photobleaching was corrected

by separately dividing green and red channel fluorescence by an exponential fit to the fluores-

cence with the decay time constant shared between neurons. Datasets with a high number of

missing values were excluded (S1 Table).

The hyperparameters learned by TMAC provide a convenient method to characterize the

recordings. We identified a putative high signal-to-noise neuron, by finding a neuron that the

model associated with a high ratio of activity variance (σ2a) to motion and noise variances

(σ2m,r,g) (Fig 3A middle). We also identified a putative low signal-to-noise neuron by finding a

neuron that the model associated with high ratio of motion artifact (σ2m) to activity and noise

(σ2a,r,g) (Fig 3A bottom). For completeness we also provide example fluorescence traces from

neurons recorded in an immobilized worm (S1 Fig). In the case where TMAC estimates high

signal-to-noise, TMAC predicts that a smoothed version of the green channel represents true

calcium activity (Fig 3A middle). In the case where TMAC estimates that most fluorescent

fluctuations are due to motion, TMAC deviates from the measured fluorescent intensities and

returns a flatter inferred activity (Fig 3A bottom).

We next wanted to evaluate TMAC’s performance on removing motion artifacts. Since we

lack access to the ground truth calcium activity, we considered the problem of decoding ani-

mal curvature from neural activity (Fig 3B). To decode the behavior of each animal we fol-

lowed the same procedure from [11]. Namely, we trained a linear decoder with an L2 penalty

on the weights determined using multifold cross validation. Behavior was predicted at each

time point from the motion corrected activity, and all reported decoding accuracy scores are

from data held out from the center 40% of the recording (Fig 3B).

Using decodability as a metric for motion correction performance is challenging because

motion artifacts may also provide information about the target behavior. In some regimes, suc-

cessfully removing motion artifacts could in principle reduce decodability rather than improve

it. We therefore evaluated motion correction performance by inspecting the decodability of

two types of recordings; one that had both activity-dependent and activity-independent fluor-

ophores (GCaMP and RFP), and a control worm that had two activity-independent fluoro-

phores (GFP and RFP), both from Hallinen et al., 2021. Although the GFP control worm

contains no neural signal, the worm’s behavior can still be decoded, albeit poorly, by relying

on behavior-related information in the motion artifact. We reasoned that a successful motion

correction algorithm should reduce the decodability of motion artifacts while retaining the

ability to decode from neural signals. We therefore define a new metric that evaluates motion

correction performance as the ratio of its decodability of recordings from GCaMP animals to

its decodability of recordings from GFP animals (Fig 3C).
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Using this metric, we compare five models used for motion correction in two-channel

imaging. The models are (S2 Table): single channel GCaMP which is just the green channel

fluorescence with no motion correction, the ratio model which is the green channel divided by

the red channel, a linear regression model [11], an ICA based approach [36], and TMAC. The

linear regression model finds the best linear fit of the red channel to the green channel and

then subtracts off that best fit from the green channel. The ICA approach performs ICA using

the red and green channel as inputs and returns the independent component least correlated

to the red fluorescence.

The activity fit by TMAC is ~20x more effective at predicting curvature from a GCaMP

expressing worm than a control worm (Figs 3C and S2). We calculated the correlation

between the activity inferred by TMAC and the red channel and they did not correlate

strongly, suggesting that the model is successful at removing motion artifacts common to the

two channels (Fig 3D and 3E). For completeness, we also compare each method on our syn-

thetic dataset (S3 Fig).

Discussion

Motion artifacts are prevalent in recordings of behaving animals (Fig 1B and 1C). These arti-

facts can appear as signals of interest, reducing the interpretability of the data. Here we pre-

sented TMAC, a model which infers the latent neural activity without these artifacts by

leveraging information in two-channel calcium imaging recordings. We demonstrate that

TMAC substantially reduces decodable motion artifacts in experimental data (Fig 3A) and

outperforms four alternatives (Fig 3C).

The model we propose uses an additive interaction between the fluorescence transients

caused by motion artifact and the fluorescence transients caused by neural activity. It is unclear

in experimental data what the true interaction between artifact and activity is. However, even

if the true interaction is not additive, TMAC will perform well under model mismatch because

it can be thought of as a linear approximation of the true interaction between a and m. Con-

sider the case where the activity and motion interact multiplicatively. Multiplicative interac-

tions have linear components when the two variables have nonzero means. The linear

component of the multiplicative interaction is clear by writing the equation for the green chan-

nel with no noise.

g ¼ ðaþ 1Þðmþ 1Þ ¼ amþ aþmþ 1 ð15Þ

We can be sure that the a and m have a mean (in this case 1), because fluorescent data is non-

negative. Furthermore, the am term itself can be approximated by a + m as long as a and m
are small. If the approximation of a and m as Gaussian is valid, we can be sure that the am and

higher order terms are small, because the standard deviations of a and m must be small relative

to 1 to avoid negative values. For these reasons, while TMAC is a linear approximation to the

true interaction between a and m, it is an approximation that is highly accurate. An interesting

Fig 3. TMAC reduces decodable motion artifacts in experimental data. A) Top, animal body curvature over time.

Middle, GCaMP and RFP fluorescence from a neuron that TMAC estimates to have high signal to noise, recorded

from a behaving worm. Bottom, GCaMP and RFP fluorescence from a different neuron in that same recording that

TMAC estimates to have large motion artifacts. B) Time trace of animal curvature and predicted behavior, decoded

from activity inferred by TMAC in a GCaMP worm. Gray shaded regions were used to train the decoder, white region

was held out and used to evaluate decoding performance. C) Ratio of decoding accuracy (ρ2) when decoding GCaMP

divided by the median accuracy for a GFP worm across different models (S2 Table). D) Histogram over all neurons of

correlation squared between RFP and activity inferred by TMAC from a GFP worm. RFP vs GFP data the same as in

Fig 1D and 1E. E) Same as F but in a GCaMP worm.

https://doi.org/10.1371/journal.pcbi.1010421.g003
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avenue for future work would be to consider asymmetric distributions which can retain both

high variability and positivity and may better approximate the true activity distribution.

In this work we demonstrated TMAC’s ability to remove decodable motion artifacts from

calcium induced fluorescence. However, TMAC will remove motion artifacts in any type of

two-channel imaging, so long as one channel is activity-independent and both channels share

the same motion artifact component. TMAC could therefore be applied to a wide range of

two-channel imaging modalities including for voltage imaging [37], fiber photometry when

using an isosbestic wavelength [38,39], or two-channel two-photon imaging [40].

Supporting information

S1 Fig. TMAC inferred neural activity from an immobilized animal. A) GCaMP and RFP

fluorescence from a neuron that TMAC estimates to have a high ratio of activity variance (σ2a)
to motion and noise variances (σ2m,r,g), recorded from an immobilized worm. B) GCaMP and

RFP fluorescence from a different neuron in that same recording that TMAC estimates to

have a high ratio of motion variance (σ2m) to activity and noise variances (σ2a,r,g). Because the

worm is immobilized, the motion artifacts are still small even for the highest motion variance

neurons. When there is low motion artifact, TMAC estimates the activity is similar to a

smoothed version of the green channel.

(PDF)

S2 Fig. Motion artifact correction for GCaMP and GFP expressing animals. A) Decoding

accuracy when decoding whole-body curvature from GFP recordings with different motion

correction methods applied. These animals do not express an activity-dependent fluorophore

so all decoding comes from motion artifacts. The mean and median of decoding of each

method is listed. B) Decoding accuracy when decoding whole-body curvature from GCaMP

expressing animals. The ratio of B to the median for each method in A is the value reported in

Fig 2C. C) As in Fig 3C, but each decoding value has been divided by the mean (rather than

median) decoding values from each metric in A.

(PDF)

S3 Fig. Accuracy of motion correction methods on synthetic data. Each of the 5 methods for

motion correction were tested on the synthetic dataset from Fig 2. The reported value is the

distribution of correlation squared between inferred activity and true activity over instantia-

tions of neurons. This synthetic data was generated from TMAC itself so it is unsurprising that

it outperforms other methods on this dataset. The linear regression method also performs well

because, like TMAC, it assumes an additive interaction between motion and activity.

(PDF)

S1 Table. Data source for each figure.

(DOCX)

S2 Table. Models for motion artifact correction.

(DOCX)
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